НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ ІНСТИТУТ ПРОБЛЕМ МАТЕРІАЛОЗНАВСТВА ім. І. М. ФРАНЦЕВИЧА

ЧУДІНОВИЧ ОЛЬГА ВАСИЛІВНА

УДК 541.1+546.65:669.017.4

ФАЗОВІ РІВНОВАГИ У СИСТЕМАХ La₂O₃-Y₂O₃-Ln₂O₃, де Ln = Nd, Sm, Eu, Gd, Yb

Спеціальність 02.00.04 – фізична хімія

АВТОРЕФЕРАТ дисертації на здобуття наукового ступеня кандидата хімічних наук

Київ – 2017

Дисертацією є рукопис.

Роботу виконано в Інституті проблем матеріалознавства ім. І. М. Францевича Національної академії наук України.

Науковий керівник:	доктор хімічних наук, старший науковий співробітник Андрієвська Олена Ростиславівна, завідувач відділу функціональної кераміки на основі рідкісних земель Інституту проблем матеріалознавства ім. І. М. Францевича НАН України				
Офіційні опоненти:	доктор хімічних наук, професор член-кореспондент НАН України Туркевич Володимир Зіновійович, Інститут надтвердих матеріалів ім. В. М. Бакуля НАН України, директор інституту				
	доктор хімічних наук, професор Томашик Василь Миколайович, Інститут фізики напівпровідників ім. В. Є. Лашкарьова НАН України, вчений секретар інституту				

Захист відбудеться «<u>6</u>» <u>грудня</u> 2017 р. о <u>14</u> годині на засіданні спеціалізованої вченої ради Д.26.207.02 в Інституті проблем матеріалознавства ім. І. М. Францевича НАН України за адресою: 03680, м. Київ, вул. Кржижановського, 3.

З дисертацією можна ознайомитися у бібліотеці Інституту проблем матеріалознавства ім. І. М. Францевича НАН України: 03680, м. Київ, вул. Кржижановського, 3.

Автореферат розісланий «<u>2</u>» <u>листопада</u> 2017 року.

Вчений секретар

спеціалізованої вченої ради Д. 26.207.02 доктор хімічних наук

О. В. Дуднік

ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ

Актуальність теми. Необхідність у нових матеріалах збільшується внаслідок розвитку існуючих та появи нових галузей техніки. Оксиди рідкісноземельних елементів (РЗЕ) є перспективними для створення матеріалів широкого спектру використання: у радіоелектроніці, оптоелектроніці, приладобудуванні, атомній та лазерній техніці, машинобудуванні, хімічній промисловості, металургії, медицині тощо.

Прозорі керамічні матеріали, отримані на основі чистих оксидів РЗЕ, за багатьма фізико-хімічними властивостями, такими як термостійкість, температура плавлення, механічна міцність, можливість контролю форми переважають скло, і в ряді випадків, монокристали твердих розчинів оксидів РЗЕ, а їх виробництво є енергетично і економічно быльш вигідним, ніж отримання останніх.

Оксид лантану входить до складу матеріалів спеціального призначення, що пропускають інфрачервоні та поглинають ультрафіолетові промені. Оксид ітербію володіє сцинтиляційними властивостями (флюоресценція) і застосовується у технології оптичних волокон, сонячних панелей, лазерів, джерел радіації для портативних рентгенівських пристроїв. Системи на основі оксидів лантану, ітрію, ітербію є перспективними для розробки іонних провідників і оптично прозорої кераміки.

Великий практичний інтерес викликають складні оксидні фази LnLn'O₃ (Ln, Ln' = P3E) із структурою типу перовскиту, які володіють різноманітними електричними (високе значення константи діелектричної проникності), магнітними, магнітоелектричними та оптичними властивостями (анізотропна оптика). Сполуки P3E застосовують для створення лазерних та інших оптично активних елементів в оптоелектроніці.

Властивості функціональної кераміки, зокрема оптично прозорої, є надто чутливими до впливу домішок. Частіше за все легування має бути прецизійним, в межах відхилення від середнього у декілька ррт (частин на мільйон). Тому знання про вплив добавок на стабільність твердих розчинів, проміжних фаз при температурах виготовлення та експлуатації керамічних виробів, є важливим, а вивчення фазових рівноваг — доцільним і актуальним. У представлених системах є дві групи потенційно цікавих твердих розчинів на основі кубічної модифікації оксидів РЗЕ та впорядкованої фази типу перовскиту, перспективних для створення лазерних (діодних) пристроїв.

Діаграми стану систем з оксидами: La₂O₃, Y₂O₃, Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) є фізико-хімічною основою для створення як ізотропної, так і анізотропної кераміки. Ізотропну кераміку можна отримати на основі твердих розчинів кубічної форми оксидів P3E, зокрема оксиду ітрію, який не є люмінофором, а на основі фази типу перовскиту (ромбічна ґратка) LnYO₃ (R) — анізотропну. Обидва типи твердих розчинів потрібно прецизійно легувати іонами люмінофорів (Nd, Yb). Фазові рівноваги у потрійних системах La₂O₃–Y₂O₃–Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) раніше не вивчено, що обумовлює необхідність систематичного їх дослідження та побудови діаграм стану вказаних систем.

Зв'язок з науковими програмами, темами, планами. Дисертаційна робота відповідає основним науковим напрямкам робіт Інституту проблем матеріалознавства ім. І. М. Францевича НАН України та виконана відповідно до тем відомчого замовлення

НАН України «Фазові рівноваги в системах оксидів РЗЕ, ZrO₂ та розробка багатофункціональних керамічних матеріалів іонних провідників і оптично прозорої кераміки нового покоління» (№ 0114U002431, 2014–2016 рр.) та «Фазові рівноваги та діаграми стану систем на основі рідких земель як фізико-хімічна основа створення текстурованої кераміки багатофункціонального призначення (№0117U000254, 2017-2019 рр.) – (виконавець); молодіжного гранта НАН України № 416/426 «Фазові рівноваги в подвійних системах на основі оксидів рідкісноземельних елементів, як основа створення перспективних матеріалів» (№ 0115U005101, 2015–2016 рр.) -(керівник); проекту МОН України № М/207 «Нові керамічні матеріали для теплозахисних покриттів» (№0115U006618, №0116U005508, 2015-2017 pp.) – (виконавець); проекту ДФФД-Білорусь № Ф73/111 «Вивчення термобаричної і концентраційної стабільності фаз типу перовскиту в потрійних системах La₂O₃- $Lu_2O_3(Y_2O_3)$ – Ln_2O_3 (де $Ln = Er_2O_3$, Yb_2O_3) для створення анізотропних текстурованих матриць (№0116U005508, №0117U003167, 2016-2017 рр.) – (виконавець).

Мета та завдання дослідження. *Метою роботи* є побудова діаграм стану трикомпонентних систем $La_2O_3-Y_2O_3-Ln_2O_3$, де Ln = Nd, Sm, Eu, Gd, Yb, y діапазоні температур 1500 і 1600 °C, де відбувається упорядкування/розупорядкування проміжної фази в усьому інтервалі концентрацій для створення фізико-хімічних основ розробки нових керамічних матеріалів функціонального призначення.

Для досягнення поставленої мети визначено наступні завдання:

- Вивчити фазові рівноваги у системі La₂O₃-Yb₂O₃ при 1100, 1500 і 1600 °С та уточнити межі фазових полів у системі Nd₂O₃-Y₂O₃ при 1500 і 1600 °С в усьому інтервалі концентрацій.
- 2. Вивчити фазові рівноваги у потрійних системах La₂O₃-Y₂O₃-Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 та 1600 °C і побудувати відповідні ізотермічні перерізи діаграм стану.
- 3. Визначити закономірності взаємодії фаз у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb).

Об'єкт дослідження. Взаємодія фаз у подвійних і потрійних системах на основі оксидів лантану, ітрію та лантаноїдів.

Предмет дослідження. Фазові рівноваги у подвійних $La_2O_3-Yb_2O_3$, $Nd_2O_3-Y_2O_3$ і потрійних $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) системах після випалу при 1100, 1500 і 1600 °C.

Методи дослідження. Рентгенофазовий аналіз, петрографія, растрова електронна мікроскопія, локальний рентгеноспектральний аналіз.

Наукова новизна одержаних результатів.

Вперше вивчено фазові рівноваги у подвійній системі La₂O₃-Yb₂O₃ при 1100, 1500 і 1600 °С в усьому інтервалі концентрацій.

Вперше вивчено фазові рівноваги у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 і 1600 °C і побудовано відповідні ізотермічні перерізи діаграм стану в усьому інтервалі концентрацій. Визначено температурно-концентраційну область стабільності упорядкованої фази із структурою типу перовскиту (R) у досліджених системах.

Практичне значення одержаних результатів. Представлені результати вивчення фазових рівноваг у подвійних La₂O₃–Yb₂O₃, Nd₂O₃–Y₂O₃ і потрійних La₂O₃–Y₂O₃–Ln₂O₃

(Ln = Nd, Sm, Eu, Gd, Yb) системах є довідниковим матеріалом та будуть використані для створення технологій отримання нових матеріалів функціонального призначення, зокрема лазерних матриць. Вибраний інтервал температур (1100-1600 °C) відповідає режимам спікання ізотропної та анізотропної прозорої кераміки, і тому важливо встановити чи є тверді розчини і проміжні фази стабільними в цих умовах.

Особистий внесок здобувача. Вибір напрямку досліджень, формулювання мети і досліджень проведено автором разом з науковим керівником задач Д.Х.Н. Андрієвською О. Р. Дисертантом самостійно виконано пошук і аналіз літературних ланих. частину експериментальної роботи та обробку результатів. OCHOBHY Рентгенофазовий аналіз виконано спільно з к.т.н. Биковим О. І. та провідним інженером Широковим О. В. (ППМ НАН України); мікроструктурні дослідження – спільно із н.с. Ковиляєвим В. В. (Лабораторія електродинамічних досліджень "ПРОТОН-21") та н.с. Самелюком А. В. (ППМ НАН України); петрографічні дослідження - спільно з н.с. Богатирьовою Ж. Д. (Фізико-технологічний інститут металів та сплавів НАН України).

Отриманні результати обговорено з науковим керівником д.х.н. Андрієвською О. Р.

Апробація результатів дисертації. Матеріали дисертаційної роботи представлено на 13 міжнародних та всеукраїнських наукових конференціях: V і VI Міжнародній конференції студентів, аспірантів та молодих вчених з хімії та хімічної технології, Київ (Україна), 2014, 2016; EMRS, Warsaw (Poland), 2014, 2017; VIII Міжнародній конференції молодих вчених та спеціалістів «Зварювання та споріднені технології», Київ (Україна), 2015; Международная научно-техническая конференция "Технология и применение огнеупоров и технической керамики в промышленности", Харьков (Украина), 2015, 2016; International Research and Practice Conference "Nanotechnology and Nanomaterials". Nanocomposites and Nanomaterials, Lviv (Ukraine), 2015; The Eleventh Students Meeting, SM-2015 Processing and Application of Ceramics, Novi Sad (Serbia), 2015; 5th International Workshop Directionally Solidified Eutectic Ceramics (DSEC V), Warsaw (Poland), 2016; 14th International Ceramics Congress and 7th Forum on New Materials CIMTEC. Perugia (Italy), 2016; IX Международная конференция «Материалы и покрытия в экстремальных условиях: исследования, применение, экологически чистые технологии производства и утилизации изделий», Киев (Украина), 2016.

Публікації. За матеріалами дисертації опубліковано 19 наукових праць у вигляді 6 статей у міжнародних і вітчизняних фахових виданнях та 13 тез доповідей на наукових конференціях.

Структура та об'єм дисертації. Дисертаційна робота складається зі вступу, огляду літератури за темою дослідження, п'яти розділів, присвячених основним результатам роботи та методам дослідження, висновків та списку використаної літератури із 138 найменувань. Дисертацію викладено на 215 сторінках, містить 97 рисунків, 39 таблиць та додатки.

ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі обґрунтовано актуальність теми дисертаційної роботи, її зв'язок з науковими програмами і темами, сформульовано мета та основні завдання роботи, її наукова новизна, практичне значення отриманих результатів, наведено дані про особистий внесок здобувача, а також відомості про апробацію роботи та публікації.

У першому розділі наведено огляд літератури за темою дисертації. Наведено основні фізико-хімічні характеристики вихідних компонентів, літературні відомості про діаграми стану подвійних систем $Ln_2O_3-Y_2O_3$ (Ln = La, Nd, Sm, Eu, Gd, Yb) та $La_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb). Відзначено, що системи $La_2O_3-Y_2O_3$, $Eu_2O_3-Y_2O_3$, $Sm_2O_3-Y_2O_3$, $Gd_2O_3-Y_2O_3$ вивчено достатньо добре в широкому інтервалі температур (1600–2500 °C) і концентрацій (0–100 мол. %). Система Nd₂O₃-Y₂O₃ потребує додаткового дослідження для уточнення меж фазових полів нижче 1600 °C. Фазові рівноваги у системі $La_2O_3-Yb_2O_3$ вивчено не достатньо при низьких температурах, зокрема взаємна розчинність компонентів у твердому стані і потребує ретельного дослідження для встановлення меж фазових полів. Інші системи $La_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd) вивчено достатньо. Відомості про фазові рівноваги у потрійних системах $La_2O_3-Y_2O_3$ (Ln = Nd, Sm, Eu, Gd, Sm, Eu, Gd, Yb) у літературі відсутні.

У другому розділі описано експериментальні методи синтезу порошків, отримання зразків і дослідження фазових рівноваг у подвійних і потрійних системах. Як вихідні речовини використовували оксиди РЗЕ з вмістом основного компонента 99,99% і азотну кислоту марки «ч.д.а.». Для вивчення фазових рівноваг у системах при 1100, 1500, 1600 °C зразки готували з концентраційним кроком 1–5 мол. %. Наважки оксидів розчиняли у HNO₃ (1:1), випарювали та прожарювали при 800 °C протягом 2 год. Порошки пресували в таблетки діаметром 6 мм і висотою 3–4 мм одностороннім пресуванням у сталевій прес-формі без зв'язки під тиском 10–30 МПа. Термообробку зразків проводили у повітрі при 1600 °C у три стадії: 1100 °C (120–1080 год) у печі з нагрівачами H23U5T (фехраль), 1500 °C (50 год) та 1600 °C (10 год) в печі з нагрівачами із дисиліциду молібдену (MoSi₂); при 1500 °C — у дві стадії: 1100 °C (120 год) і 1500 °C (50 год); при 1100 °C — одна стадія (13316 год). Зразки нагрівали від кімнатної до потрібної температури із швидкістю 3,5 °C·хв⁻¹. Випал зразків був неперервним. Охолодження проводили разом з піччю.

Фазовий аналіз зразків проведено на основі даних рентгенівських, петрографічних та мікроструктурних досліджень.

Рентгенофазовий аналіз зразків виконано за методом порошку на установці ДРОН–3 (ДРОН–3М) при кімнатній температурі (випромінювання СиКα). Напруга на рентгенівській трубці складала 30 кВ, сила струму — 20 мА, крок сканування — 0,05–0,1 град, експозиція 4 с у діапазоні кутів 2θ = 15–90 град. Параметри елементарних комірок розраховано за методом найменших квадратів з використанням програми LATTIC. Для ідентифікації фаз використовували базу даних Міжнародного комітету порошкових стандартів (JSPDS Міжнародний центр дифракційних даних, 1999).

Мікроструктури вивчали за допомогою растрової електронної мікроскопії (SEM) у зворотно (BSE) і вторинно (SE) відбитих електронах на приладах SUPERPROBE-733 (JEOL-Japan) і JUMP-9500 F (JEOL-Japan). Рентгеноспектральний мікроаналіз проведено на JUMP-9500 F.

Петрографічні дослідження випалених зразків проводили у поляризованому світлі з використанням мікроскопів МІН-8 та Leica DM750M у високо заломлюючих імерсійних рідинах (стандартний набір ИЖ-1).

У третьому розділі представлено результати дослідження фазових рівноваг у подвійних системах La₂O₃-Yb₂O₃ (1100-1600 °C) та Nd₂O₃-Y₂O₃ (1500-1600 °C).

Дослідження твердофазної взаємодії La₂O₃ (гексагональна модифікація, A) і Yb₂O₃ (кубічна модифікація C, структура типу Tl₂O₃) при 1100, 1500, 1600 °C підтвердило, що в системі La₂O₃–Yb₂O₃ утворюються три типи твердих розчинів: на основі гексагональної модифікації A-La₂O₃, кубічної модифікації C-Yb₂O₃ і впорядкованої фази LaYbO₃ (R), яка кристалізується у структурі типу перовскиту з ромбічними спотвореннями (рис. 1). Межа області гомогенності C-фази становить 98–100 мол. % Yb₂O₃ в усьому температурному інтервалі. Границі області гомогенності R-фази становлять 48–56 мол. % Yb₂O₃ (1100, 1500 °C), 48–54 мол. % Yb₂O₃ (1600 °C). Концентраційні залежності параметра *с* елементарної комірки твердих розчинів на основі R-фази представлено на рис. 2. Границя області гомогенності A-фази становить 4 мол. % Yb₂O₃ (1100 °C) та 9 мол. % Yb₂O₃ (1500 і 1600 °C).

о – однофазні, ● – двофазні зразки
Рис. 1 – Діаграма стану системи La₂O₃–
Yb₂O₃ в інтервалі температур 1100–
1600 °C за даними експерименту та при
>1600 °C за даними літератури

Рис. 2 – Концентраційні залежності параметра c елементарної комірки твердих розчинів на основі LaYbO₃ (R) в системі La₂O₃–Yb₂O₃ при 1100 (1), 1500 (2) і 1600 (3) °C

Підтверджено, що в системі $Nd_2O_3-Y_2O_3$ при 1500 та 1600 °C утворюються області гомогенності твердих розчинів на основі гексагональної (А), моноклінної (В) модифікацій оксиду неодиму та кубічної (С) модифікації оксиду ітрію, які розділені двофазними полями (A + B) і (B + C), (рис. 3). Область гомогенності твердих розчинів на основі A-Nd₂O₃ становить 0–4 мол. % Y₂O₃ при 1500, 1600 °C, B-Nd₂O₃ — 20–45 мол. % Y₂O₃ при 1500 °C і 21–50 мол. % Y₂O₃ при 1600 °C (рис. 4). Розчинність C-Y₂O₃ складає 28 мол. % Y₂O₃ (1500 °C) і 30 мол. % Y₂O₃ (1600 °C), (рис. 5). Нових фаз не знайдено.

У четвертому розділі представлено результати досліджень фазових рівноваг у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) у вигляді ізотермічних перерізів діаграм стану вказаних систем при 1500 та 1600 °C. Отримані результати показали, що характер фазових рівноваг у системах визначає будова обмежуючих подвійних систем. Нові фази не виявлено.

1 – однофазні, 2 – двофазні зразки, 3 – дані ЛРСА

Рис. 3 – Діаграма стану системи Nd₂O₃–Y₂O₃: в інтервалі температур 1500–1600 °C за даними експерименту та при >1600 °C за даними прогнозу

Рис. 4 – Концентраційні залежності параметра c елементарної комірки твердих розчинів на основі B-Nd₂O₃ в системі Nd₂O₃–Y₂O₃ при 1500 (1) і 1600 (2) °C

Рис. 5 – Концентраційні залежності параметра a елементарної комірки твердих розчинів на основі C-Y₂O₃ в системі Nd₂O₃–Y₂O₃ при 1500 (1) і 1600 (2) °C

У системі La₂O₃–Y₂O₃–Nd₂O₃ утворюються тверді розчини на основі кубічної (С) модифікації Y₂O₃, гексагональної (А) і моноклінної (В) модифікацій La₂O₃ і Nd₂O₃. Упорядкована фаза LaYO₃ (R) у подвійній системі існує лише до 1585 °C, у даній потрійній системі при 1600 °C її не спостерігали. Ізотермічний переріз діаграми стану системи La₂O₃–Y₂O₃–Nd₂O₃ при 1500 °C характеризується присутністю однієї трифазної (В + C + R), чотирьох однофазних (A-La₂O₃ (Nd₂O₃), B-La₂O₃ (Nd₂O₃), R, C-Y₂O₃) та двофазних (A-La₂O₃ (Nd₂O₃), B-La₂O₃ (Nd₂O₃), C-Y₂O₃) та двофазних (A + B, B + C) областей (рис. 6, а), а при 1600 °C — трьох однофазних (A-La₂O₃ (Nd₂O₃), C-Y₂O₃) та двофазних (A + B, B + C) областей (рис. 6, б).

В області з високим вмістом Y_2O_3 існує досить протяжне поле твердих розчинів на основі C- Y_2O_3 , яке опукле у напрямку обмежуючої подвійної системи La₂O₃–Nd₂O₃ (1500 °C). Границя області гомогенності показує, що розчинність Nd₂O₃ у C- $Y_{2-x}La_xO_3$ відбувається шляхом заміщення іонів Y³⁺ на Nd³⁺, тобто у вузлі A, тоді як

розчинність La₂O₃ у C-Y_{2x}Nd_xO₃ відбувається шляхом заміщення іонів Nd³⁺ на La³⁺ при незмінній кількості Y₂O₃, тобто у вузлі В. Розчинність La₂O₃ у твердому розчині C-Y₂O₃ у перерізі Y₂O₃–(50 мол. % La₂O₃–50 мол. % Nd₂O₃) становить ~14 мол. % при 1500 °C та ~9 мол. % при 1600 °C.

о – однофазні, • – двофазні, • – трифазні зразки, □ – дані ЛРСА

Рис. 6 – Ізотермічні перерізи діаграми стану системи La₂O₃–Y₂O₃–Nd₂O₃ при 1500 °C (а), 1600 °C (б). На конодах вказані параметри елементарної комірки (нм): в області (A + B) – значення $a_{\rm B}$, в областях (B + C) і (R + C) – $a_{\rm C}$

У системі La₂O₃–Y₂O₃–Nd₂O₃ при 1500 °С присутня упорядкована фаза типу перовскиту з ромбічними спотвореннями. Поле твердих розчинів на основі фази типу перовскиту направлене в сторону кута Nd₂O₃ концентраційного трикутника. Розчинність Nd₂O₃ у R-фазі становить ~7 мол. % у перерізі Nd₂O₃–(50 мол. % La₂O₃–50 мол. % Y₂O₃) та ~9 мол. % вздовж ізоконцентрати 50 мол. % Y₂O₃. Це свідчить про рівномірне заміщення іонами Nd³⁺ іонів La³⁺ і Y³⁺ у вузлах A і B R-фази та зниження фактора толерантності (t) за Гольдшмідтом, тобто стабільності R-фази.

Оксиди лантану та неодиму утворюють неперервний ряд твердих розчинів на основі А-форми оксидів РЗЕ. Концентраційна границя області гомогенності твердих розчинів на основі А-La₂O₃ (Nd₂O₃) увігнута в напрямку зменшеного вмісту оксиду ітрію. Направленність області гомогенності А-фази обумовлена тим, що в А-фазі Nd³⁺ заміщає одночасно іони La³⁺ і Y³⁺, тоді як, La³⁺ більш схильний заміщати Nd³⁺, ніж Y³⁺. Розчинність Y₂O₃ в А-фазі у перерізі Y₂O₃–(50 мол. % La₂O₃–50 мол. % Nd₂O₃) становить ~8 мол. % при 1500 ° С.

У системі $La_2O_3-Y_2O_3-Nd_2O_3$ при 1500 °C утворюється одна трифазна область (B + C + R). Координати вершин конодного трикутника $\langle B \rangle - \langle C \rangle - R$ наведено в табл. 1.

Таблиця 1 – Координати	вершин конодного	трикутника у	[,] системі І	$a_2O_3 - Y_2O_3 -$
Nd ₂ O ₃ при 1500 °С (за даними	ЛРСА)			

Фаза	Склад фаз, мол. %					
	Y_2O_3	La_2O_3	Nd_2O_3			
	44	18	38			
<c></c>	68	11	21			
<r></r>	46	45	9			

Поле твердих розчинів на основі В-фази простягається від 33 до 44 мол. % Y_2O_3 у перерізі Y_2O_3 -(90 мол. % La_2O_3 -10 мол.% Nd_2O_3), (рис. 7, а) і від 33 до 43 мол. % Y_2O_3 у перерізі Y_2O_3 -(50 мол. % La_2O_3 -50 мол.% Nd_2O_3) при 1600 °C (рис. 7, б). Параметри елементарної комірки В-фази у перерізі Nd_2O_3 -(50 мол.% La_2O_3 -50 мол. % Y_2O_3) змінюються адитивно від a = 1,4069 нм, b = 0,3618нм, c = 0,8892 нм для двофазного зразка (В + R) складу 42,5 мол. % Y_2O_3 -42,5 мол.% La_2O_3 -15 мол. % Nd_2O_3 до a = 1,3144 нм, b = 0,3648 нм, c = 0,8098 нм для однофазного зразка (В) складу 37,5 мол.% Y_2O_3 -37,5 мол.% La_2O_3 -25 мол. % Nd_2O_3 (1500 °C).

Рис. 7 – Концентраційні залежності параметрів *a* і *b* елементарної комірки твердих розчинів на основі В-фази у перерізах: Y_2O_3 –(90 мол. % La_2O_3 –10 мол. % Nd_2O_3) (а) та Y_2O_3 –(50 мол. % La_2O_3 –50 мол. % Nd_2O_3) (б) у зразках системи La_2O_3 – Y_2O_3 – Nd_2O_3 після випалу при 1600 °C

Таким чином, фазові рівноваги в системі La₂O₃–Y₂O₃–Nd₂O₃ при 1500 та 1600 °C суттєво відрізняються між собою, що обумовлено будовою обмежуючих подвійних систем і особливостями ізоморфного заміщення різнорозмірних іонів у вузлах ґраток різних трикомпонентних твердих розчинів. На відміну від ізотермічного перерізу при 1600 °C (рис. 6, б), при 1500 °C утворюються тверді розчини на основі впорядкованої фази типу перовскиту із-за її існування у подвійній системі La₂O₃–Y₂O₃ та трифазну область (B + C + R). Дабавки оксиду неодиму не стабілізують R-фазу при 1600 °C.

У системі La₂O₃–Y₂O₃–Sm₂O₃ утворюються поля твердих розчинів на основі кубічної (С) модифікації Y₂O₃, гексагональної (А) і моноклінної (В) модифікацій La₂O₃ і Sm₂O₃, а також впорядкованої фази типу перовскиту LaYO₃ (R). Ізотермічний переріз цієї системи при 1500 °C характеризується присутністю однієї трифазної (B + C + R), чотирьох однофазних (A-La₂O₃ (Sm₂O₃), B-La₂O₃ (Sm₂O₃), R, C-Y₂O₃) та двофазних (A + B, B + R, C + R, B + C) областей (рис. 8, а). При підвищенні температури до 1600 °C кількість фазових полів зменшується, що обумовлено відсутністю R-фази (рис. 8, б).

У вказаній системі утворюється неперервний ряд твердих розчинів на основі В-La₂O₃ (Sm₂O₃), які займають найбільшу площу ізотермічних перерізів, що свідчить про їх стабільність у даних умовах (повна взаємна розчинність оксидів лантану і самарію (r(La₂O₃) = 0,114 нм, r(Sm₂O₃) = 0,100 нм, r(Y₂O₃) = 0,092 нм).

Зі збільшенням концентрації оксиду ітрію параметри елементарної комірки Вфази зменшуються і гратка твердих розчинів на основі В-форми оксидів РЗЕ стає більш цільно упакованою.

о – однофазні, • – двофазні, • – трифазні зразки

Рис. 8 – Ізотермічні перерізи діаграми стану системи $La_2O_3-Y_2O_3-Sm_2O_3$ при 1500 (а) та 1600 °С (б). На конодах вказані параметри елементарної b_B комірки (нм) в області (B + C)

Область гомогенності неперервних твердих розчинів на основі В-фази простягається від 18 до 40 мол. % Y_2O_3 при 1500 °C та від 14 до 44 мол. % Y_2O_3 при 1600 °C у перерізі Y_2O_3 -(50 мол. % La_2O_3 -50 мол. % Sm_2O_3). Параметри елементарної комірки В-фази у перерізі Y_2O_3 -(50 мол. % La_2O_3 -50 мол. % Sm_2O_3) змінюються від a = 1,3988 нм, b = 0,3774 нм, c = 0,8427 нм для однофазного зразка (В) складу 15 мол. % Y_2O_3 -42,5 мол. % La_2O_3 -42,5 мол. % Sm_2O_3 до a = 1,3806 нм, b = 0,3709 нм, c = 0,8312 нм для граничного складу твердого розчину 45 мол. % Y_2O_3 -27,5 мол. % La_2O_3 -27,5 мол. % Sm_2O_3 (1600 °C), відповідно до закону Вегарда. Таким чином, добавки оксиду самарію не стабілізують R-фазу при 1600 °C. Порівняно з подібною системою, що містить Nd₂O₃, у системі La_2O_3 - Y_2O_3 - Sm_2O_3 тверді розчини А-типу існують тільки в лантановому куті, отже поступаються за стабільністю твердим розчинам B-типу. Преференція заміщення іонами самарію іонів ітрію стає виразною, порівняно з поведінкою іонів неодиму.

У системі La₂O₃–Y₂O₃–Eu₂O₃ утворюються поля твердих розчинів на основі С модифікації Y₂O₃, A і В модифікацій La₂O₃ і Eu₂O₃, а також впорядкованої фази типу перовскиту LaYO₃ (R). Ізотермічний переріз діаграми стану системи La₂O₃–Y₂O₃–Eu₂O₃ при 1500 °C характеризується наявністю однієї трифазної (B + C + R), чотирьох однофазних (A-La₂O₃ (Eu₂O₃), B-La₂O₃ (Eu₂O₃), R, C-Y₂O₃) та двофазних (A + B, B + R, C + R, B + C) областей (рис. 9, а).

Однак фазові рівноваги в системі $La_2O_3-Y_2O_3-Eu_2O_3$ при 1500 та 1600 °С суттєво відрізняються між собою, що обумовлено особливостями фазоутворення у системі. На відміну від ізотермічного перерізу при 1600 °С (рис. 9, б), при 1500 °С спостерігали область гомогенності впорядкованої фази типу перовскиту. Розчинність Eu_2O_3 у R-фазі становить ~4 мол. % у перерізі $Eu_2O_3-(50 \text{ мол. }\% La_2O_3-50 \text{ мол. }\% Y_2O_3)$.

о – однофазні, ● – двофазні, ● – трифазні зразки

Рис. 9 – Ізотермічні перерізи діаграми стану системи $La_2O_3-Y_2O_3-Eu_2O_3$ при 1500 (а) та 1600 °С (б). На конодах вказані параметри елементарної комірки b_B (нм) в області (B + C)

Параметри елементарної комірки змінюються від a = 0,5830, b = 0,6174, c = 0,8388 нм для однофазного зразка (R) складу 2 мол. % Eu₂O₃-49 мол. % La₂O₃-49 мол. % Y₂O₃ до a = 0,5829, b = 0,6054, c = 0,8755 нм для двофазного зразка (R + B) складу 5 мол. % Eu₂O₃-47,5 мол. % La₂O₃-47,5 мол. % Y₂O₃, згідно правилу адитивності.

В області з високим вмістом Y_2O_3 утворюються тверді розчини на основі кубічної модифікації оксиду ітрію. Поле твердих розчинів C- Y_2O_3 у перерізі Y_2O_3 -(50 мол. % La₂O₃-50 мол. % Eu₂O₃) простягається від 83 до 100 мол. % Y_2O_3 при 1500 °C та від 69 до 100 мол. % Y_2O_3 при 1600 °C. Таким чином, добавки оксиду європію не стабілізують R-фазу при температурі 1600 °C.

У системі $La_2O_3 - Y_2O_3 - Gd_2O_3$ утворюються тверді розчини на основі кубічної С модифікації Y₂O₃, A і B модифікацій La₂O₃ і Gd₂O₃, а також впорядкованої R-фази. Ізотермічні перерізи діаграми стану системи La₂O₃-Y₂O₃-Gd₂O₃ при 1500 та 1600 °C (рис. 10) за своєю будовою подібні до вище описаних систем, проте відрізняються протяжністю фазових полів, зокрема із зменшенням іонного радіуса Ln³⁺ від Sm³⁺ до Gd³⁺ помітно зменшується ширина областей гомогенності А та R-фаз. При 1600 °С значно розширюються поля твердих розчинів на основі А, В та С-фаз за рахунок ізоморфного заміщення катіонів РЗЕ в усіх модифікаціях. Область гомогенності Вфази простягається від 12 до 31 мол. % Y₂O₃ у перерізі Y₂O₃-(50 мол. % La₂O₃-50 мол. % Gd₂O₃) (1500 °C) та від 24 до 51 мол. % Y₂O₃ у перерізі Y₂O₃-(90 мол. % La₂O₃-10 мол. % Gd₂O₃), (1600 °C). Область гомогенності С-фази простягається від 73 до 100 мол. % Y₂O₃ у перерізі Y₂O₃-(50 мол. % La₂O₃-50 мол. % Gd₂O₃), (1600 °С). Параметри елементарної комірки змінюються від a = 1,0650 нм для однофазного зразка (С) складу 1,5 мол. % Gd₂O₃-13,5 мол. % La₂O₃-85 мол. % Y₂O₃ до *a* = 1,0705 нм для двофазного зразка (C + B) складу 2 мол. % Gd₂O₃-18 мол. % La₂O₃-80 мол. % Y₂O₃.

○ – однофазні, • – двофазні, • – трифазні зразки

Рис. 10 – Ізотермічні перерізи діаграми стану системи La₂O₃–Y₂O₃–Gd₂O₃ при 1500 (а) та 1600 °C (б). На конодах вказані параметри елементарної комірки В-фази $b_{\rm B}$ (нм) в області (B + C)

Оцінка термодинамічної стабільності оксидів Ln_2O_3 досліджених систем La_2O_3 -Y₂O₃-Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) показав, що відносна різниця між значеннями ΔG_f° для них невелика, якщо не враховувати B- і C-Eu₂O₃ ($\Delta G_f^{\circ} = -1653,5$ кДж/моль і $\Delta G_f^{\circ} = -1699,37$, відповідно). Найбільша різниця спостерігається між ΔG_f° A-La₂O₃ (-1829,71 кДж/моль) і B-Sm₂O₃ (-1868 кДж/моль), що становить ~2 %. Можна зробити висновок про те, що у досліджених системах із Nd₂O₃, Sm₂O₃ і Gd₂O₃ коноди у двофазних областях A + B і B + C проходять близько до променів через вершину Y₂O₃.

Ізотермічний переріз діаграми стану системи La₂O₃–Y₂O₃–Yb₂O₃ при 1500 °C суттєво відрізняється від представлених вище систем (рис. 11). Встановлено, що у вказаній системі утворюється неперервний ряд твердих розчинів на основі упорядкованої фази типу перовскиту. Додавання іона ітербію Yb³⁺ (0,086 нм) приводить до заміщення ним іона ітрію Y³⁺ (0,092 нм) у вузлі В та підвищення стабільності R-фази у більш широкій області концентрацій. Параметри елементарної комірки R-фази у зразках вздовж перерізу La₂O₃–YbYO₃ змінюються від *a* = 0,6029 нм, *b* = 0,5844 нм, *c* = 0,8399 нм для двофазного зразка (R + C) складу 40 мол. % La₂O₃–30 мол.% Y₂O₃–30 мол. % Yb₂O₃ до *a* = 0,6061, *b* = 0,5830, *c* = 0,8411 нм для граничного складу 50 мол. % La₂O₃–25 мол. % Y₂O₃–25 мол. % Yb₂O₃. Розчинність оксиду ітербію у R-фазі становить ~5 мол. % у перерізі Yb₂O₃– LaYO₃ (рис. 12, a), змінюється від 44 до 51 мол. % у перерізі La₂O₃–YbYO₃ (рис. 12, в).

У п'ятому розділі проаналізовано результати експериментальних досліджень і літературні дані щодо будови діаграм стану вивчених систем. Встановлено, що в системах Y_2O_3 – Ln_2O_3 ітрій ізоморфно заміщає катіони РЗЕ в усіх низькотемпературних (A, B, C) модифікаціях оксидів лантаноїдів. Область твердих розчинів C-типу оксидів РЗЕ тим ширше, чим ближчі розміри іонних радіусів Y^{3+} і Ln^{3+} . Встановлено, що значення ефективного іонного радіуса для всіх розчинених оксидів лантаноїдів відповідає $R_{ef} \sim 0,0958 \pm 0,0004$ нм ($R_{ef} = x^*R_{Ln3+} + (1-x)^*R_{Y3+}$) (табл. 2).

о — однофазні, ● — двофазні, ● — трифазні зразки

Рис. 12 – Концентраційні залежності параметрів елементарної комірки твердих розчинів на основі R-фази у перерізі Yb₂O₃– (50 мол. % La₂O₃–50 мол.% Y₂O₃) (a), La₂O₃– YbYO₃ (б), Y₂O₃–(Yb_{0,3}Y_{0,7})₂O₃ (в) системи La₂O₃–Y₂O₃–Yb₂O₃ після випалу зразків при 1500 °C

Таблиця 2 – Розрахунок R_{ef} твердих розчинів на основі C-Y₂O₃ для ізотермічних перерізів діаграм стану систем Y₂O₃-Ln₂O₃ при 1500 і 1600 °C

Ln_2O_3	Радіус іону	R _{ef} при	Розчинність	R _{ef} при	Розчинність
	лантаноїду, нм	1500 °C,	при 1500 °C,	1600 °C,	при 1600 °C,
		HM	мол. %	HM	мол. %
La_2O_3	0,114	0,0955	15	0,0953	15
Nd_2O_3	0,104	0,0955	28	0,0956	30
Sm_2O_3	0,100	0,0962	53	0,0960	50
Eu_2O_3	0,098	0,0958	58	0,0955	54
Gd_2O_3	0,097	0,0959	75	0,0958	74

Залежність розчинності Ln_2O_3 у C-Y₂O₃ від іонного радіуса Ln^{3+} при 1500 та 1600 °C показано на рис. 13. Найбільшу розчинність має оксид гадолінію (r = 0,097 нм). За гіпотезою, що для потрійних твердих розчинів C-Y₂O₃ у системах $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Gd) розчинність оксидів лантаноїдів також відповідає значенню ефективного іонного радіуса $R_{ef} \sim 0,0958$, показано, що розрахункові і експериментальні дані задовільно збігаються (рис. 14), і цю методику можливо використовувати для прогнозування розчинності у невивчених системах.

Рис. 13 – Залежність розчинності Ln_2O_3 у C-Y₂O₃ від іонного радіуса Ln^{3+} при 1500 (1) та 1600 (2) °C у подвійних системах $Y_2O_3-Ln_2O_3$

Особливістю систем La₂O₃–Y₂O₃–Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 °C є утворення твердих розчинів на основі впорядкованої R-фази з структурою типу перовскиту. Стійкість цієї фази можна оцінити за допомогою фактора толерантності за Гольдшмідтом. На рис. 15 показано збільшення температури перетворення (T_{np}) R-фази залежно від зміни іонного радіуса у вузлі В і відповідної зміни фактора толерантності (t). Температуру перетворення (T_{np}) можна розглядати як верхню границю термодинамічної стабільності твердих розчинів на основі впорядкованої Rфази.

При легуванні іонних кристалів ізовалентними добавками зарядова компенсація не потрібна, тому розмірний фактор є головним за оцінкою стабільності кристалічної гратки. У залежності від розміру іона добавки і вузла заміщення у ґратці перовскиту температурну стійкість впорядкованої фази LaYO₃ можна збільшити або зменшити шляхом легування оксидами P3E. На рис. 16, а–е представлено результати розрахунків зміни T_{np} із збільшенням концентрації оксидів лантаноїдів, коли у впорядкованій фазі LaYO₃ заміщення іонів La³⁺ і Y³⁺ відбувається іонами Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Yb³⁺ у вузлах A і В окремо та одночасно. Розрахунки показали, що заміщення будь якого іона у R-фазі іонами лантаноїдів іона ітрію у вузлі В R-фази збільшує температуру її перетворення, що підтверджено для потрійної системи La₂O₃–Y₂O₃–Yb₂O₃ експериментально.

Рис. 14 – Розчинність оксидів лантаноїдів (Nd₂O₃ (a), Sm₂O₃ (б), Gd₂O₃ (в)) у С-формі оксиду ітрію у потрійних системах La₂O₃–Y₂O₃–Ln₂O₃ (Ln = Nd, Sm, Gd) за даними експерименту та розрахунку

Рис. 15 – Залежність температури перетворення (T_{np}) фази зі структурою типу перовскиту LaLnO₃ (Ln = Y, Ho, Er, Tm, Yb) від фактора толерантності *t* за Гольдшмідтом за даними літератури, t = ($R_{La} + R_O$)/ $\sqrt{2}$ ($R_{Ln} + R_O$)

Рис. 16 – Залежність температури перетворення фази LaLnO₃ від концентрації добавки РЗЕ у вузлі A (1), у вузлах A і B (2), у вузлі B (3) у потрійних системах La₂O₃-Y₂O₃-Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Er, Yb)

ВИСНОВКИ

1. Вивчено фазові рівноваги у подвійній системі La_2O_3 -Yb₂O₃ при 1100, 1500 та 1600 °C у всьому інтервалі концентрацій. Встановлено, що для даної системи характерно утворення твердих розчинів на основі A і C кристалічних модифікацій вихідних компонентів та впорядкованої фази із структурою типу перовскиту (LaYbO₃, R). Визначено границі областей гомогенності: для C-фази — 98–100 мол. % Yb₂O₃ (1100–1600 °C), R-фази — 48–56 мол. % Yb₂O₃ (1100, 1500 °C), 48–54 мол. % Yb₂O₃ (1600 °C) A-фази — 4 мол. % Yb₂O₃ (1100 °C) та 9 мол. % Yb₂O₃ (1500, 1600 °C).

2. Уточнено границі фазових полів у подвійній системі $Nd_2O_3-Y_2O_3$ при 1500 та 1600 °C для твердих розчинів на основі гексагональної (А), моноклінної (В) модифікацій оксиду неодиму та кубічної (С) модифікації оксиду ітрію, що становлять: для A-Nd₂O₃ — 0–4 мол. % Y₂O₃ при 1500 і 1600 °C, для B-Nd₂O₃ — 20–45 мол. % Y₂O₃ при 1500 °C і 21– 50 мол. % Y₂O₃ при 1600 °C та для C-Y₂O₃ — 28 мол. % Y₂O₃ при 1500 °C і 30 мол. % Y₂O₃ при 1600 °C.

3. Вперше вивчені фазові рівноваги у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 та 1600 °C у всьому інтервалі концентрацій і побудовано відповідні ізотермічні перерізи діаграм стану. Встановлено, що у вказаних системах утворюються тверді розчини на основі кубічної, гексагональної та моноклінної кристалічних модифікацій вихідних компонентів та впорядкованих фаз із структурою типу перовскиту (LaYO₃, LaYbO₃).

4. Встановлено закономірності утворення твердих розчинів С-типу оксидів РЗЕ у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd) при 1500 та 1600 °C: розчинність Ln_2O_3 у твердих розчинах на основі C-Y₂O₃(Yb₂O₃) зі зменшенням іонного радіуса Ln^{3+} збільшується.

5. Вперше встановлено закономірності утворення твердих розчинів на основі упорядкованих фаз типу перовскиту (R). Показано, що область гомогенності R-фази у потрійних системах La_2O_3 — Y_2O_3 — Ln_2O_3 по ряду від Nd_2O_3 до Gd_2O_3 зменшується від 7 до 2 мол. % Ln_2O_3 тоді, як у системі з Yb_2O_3 утворюється неперервний ряд твердих розчинів на основі упорядкованої фази типу перовскиту, що обумовлено температурою перетворення фази $LaYbO_3$ у подвійній системі La_2O_3 — Yb_2O_3 (2040 °C). З використанням фактора толерантності за Гольдшмідтом проведено оцінку термічної стійкості твердих розчинів на основі фази $LaLnO_3$ у широкому інтервалі температур і концентрацій для іонів різного розміру. Показано, що утворення твердих розчинів відбувається за механізмом ізовалентного заміщення, а стійкість упорядкованих фаз і твердих розчинів визначається геометричним фактором: великі іони Nd^{3+} заміщують La^{3+} , менші іони РЗЕ церієвого ряду Sm^{3+} , Eu^{3+} , Gd^{3+} заміщують Y^{3+} та La^{3+} , тоді як іони РЗЕ ітрієвого ряду заміщують виключно Y^{3+} , що відповідає експериментальним даним.

СПИСОК ОПУБЛІКОВАНИХ ПРАЦЬ ЗА ТЕМОЮ ДИСЕРТАЦІЇ

Cmammi

1. Чудинович О. В. Взаимодействие оксидов лантана и иттербия при температуре 1500 °С / О. В. Чудинович, Е. Р. Андриевская, Ж. Д. Богатырева, Л. Н. Спасенова // Современные проблемы физического материаловедения, ИПМ НАН Украины. – 2014. – № 23. – С. 12–23 (персональний внесок дисертанта: синтез зразків, ізотермічний випал зразків при 1500 °С, обробка даних РФА, обговорення отриманих результатів).

2. Чудінович О. В. Взаємодія оксидів ітрію та неодиму при температурі 1500 °С / О. В. Чудінович // Український хімічний журнал. – 2016. – Т. 82, № 8. – С. 92–97.

Чудінович О. В. Взаємодія оксидів лантану, ітрію та ітербію при температурі 1500 °С / О. В. Чудінович, О. Р. Андрієвська // Вісник ОНУ. Серія: Хімія. – 2016. – Том 21, вип. 2 (58). – С. 53–66 (персональний внесок дисертанта: синтез зразків, ізотермічний випал зразків при 1500 ^оС, проведення та обробка даних РФА, обговорення отриманих результатів, підготовка рукопису статті). 4. Chudinovych O. V. Phase relations in the yttria–neodymia system at $1500 \,^{\circ}\text{C} / \text{O}$. V. Chudinovych, E. R. Andrievskaya, J. D. Bogatyryova, A. V. Shirokov // Processing and Application of Ceramics. – 2017. – Vol. 11, no 1. – P. 1–6 (*nepcohanbhuŭ внесок дисертанта: синтез зразків, ізотермічний випал зразків при 1500* °C, обробка даних *РФА*, обговорення отриманих результатів, підготовка рукопису статті).

5. Чудінович О. В. Взаємодія оксидів лантану, ітрію та неодиму при температурі 1600 °С / О. В. Чудінович, О. Р. Андрієвська, Ж. Д. Багатирьова [та ін.] // Вісник ОНУ. Серія: Хімія. – 2017. – Т. 22, вип. 2 (62). – С. 82–94 (персональний внесок дисертанта: провела синтез зразків, ізотермічний випал зразків при 1600 °С, обробку даних РФА, брала участь в обговоренні отриманих результатів та підготовці рукопису статті).

6. Андриевская Е. Р. Взаимодействие оксидов иттрия и неодима при температуре 1600 °С / Е. Р. Андриевская, О. В. Чудинович, Ж. Д. Богатырева [и др.] // Современные проблемы физического материаловедения, ИПМ НАН Украины. – 2016. – № 25. – С. 3– 14 (персональний внесок дисертанта: провела синтез зразків, ізотермічний випал зразків при 1600 °С, експериментальні вимірювання та обробку даних РФА, брала участь в обговоренні отриманих результатів).

Тези доповідей

7. Чудінович О. В. Оптично прозора кераміка на основі оксидів рідкоземельних елементів / О. В. Чудінович, Б. О. Криштоп, Т. В. Козодой [та ін.] // V Міжнародна конференція студентів, аспірантів та молодих вчених з хімії та хімічної технології: тези доповідей. – К., 2014. – С. 146.

8. Andrievskaya E. R. Phase relations and perspective materials in the ternary system La_2O_3 - Y_2O_3 - Nd_2O_3 / E. R. Andrievskaya, **O. V. Chudinovich**, O. A. Kornienko [et al.] // European Materials Research Society E-MRS 2014 Fall Meeting, Functional and Structural Ceramic and Ceramic Matrix Composites (CCMC) Symposium S: Composite materials and structures: from research and practical demands to application,(September 15–19, Warsaw, Poland). – Warsaw University of Technology, 2014. – P. 02.

9. **Chudinovych O. V.** Interaction yttrium oxide with lanthana and neodima at 1500 °C / O. V. Chudinovych, E. R. Andrievskaya, O. A. Kornienko [et al.] // Materials and Coatings for Extreme Environments Performance: Investigations, Applications, Ecologically Safe Technologies for their Production and Utilization: VII International Conference, (20–24 September, Big Yalta, Zhukovka, Crimea, Ukraine), 2014. – P. 01.

10. Чудінович О. В. Фазові співвідношення та перспективні матеріали в системі La₂O₃– Yb₂O₃/ О. В. Чудінович // Зварювання та споріднені технології доповідей: VIII міжнарод. конференція молодих вчених та спеціалістів, тези доповідей (20–22 травня, 2015 р.). – К., 2015. – С. 297.

11. Андриевская Е. Р. Взаимодействие и свойства фаз в системе La₂O₃–Yb₂O₃ при 1500 °C / Е. Р. Андриевская, О. В. Чудинович, В. В. Ткач // Технология и применение огнеупоров и технической керамики в промышленности: междунар. научно-техническоя конференция, тезисы докладов (28–29 апреля 2015 г.). – Харьков, изд-во "Каравелла", 2015. – С. 29–30.

12. Chudinovich O.V. Optically transparent ceramics based on rare–earth oxides / O. V. Chudinovich, E. R. Andrievskaya, A. V. Kryuchko [et al.] // Nanotechnology and

Nanomaterials. Nanocomposites and Nanomaterials: International research and practice conference (26–29 August 2015, Lviv). – P. 45.

13. Chudinovich O. V. Advanced materials and phase relations in the $La_2O_3-Y_2O_3-Yb_2O_3$ system / O. V. Chudinovych, E. R. Andrievskaya, O. A. Kornienko, Yu. V. Yurchenko // European Materials Research Society E-MRS 2015 Fall Meeting, Materials and Devices for Energy and Environment Applications Symposium F: Materials and coatings for extreme environments (September 15-18, Warsaw, Poland). – Warsaw University of Technology. – 2015. – P. 05.

14. **Chudinovich O. V.** Phase equilibria and properties of solid solutions in the La_2O_3 – Yb_2O_3 and La_2O_3 – Y_2O_3 – Yb_2O_3 systems at 1500 °C / O. V. Chudinovych, E. R. Andrievskaya // The Eleventh Students Meeting, SM–2015 Processing and Application of Ceramics, (21–24 October, 2015, Novi Sad, Serbia.). – P. 111-112.

15. Andrievskaya E. R. Phase equilibria and optically transparent ceramics in the $La_2O_3-Y_2O_3-Ln_2O_3$ systems / E. R. Andrievskaya, **O. V. Chudinovich**, A. V. Ragulya, A. Sayir // 5th International Workshop Directionally Solidified Eutectic Ceramics (DSEC V), (3–7 April, 2016). – Warsaw, Poland. – P. 81.

16. Чудінович О. В. Фазові рівноваги у системі Nd₂O₃–Y₂O₃ при 1500 °C / О. В. Чудінович, О. Р. Андрієвська, А. О. Шендрик [та ін.] // VI Міжнародна конференція студентів, аспірантів та молодих вчених з хімії та хімічної технології, ХТФ КПІ (20–22 квітня 2016, Київ, Україна). – Київ. – С. 149.

17. Андриевская Е. Р. Взаимодействие и свойства фаз в системе Nd₂O₃-Y₂O₃ при 1500 °C / Е. Р. Андриевская, **О. В. Чудинович**, В. В. Ткач // Технология и применение огнеупоров и технической керамики в промышленности, международноя научно-техническоя конференція, тезисы докладов (11–12 мая, 2016 г). – Харьков, изд-во "Каравелла", 2016. – С. 42–43.

18. Андриевская Е. Р. Взаимодействие оксида иттрия с оксидами лантана и иттербия при 1500 °С / Е. Р. Андриевская, **О. В. Чудинович**, Ю. В. Юрченко, В. В Ткач // Материалы и покрытия в экстремальных условиях: исследования, применение, экологически чистые технологии производства и утилизации изделий: IX Международноя конференція, (15–19 августа, 2016 г.). – К. – С. 100.

19. **Чудінович О. В**. Взаємодія оксиду ітрію з оксидами лантану та неодиму при температурі 1600 °С / О. В. Чудінович, О. Р. Андрієвська, Ж. Д. Багатирьова, Л. М. Спасьонова // Хімічні проблеми сьогодення (ХПС-2017): збірник тез доповідей Десятої Української наукової конференції студентів, аспірантів і молодих учених з міжнародною участю (27–29 березня, Вінниця). – 2017. – С. 183.

АНОТАЦІЯ

Чудінович О. В. Фазові рівноваги у системах La₂O₃-Y₂O₃-Ln₂O₃, де Ln = Nd, Sm, Eu, Gd, Yb. – Рукопис.

Дисертація на здобуття наукового ступеня кандидата хімічних наук за спеціальністю 02.00.04 – фізична хімія. Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, Київ, 2017 р.

За допомогою методів фізико-хімічного аналізу (РФА, петрографії, растрової електронної мікроскопії та ЛРСА) вперше досліджено фазові рівноваги у потрійних системах La₂O₃-Y₂O₃-Ln₂O₃, де Ln = Nd, Sm, Eu, Gd, Yb. Побудовано ізотермічні

перерізи цих систем при 1500 та 1600 °С. Вивчено фазові рівноваги в обмежуючій подвійній системі La_2O_3 -Yb₂O₃ в інтервалі температур 1100–1600 °С. Уточнено межі фазових полів у подвійній системі Nd₂O₃-Y₂O₃ при 1500 і 1600 °С.

Показано закономірності взаємодії фаз у твердому стані в залежності від іонного радіуса лантаноїду. На підставі встановлених закономірностей будови діаграм стану потрійних систем $La_2O_3-Y_2O_3-Ln_2O_3$ встановлено, що зі зменшенням іонного радіуса лантаноїду область гомогенності R-фази зменшується. Отримані дані є науковою основою для створення нових керамічних матеріалів конструкційного та функціонального призначення для енергетики, медицини, виробництва кераміки і скла та ін.

Ключові слова: оксиди лантану, ітрію, лантаноїди, фазові рівноваги, тверді розчини, упорядкована фаза типу перовскиту, діаграми стану, ізотермічні перерізи.

АННОТАЦИЯ

Чудинович О. В. Фазовые равновесия в системах $La_2O_3-Y_2O_3-Ln_2O_3$, где Ln = Nd, Sm, Eu, Gd, Yb. – Рукопись.

Диссертация на соискание ученой степени кандидата химических наук по специальности 02.00.04 – физическая химия. Институт проблем материаловедения им. И. Н. Францевича НАН Украины, Киев, 2017 г.

С помощью методов физико-химического анализа (РФА, петрографии, растровой электронной микроскопии и ЛРСА) впервые исследованы фазовые равновесия в тройных системах $La_2O_3-Y_2O_3-Ln_2O_3$, где Ln = Nd, Sm, Eu, Gd, Yb. Построены изотермические сечения этих систем при 1500 и 1600 °С. Изучены фазовые равновесия в ограничивающей двойной системе $La_2O_3-Yb_2O_3$ в интервале температур 1100–1600 °С. Уточнены границы фазовых полей в двойной системе $Nd_2O_3-Y_2O_3$ при 1500–1600 °С.

Построены диаграммы состояния тройных систем La₂O₃–Y₂O₃–Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) в виде изотермических сечений при 1500 и 1600 °C. На основе изученных фазовых равновесий установлено, что в указанных системах образуются твердые растворы на основе различных (A, B, C) кристаллических модификаций исходных компонентов и упорядоченных фаз со структурой типа перовскита (LaYO₃, LaYbO₃). Показаны основные закономерности строения диаграмм состояния тройных систем La₂O₃–Y₂O₃–Ln₂O₃ (Ln = Nd, Sm, Eu, Gd) при указанных температурах.

Установлены закономерности образования твердых растворов на основе упорядоченной фазы типа перовскита (R) и С-типа оксидов РЗЭ при 1500 и 1600 °С. Показано, что область гомогенности R-фазы в тройных системах La₂O₃–Y₂O₃–Ln₂O₃ по ряду от Nd₂O₃ к Gd₂O₃ уменьшается, в то время как в системе с Yb₂O₃ образуется непрерывный ряд твердых растворов на основе упорядоченной фазы типа перовскита. Определено, что границы растворимости Ln₂O₃ в твердых растворах на основе C-Y₂O₃ (Yb₂O₃) с уменьшением ионного радиуса Ln³⁺ расшираются. Для диаграмм состояния Y₂O₃–Ln₂O₃ установлено, что предельное значение эффективного ионного радиуса для всех растворенних оксидов лантаноидов на уровне R_{ef} ~0,0958 ± 0,0004 нм.

Проведены расчеты устойчивости твердых растворов на основе фазы LaLnO₃ в широком интервале температур и концентраций для ионов разного размера с использованием фактора толерантности за Гольдшмидтом.

Полученные данные являются научной основой для создания новых керамических материалов конструкционного и функционального назначения для энергетики, медицины, производства керамики, стекла и др.

Ключевые слова: оксиды лантана, иттрия, лантаноиды, фазовые равновесия, твердые раствоы, упорядоченная фаза типа перовскита, диаграммы состояния, изотермические сечения.

SUMMARY

Chudinovych O. V. Phase equilibria in the systems $La_2O_3-Y_2O_3-Ln_2O_3$, where Ln = Nd, Sm, Eu, Gd, Yb. – Manuscript.

The PhD thesis for a scientific degree of the candidate of science on chemistry, speciality 02.00.04 – physical chemistry. Frantsevich Institute for Problems of Materials Science NAS of Ukraine, Kyiv, 2017.

Using the methods of physicochemical analysis (XRD, petrography, SEM, X–ray microprobe analysis) phase equilibria were firstly investigated in the ternary systems La_2O_3 – Y_2O_3 – Ln_2O_3 , where Ln = Nd, Sm, Eu, Gd, Yb. The isothermal sections for these systems at 1500 and 1600 °C were developed. Phase equilibria in the boundary binary system La_2O_3 – Yb_2O_3 were studied for the first time in the temperature range 1100–1600 °C. Phase boundaries were refined fields in the binary system Nd_2O_3 – Y_2O_3 at 1500–1600 °C.

The main regularities of the phase reactions in the solid state have been revealed depending on lanthanide ionic radius. Basing on the established feature of phase diagram constitution of the ternary systems $La_2O_3-Y_2O_3-Ln_2O_3$ it was found that with decreasing ionic radius of lanthanide the homogeneity range of R-phase decreases. The obtained data are of scientific basis for the development of new materials for structural and functional applications in energy, medicine, ceramics, glass production and others

Key words: oxides of lanthana, yttria, lanthanides, phase equilibria, solid solutions, perovskite-type ordered phase, phase diagrams, isothermal sections.