НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ

ІНСТИТУТ ПРОБЛЕМ МАТЕРІАЛОЗНАВСТВА ім. І. М. ФРАНЦЕВИЧА

Кваліфікаційна наукова праця на правах рукопису

ЧУДІНОВИЧ ОЛЬГА ВАСИЛІВНА

УДК 541.1+546.65:669.017.4

ДИСЕРТАЦІЯ ФАЗОВІ РІВНОВАГИ У СИСТЕМАХ La₂O₃--Y₂O₃--Ln₂O₃, де Ln = Nd, Sm, Eu, Gd, Yb

Спеціальність 02.00.04 – фізична хімія

Подається на здобуття наукового ступеня кандидата хімічних наук

Дисертація містить результати власних досліджень. Використання ідей, результатів і текстів інших авторів мають посилання на відповідне джерело

О. В. Чудінович

(підпис, ініціали та прізвище здобувача)

Науковий керівник: Андрієвська Олена Ростиславівна, доктор хімічних наук, старший науковий співробітник

АНОТАЦІЯ

Чудінович О. В. Фазові рівноваги у системах $La_2O_3-Y_2O_3-Ln_2O_3$, де Ln = Nd, Sm, Eu, Gd, Yb. – На правах рукопису.

Дисертація на здобуття наукового ступеня кандидата хімічних наук за спеціальністю 02.00.04 – фізична хімія. – Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, Київ, 2017 р.

За допомогою методів фізико-хімічного аналізу (РФА, петрографії, растрової електронної мікроскопії та ЛРСА) вперше досліджено фазові рівноваги у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$, де Ln = Nd, Sm, Eu, Gd, Yb. Вивчено фазові рівноваги в обмежуючій подвійній системі $La_2O_3-Yb_2O_3$ в інтервалі температур 1100–1600 °C. Уточнено межі фазових полів у подвійній системі Nd₂O₃-Y₂O₃ при 1500, 1600 °C.

Побудовано ізотермічні перерізи діаграм стану потрійних систем La₂O₃- Y_2O_3 -Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 та 1600 °C. На основі вивчених фазових рівноваг встановлено, що у вказаних системах утворюються тверді розчини на основі різних кристалічних модифікацій вихідних компонентів та впорядкованих фаз зі структурою типу перовскиту (LaYO₃, LaYbO₃). Показано закономірності взаємодії фаз у потрійних системах La₂O₃-Y₂O₃-Ln₂O₃ (Ln = Nd, Sm, Eu, Gd) при зазначених температурах. Утворення твердих розчинів механізмом ізовалентного відбувається за заміщення, а стійкість упорядкованих фаз і твердих розчинів визначається розмірним фактором: великі іони Nd^{3+} заміщують La^{3+} , менші іони РЗЕ церієвого ряду Sm^{3+} , Eu^{3+} , Gd³⁺ заміщують Y³⁺ і La³⁺, тоді як іони РЗЕ ітрієвого ряду заміщують виключно Y³⁺, що відповідає експериментальним даним.

Розчинність Ln_2O_3 у твердих розчинах на основі C-Y₂O₃(Yb₂O₃) у потрійних системах La_2O_3 -Y₂O₃-Ln₂O₃ (Ln = Nd, Sm, Eu, Gd) при 1500 та 1600 °C зі зменшенням іонного радіуса Ln^{3+} звужуються, а саме від 14 мол. % для Nd³⁺ до 8 мол. % для Gd³⁺ і ~7 мол. % Yb³⁺.

Ізотермічні перерізи систем $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd) при 1500 °C характеризується наявністю однієї трифазної (B + C + R), чотирьох однофазних (A-La₂O₃ (Ln₂O₃), B-La₂O₃ (Ln₂O₃), R, C-Y₂O₃) та двофазних (A + B, B + R, C + R, B + C) областей. При 1600 °С упорядковану фазу типу перовскиту у вказаних системах не виявлено.

Ізотермічний переріз діаграми стану системи $La_2O_3-Y_2O_3-Yb_2O_3$ при 1500 °C характеризується наявністю однієї трифазної (B + C + R), чотирьох однофазних (A-La₂O₃, B-La₂O₃, R, C-Y₂O₃(Yb₂O₃)) та двофазних (A + B, B + R, C + R, B + C) областей. Найбільшу протяжність має двофазна область (R + C) та упорядкована фаза типу перовскиту LaYO₃, LaYbO₃ (R). Упорядкована R-фаза в потрійній системі існує у більш широкому інтервалі концентрацій, ніж у подвійних системах.

Наукова новизна одержаних результатів: вперше вивчено фазові рівноваги у подвійній системі La_2O_3 –Yb₂O₃ при 1100, 1500 і 1600 °C в усьому інтервалі концентрацій; вперше вивчено фазові рівноваги у потрійних системах La_2O_3 –Y₂O₃–Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 і 1600 °C і побудовано відповідні ізотермічні перерізи діаграм стану в усьому інтервалі концентрацій. Визначено температурно-концентраційну область стабільності упорядкованої фази із структурою типу перовскиту (R) у досліджених системах.

Представлені результати дослідження фазових рівноваг у подвійних $La_2O_3-Yb_2O_3$, $Nd_2O_3-Y_2O_3$ і потрійних $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) системах є довідниковим матеріалом і можуть бути використані для розробки нових матеріалів конструкційного та функціонального призначення, зокрема лазерних матриць. Вибраний інтервал температур (1100–1600 °C) відповідає режимам спікання ізотропної та анізотропної прозорої кераміки, і тому важливо уявляти, чи є тверді розчини і проміжні фази стабільними в цих умовах.

Ключові слова: оксиди лантану, ітрію, лантаноїди, фазові рівноваги, тверді розчини, упорядкована фаза типу перовскиту, діаграми стану, ізотермічні перерізи.

SUMMARY

Chudinovych O. V. Phase equilibria in the systems $La_2O_3-Y_2O_3-Ln_2O_3$, where Ln = Nd, Sm, Eu, Gd, Yb. – Manuscript.

The PhD thesis for a scientific degree of the candidate of science on chemistry by the speciality 02.00.04 – physical chemistry. Frantsevich Institute for Problems of Materials Science NAS of Ukraine, Kyiv, 2017.

Using the methods of physicochemical analysis (XRD, petrography, SEM, X– ray microprobe analysis) phase equilibria were firstly investigated in the ternary systems $La_2O_3-Y_2O_3-Ln_2O_3$, where Ln = Nd, Sm, Eu, Gd, Yb. The isothermal sections for these systems at 1500 and 1600 °C were developed. Phase equilibria in the boundary binary system $La_2O_3-Yb_2O_3$ were studied for the first time in the temperature range of 1100–1600 °C. Phase boundaries for the fields in the binary system $Nd_2O_3-Y_2O_3$ at 1500–1600 °C were refined.

The isothermal sections for the ternary La₂O₃–Y₂O₃–Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) systems at 1500 and 1600 °C were developed. The solid solutions based on various polymorphous forms of constituent phases and ordered phase with a structure of the perovskite-type of LaYO₃, LaYbO₃ were revealed in the systems. The main regularities of the phase diagrams for the ternary La₂O₃–Y₂O₃–Ln₂O₃ (Ln = Nd, Sm, Eu, Gd) systems at 1500 and 1600 °C are shown. The solid solutions are formed by the mechanism of the isovalent substitution. The stability of ordered phases and solid solutions are determined by the dimensional factor: in the LaYO₃, the large size Nd³⁺ ions replace La³⁺ ions, the smaller ions of the cerium series Sm³⁺, Eu³⁺, Gd³⁺ substitute both Y³⁺ and La³⁺, whereas all the mentioned rare earth ions maybe replaced by Y³⁺ ions. The solubility of Ln₂O₃ in the solid solutions based on cubic modification of C-Y₂O₃ (Yb₂O₃) in the ternary La₂O₃–Y₂O₃–Ln₂O₃ (Ln = Nd, Sm, Eu, Gd) systems at 1500 and 1600 °C decreases with a decrease in the Ln³⁺ ionic radius: from 14 mol % for the case of Nd³⁺ to 8 mol % for Gd³⁺ and to 7 mol % for Yb³⁺.

The isothermal sections of the phase diagrams for the $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd) systems at 1500 °C are characterized by the presence of one three-phase (B + C + R), four single-phase (A-La₂O₃ (Ln₂O₃), B-La₂O₃ (Ln₂O₃), R, C-Y₂O₃) and two-phase (A + B, B + R, C + R, B + C) regions. The ordered phase of the perovskite-type in these systems was not found at 1600 °C.

The isothermal section of the phase diagram of the La₂O₃-Y₂O₃-Yb₂O₃ system at 1500 °C crosses one three-phase (B + C + R), four single-phase (A-La₂O₃, B-La₂O₃, R, C-Y₂O₃ (Yb₂O₃)) and two-phase (A + B, B + R, C + R, B + C) fields. The two-phase region (R + C) has a largest extension and the ordered phases of LaYO₃, LaYbO₃ (R) have been determined as well. An ordered R-phase in the ternary system exists in the wider range of concentrations than in the binary system.

Scientific novelty of the obtained results are as follows: first, the phase equilibria in the binary $La_2O_3-Yb_2O_3$ system at 1100, 1500 and 1600 °C, and in the ternary $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) systems at 1500 and 1600 °C were studied in the whole concentration range. The isothermal sections of the phase diagrams for the $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) systems have been developed. The temperature-concentration region of stability of the ordered phase with the perovskite-type structure (R) in the investigated systems was determined.

The results on the phase equilibrium study in the binary $La_2O_3-Yb_2O_3$, $Nd_2O_3-Y_2O_3$ and ternary $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) systems represent reference materials and can be used to develop new structural and functional materials, in particular, laser matrices. The chosen temperature range (1100-1600 °C) corresponds to the modes of sintering of the isotropic and anisotropic transparent ceramics, and it is, therefore, important to consider whether the solid solutions or intermediate phases are stable under these conditions.

Key words: oxides of lanthana, yttria, lanthanides, phase equilibria, solid solutions, perovskite–type ordered phase, phase diagrams, isothermal sections.

СПИСОК ОПУБЛІКОВАНИХ ПРАЦЬ ЗА ТЕМОЮ ДИСЕРТАЦІЇ

1. **Чудинович О. В**. Взаимодействие оксидов лантана и иттербия при температуре 1500 °С / О. В. Чудинович, Е. Р. Андриевская, Ж. Д.

Богатырева, Л. Н. Спасенова // Современные проблемы физического материаловедения, ИПМ НАН Украины. – 2014. – № 23. – С. 12–23 (персональний внесок дисертанта: синтез зразків, ізотермічний випал зразків при 1500 °С, обробка даних РФА, обговорення отриманих результатів).

2. Чудінович **О.** В. Взаємодія оксидів ітрію та неодиму при температурі 1500 °С / О. В. Чудінович // Український хімічний журнал. – 2016. – Т. 82, № 8. – С. 92–97.

3. Чудінович О. В. Взаємодія оксидів лантану, ітрію та ітербію при температурі 1500 °С / О. В. Чудінович, О. Р. Андрієвська // Вісник ОНУ. Серія: Хімія. – 2016. – Том 21, вип. 2 (58). – С. 53–66 (персональний внесок дисертанта: синтез зразків, ізотермічний випал зразків при 1500 °С, проведення та обробка даних РФА, обговорення отриманих результатів, підготовка рукопису статті).

4. Chudinovych O. V. Phase relations in the yttria–neodymia system at 1500 °C / O. V. Chudinovych, E. R. Andrievskaya, J. D. Bogatyryova, A. V. Shirokov // Processing and Application of Ceramics. – 2017. – Vol. 11, no 1. – Р. 1–6 (персональний внесок дисертанта: синтез зразків, ізотермічний випал зразків при 1500 °C, обробка даних РФА, обговорення отриманих результатів, підготовка рукопису статті).

5. Чудінович О. В. Взаємодія оксидів лантану, ітрію та неодиму при температурі 1600 °С / О. В. Чудінович, О. Р. Андрієвська, Ж. Д. Багатирьова [та ін.] // Вісник ОНУ. Серія: Хімія. – 2017. – Т. 22, вип. 2 (62). – С. 82–94 (персональний внесок дисертанта: провела синтез зразків, ізотермічний випал зразків при 1600 °С, обробку даних РФА, брала участь в обговоренні отриманих результатів та підготовці рукопису статті).

6. Андриевская Е. Р. Взаимодействие оксидов иттрия и неодима при температуре 1600 °С / Е. Р. Андриевская, **О. В. Чудинович**, Ж. Д. Богатырева [и др.] // Современные проблемы физического материаловедения, ИПМ НАН Украины. – 2016. – № 25. – С. 3–14

(персональний внесок дисертанта: провела синтез зразків, ізотермічний випал зразків при 1600 °C, експериментальні вимірювання та обробку даних РФА, брала участь в обговоренні отриманих результатів).

Тези доповідей

7. Чудінович О. В. Оптично прозора кераміка на основі оксидів рідкоземельних елементів / О. В. Чудінович, Б. О. Криштоп, Т. В. Козодой [та ін.] // V Міжнародна конференція студентів, аспірантів та молодих вчених з хімії та хімічної технології: тези доповідей. – К., 2014. – С. 146.

8. Andrievskaya E. R. Phase relations and perspective materials in the ternary system $La_2O_3-Y_2O_3-Nd_2O_3$ / E. R. Andrievskaya, **O. V. Chudinovich**, O. A. Kornienko [et al.] // European Materials Research Society E-MRS 2014 Fall Meeting, Functional and Structural Ceramic and Ceramic Matrix Composites (CCMC) Symposium S: Composite materials and structures: from research and practical demands to application,(September 15–19, Warsaw, Poland). – Warsaw University of Technology, 2014. – P. 02.

9. Chudinovych O. V. Interaction yttrium oxide with lanthana and neodima at 1500 °C / O. V. Chudinovych, E. R. Andrievskaya, O. A. Kornienko [et al.] // Materials and Coatings for Extreme Environments Performance: Investigations, Applications, Ecologically Safe Technologies for their Production and Utilization: VII International Conference, (20-24 September, Big Yalta, Zhukovka, Crimea, Ukraine), 2014. – P. 01.

10. **Чудінович О. В**. Фазові співвідношення та перспективні матеріали в системі La₂O₃–Yb₂O₃ / О. В. Чудінович // Зварювання та споріднені технології доповідей: VIII міжнарод. конференція молодих вчених та спеціалістів, тези доповідей (20–22 травня, 2015 р.). – К., 2015. – С. 297.

11. Андриевская Е. Р. Взаимодействие и свойства фаз в системе La₂O₃-Yb₂O₃ при 1500 °C / Е. Р. Андриевская, О. В. Чудинович, В. В. Ткач // Технология и применение огнеупоров и технической керамики в

промышленности: междунар. научно-техническоя конференция, тезисы докладов (28–29 апреля 2015 г.). – Харьков, изд-во "Каравелла", 2015. – С. 29–30.

12. **Chudinovich O.V.** Optically transparent ceramics based on rare– earth oxides / O. V. Chudinovich, E. R. Andrievskaya, A. V. Kryuchko [et al.] // Nanotechnology and Nanomaterials. Nanocomposites and Nanomaterials: International research and practice conference (26–29 August 2015, Lviv). – P. 45.

13. Chudinovich O. V. Advanced materials and phase relations in the $La_2O_3-Y_2O_3-Yb_2O_3$ system / O. V. Chudinovych, E. R. Andrievskaya, O. A. Kornienko, Yu. V. Yurchenko // European Materials Research Society E-MRS 2015 Fall Meeting, Materials and Devices for Energy and Environment Applications Symposium F: Materials and coatings for extreme environments (September 15-18, Warsaw, Poland). – Warsaw University of Technology. – 2015. – P. 05.

14. **Chudinovich O. V.** Phase equilibria and properties of solid solutions in the La_2O_3 –Yb₂O₃ and La_2O_3 –Yb₂O₃–Yb₂O₃ systems at 1500 °C / O. V. Chudinovych, E. R. Andrievskaya // The Eleventh Students Meeting, SM–2015 Processing and Application of Ceramics, (21–24 October, 2015, Novi Sad, Serbia.). – P. 111-112.

15. Andrievskaya E. R. Phase equilibria and optically transparent ceramics in the $La_2O_3-Y_2O_3-Ln_2O_3$ systems / E. R. Andrievskaya, **O. V. Chudinovich**, A. V. Ragulya, A. Sayir // 5th International Workshop Directionally Solidified Eutectic Ceramics (DSEC V), (3–7 April, 2016). – Warsaw, Poland. – P. 81.

16. **Чудінович О. В**. Фазові рівноваги у системі Nd₂O₃–Y₂O₃ при 1500 °C / О. В. Чудінович, О. Р. Андрієвська, А. О. Шендрик [та ін.] // VI Міжнародна конференція студентів, аспірантів та молодих вчених з хімії та хімічної технології, ХТФ КПІ (20–22 квітня 2016, Київ, Україна). – Київ. – С. 149.

17. Андриевская Е. Р. Взаимодействие и свойства фаз в системе Nd₂O₃-Y₂O₃ при 1500 °C / Е. Р. Андриевская, **О. В. Чудинович**, В. В. Ткач // Технология и применение огнеупоров и технической керамики в промышленности, международноя научно-техническоя конференція, тезисы докладов (11–12 мая, 2016 г). – Харьков, изд-во "Каравелла", 2016. – С. 42–43.

18. Андриевская Е. Р. Взаимодействие оксида иттрия с оксидами лантана и иттербия при 1500 °С / Е. Р. Андриевская, **О. В. Чудинович**, Ю. В. Юрченко, В. В Ткач // Материалы и покрытия в экстремальных условиях: исследования, применение, экологически чистые технологии производства и утилизации изделий: ІХ Международноя конференція, (15–19 августа, 2016 г.). – К. – С. 100.

19. Чудінович О. В. Взаємодія оксиду ітрію з оксидами лантану та неодиму при температурі 1600 °С / О. В. Чудінович, О. Р. Андрієвська, Ж. Д. Багатирьова, Л. М. Спасьонова // Хімічні проблеми сьогодення (ХПС-2017): збірник тез доповідей Десятої Української наукової конференції студентів, аспірантів і молодих учених з міжнародною участю (27–29 березня, Вінниця). – 2017. – С. 183.

3MICT

ВСТУП	6
РОЗДІЛ 1 ОГЛЯД ЛІТЕРАТУРИ	11
1.1 Властивості і структура оксидів рідкісноземельних елементів	11
1.2 Діаграми стану подвійних систем $Ln_2O_3-Y_2O_3$, де $Ln = La$, Nd,	24
Sm, Eu, Gd, Yb	
1.2.1 Система La ₂ O ₃ -Y ₂ O ₃	24
1.2.2 Система Nd ₂ O ₃ -Y ₂ O ₃	26
1.2.3 Система Sm ₂ O ₃ -Y ₂ O ₃	29
1.2.4 Система Eu ₂ O ₃ -Y ₂ O ₃	31
1.2.5 Система Gd ₂ O ₃ -Y ₂ O ₃	33
1.3 Діаграми стану подвійних систем $La_2O_3-Ln_2O_3$ (Ln = Nd, Sm,	
Eu, Gd, Yb)	36
1.4 Діаграми стану потрійних систем La ₂ O ₃ -Y ₂ O ₃ -Ln ₂ O ₃ (Ln = Nd,	
Sm, Eu, Gd, Yb)	48
1.5 Висновки до першого розділу	48
РОЗДІЛ 2 МЕТОДИ ДОСЛІДЖЕННЯ ФАЗОВИХ РІВНОВАГ У	
ПОДВІЙНИХ La ₂ O ₃ -Yb ₂ O ₃ , Nd ₂ O ₃ -Y ₂ O ₃ I ПОТРІЙНИХ La ₂ O ₃ -Y ₂ O ₃ -	
Ln ₂ O ₃ СИСТЕМАХ	50
2.1 Вихідні речовини і приготування зразків	50
2.2 Рентгенофазовий аналіз	52
2.3 Растрова електронна мікроскопія і локальний	52
рентгеноспектральний аналіз	
2.4 Петрографічні дослідження	53
2.5 Висновки до другого розділу	53
РОЗДІЛ З ФАЗОВІ РІВНОВАГИ В ОБМЕЖУЮЧИХ ПОДВІЙНИХ	
СИСТЕМАХ La ₂ O ₃ –Yb ₂ O ₃ i Nd ₂ O ₃ –Y ₂ O ₃	54
3.1 Фазові рівноваги у системі La ₂ O ₃ -Yb ₂ O ₃ в інтервалі температур	
1100–1600 °C	54

3.2 Фазові рівноваги у системі Nd ₂ O ₃ -Y ₂ O ₃ в інтервалі температур	
1500–1600 °C	64
3.3 Висновки до третього розділу	75
РОЗДІЛ 4 ФАЗОВІ РІВНОВАГИ У ПОТРІЙНИХ СИСТЕМАХ	
La ₂ O ₃ -Y ₂ O ₃ -Ln ₂ O ₃ (Ln = Nd, Sm, Eu, Gd, Yb) ПРИ 1500 i 1600 °C	76
4.1 Фазові рівноваги у системі La ₂ O ₃ -Y ₂ O ₃ -Nd ₂ O ₃	76
4.1.1 Ізотермічний переріз діаграми стану системи La ₂ O ₃ -Y ₂ O ₃ -	
Nd ₂ O ₃ при 1500 °C	76
4.1.2 Ізотермічний переріз діаграми стану системи La ₂ O ₃ -Y ₂ O ₃ -	
Nd ₂ O ₃ при 1600 °C	92
4.2 Фазові рівноваги у системі La ₂ O ₃ -Y ₂ O ₃ -Sm ₂ O ₃	100
4.2.1 Ізотермічний переріз діаграми стану системи La ₂ O ₃ -Y ₂ O ₃ -	
Sm ₂ O ₃ при 1500 °C	100
4.2.2 Ізотермічний переріз діаграми стану системи La ₂ O ₃ -Y ₂ O ₃ -	
Sm ₂ O ₃ при 1600 °C	109
4.3 Фазові рівноваги у системі La ₂ O ₃ -Y ₂ O ₃ -Eu ₂ O ₃	117
4.3.1 Ізотермічний переріз діаграми стану системи La ₂ O ₃ -Y ₂ O ₃ -	
Еи ₂ О ₃ при 1500 °С	117
4.3.2 Ізотермічний переріз діаграми стану системи La ₂ O ₃ -Y ₂ O ₃ -	
Еи ₂ О ₃ при 1600 °С	129
4.4 Фазові рівноваги у системі La ₂ O ₃ -Y ₂ O ₃ -Gd ₂ O ₃	136
4.4.1 Ізотермічний переріз діаграми стану системи La ₂ O ₃ -Y ₂ O ₃ -	
Gd ₂ O ₃ при 1500 °C	136
4.4.2 Ізотермічний переріз діаграми стану системи La ₂ O ₃ -Y ₂ O ₃ -	
Gd ₂ O ₃ при 1600 °C	143
4.5 Фазові рівноваги у системі La ₂ O ₃ -Y ₂ O ₃ -Yb ₂ O ₃ при 1500 °С	151
4.5.1 Ізотермічний переріз діаграми стану системи La ₂ O ₃ -Y ₂ O ₃ -	
Yb ₂ O ₃ при 1500 °C	151
4.6 Висновки до четвертого розділу	164
РОЗДІЛ 5 ЗАКОНОМІРНОСТІ БУДОВИ ДІАГРАМ СТАНУ	

ПОДВІЙНИХ Y2O3-Ln2O3 І ПОТРІЙНИХ La2O3-Y2O3-Ln2O3	
СИСТЕМ	168
5.1 Закономірності будови діаграм стану подвійних систем	168
Y_2O_3 -Ln ₂ O ₃	
5.2 Закономірності будови діаграм стану потрійних систем	170
La ₂ O ₃ -Y ₂ O ₃ -Ln ₂ O ₃ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 i 1600 °C	
ЗАГАЛЬНІ ВИСНОВКИ	176
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ	178
ДОДАТКИ	193

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ

РЗЕ – рідкісноземельний(і) елемент(и)

А – гексагональна модифікація оксидів рідкісноземельних елементів

В – моноклінна модифікація оксидів рідкісноземельних елементів

С – кубічна модифікація оксидів рідкісноземельних елементів

Н – високотемпературна гексагональна модифікація оксидів
рідкісноземельних елементів

X – високотемпературна кубічна модифікація оксидів рідкісноземельних елементів

R – упорякована фаза LaYO₃(LaYbO₃), яка кристалізується у структурі типу перовскиту з ромбічними спотвореннями

YAG – алюмоітрієвий гранат У₃Аl₅О₁₂ зі структурою типу гранату

РФА – рентгенофазовий аналіз

ЛРСА – локальний рентгеноспектральний аналіз

<...> – тверді розчини на основі фаз, взятих у фігурні дужки

ВСТУП

Актуальність теми. Необхідність у нових матеріалах збільшується внаслідок розвитку існуючих та появи нових галузей техніки. Оксиди рідкісноземельних елементів (РЗЕ) є перспективними для створення матеріалів широкого спектру використання: y радіоелектроніці, оптоелектроніці, приладобудуванні, атомній та лазерній техніці, машинобудуванні, хімічній промисловості, металургії, медицині тощо [1-33].

Прозорі керамічні матеріали, отримані на основі чистих оксидів РЗЕ, за багатьма фізико-хімічними властивостями, такими як термостійкість, температура плавлення, механічна міцність, можливість контролю форми, переважають скло і в ряді випадків монокристали твердих розчинів оксидів РЗЕ, а їх виробництво є енергетично і економічно вигіднішим, ніж отримання останніх.

Оксид лантану входить до складу матеріалів спеціального призначення, що пропускають інфрачервоні і поглинають ультрафіолетові промені [7–9]. Оксид ітербію володіє сцинтиляційними властивостями (флюоресценція) і знаходить застосування в технології оптичних волокон, а також таких матеріалів, як сонячні панелі, лазери, джерела радіації для портативних рентгенівських джерел [10–12]. Системи на основі оксидів лантану, ітрію, ітербію є перспективними для розробки іонних провідників і оптично прозорої кераміки.

Великий практичний інтерес викликають проміжні фази на основі РЗЕ зі структурою типу перовскиту. Складні оксидні фази LnLn'O₃ (Ln, Ln' = P3E) володіють різноманітними електричними (високе значення константи діелектричної проникності), магнітними, магнітоелектричними і оптичними властивостями (анізотропна оптика) [7, 8]. Сполуки РЗЕ застосовують для створення лазерних та інших оптично активних елементів в оптоелектроніці [14, 22–31].

Властивості функціональної кераміки, зокрема оптично прозорої, є надто чутливими до впливу домішок. Частіше за все легування має бути прецизійним, в межах відхилення від середнього в декілька ppm (частин на мільйон). Тому знання того, як добавки впливають на стабільність твердих розчинів, проміжних фаз при температурах виготовлення та експлуатації керамічних виробів є важливим, а вивчення фазових рівноваг – доцільним і актуальним. У системах представлених у роботі, є дві групи потенційно цікавих твердих розчинів на основі кубічної модифікації оксидів РЗЕ та впорядкованої фази типу перовскиту, перспективних для створення лазерних (діодних) пристроїв.

Діаграми стану систем з оксидами: La₂O₃, Y₂O₃, Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) є фізико-хімічною основою для створення як ізотропної, так і анізотропної кераміки. Ізотропну кераміку можна отримати на основі твердих розчинів кубічної форми оксидів P3E, зокрема оксиду ітрію, який не являється люмінофором, а на основі фази типу перовскиту (ромбічна ґратка) LnYO₃ (R) – анізотропну. Обидва типи твердих розчинів потрібно прецизійно легувати іонами люмінофорів (Nd³⁺, Yb³⁺). Фазові рівноваги у потрійних системах La₂O₃–Y₂O₃–Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) раніше вивчені не були, що обумовлює необхідність систематичного їх дослідження та побудови діаграм стану вказаних систем.

Зв'язок з науковими програмами, темами, планами. Зв'язок з програмами, темами, планами. Дисертаційна робота науковими відповідає основним науковим напрямкам робіт Інституту проблем замовлення НАН України: 0114U002431 «Фазові рівноваги в системах оксидів P3E, ZrO₂ та розробка багатофункціональних керамічних матеріалів іонних провідників і оптично прозорої кераміки нового покоління» (2014-2016 рр.) та 0117U000254 «Фазові рівноваги та діаграми стану систем на основі рідких земель фізико-хімічна кераміки як основа створення текстурованої багатофункціонального призначення (2017–2019 рр.); молодіжного гранта НАН України 0115U005101 «Фазові рівноваги в подвійних системах на основі оксидів

рідкісноземельних елементів, як основа створення перспективних матеріалів» (2015–2016 рр.); проекту МОН України 0115U006618, 0116U005508, «Нові керамічні матеріали для теплозахисних покриттів» (2015–2017 рр.); проекту ДФФД–Білорусь 0116U005508, 0117U003167 «Вивчення термобаричної і концентраційної стабільності фаз типу перовскиту в потрійних системах La₂O₃–Lu₂O₃(Y₂O₃)–Ln₂O₃ (де Ln = Er₂O₃, Yb₂O₃) для створення анізотропних текстурованих матриць (2016-2017 рр.).

Мета та завдання дослідження. Метою роботи є побудова діаграм стану трикомпонентних систем $La_2O_3-Y_2O_3-Ln_2O_3$, де Ln = Nd, Sm, Eu, Gd, Yb, y діапазоні температур 1500 i 1600 °C, де відбувається упорядкування/розупорядкування проміжної фази усьому інтервалі В концентрацій для створення фізико-хімічних основ розробки нових керамічних матеріалів функціонального призначення.

Для досягнення поставленої мети визначено наступні завдання:

Вивчити фазові рівноваги у системі La₂O₃-Yb₂O₃ при 1100, 1500 і
1600 °С та уточнити межі фазових полів у системі Nd₂O₃-Y₂O₃ при 1500 і
1600 °С в усьому інтервалі концентрацій.

- Вивчити фазові рівноваги у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 та 1600 °C і побудувати відповідні ізотермічні перерізи діаграм стану.

- Визначити закономірності взаємодії фаз у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb).

Об'єкт дослідження. Взаємодія фаз у подвійних і потрійних системах на основі оксидів лантану, ітрію та лантаноїдів.

Предмет дослідження. Фазові рівноваги у подвійних $La_2O_3-Yb_2O_3$, $Nd_2O_3-Y_2O_3$ і потрійних $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) системах після випалу при 1100, 1500 і 1600 °C.

Методи дослідження. Рентгенофазовий аналіз, петрографія, растрова електронна мікроскопія, локальний рентгеноспектральний аналіз.

Наукова новизна одержаних результатів.

Вперше вивчено фазові рівноваги у подвійній системі La₂O₃-Yb₂O₃ при 1100, 1500 і 1600 °C в усьому інтервалі концентрацій.

Вперше вивчено фазові рівноваги у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 і 1600 °C і побудовано відповідні ізотермічні перерізи діаграм стану в усьому інтервалі концентрацій. Визначено температурно-концентраційну область стабільності упорядкованої фази із структурою типу перовскиту (R) у досліджених системах.

Практичне значення одержаних результатів. Представлені результати дослідження фазових рівноваг у подвійних La₂O₃-Yb₂O₃, $Nd_2O_3-Y_2O_3$ і потрійних $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) системах є довідниковим матеріалом та можуть бути використані для отримання нових матеріалів функціонального призначення, зокрема лазерних матриць. Вибраний інтервал температур (1100–1600 °C) відповідає режимам спікання ізотропної та анізотропної прозорої кераміки, тому важливо уявляти, чи є тверді розчини і проміжні фази стабільними в цих умовах.

Особистий внесок здобувача. Вибір напрямку досліджень, формулювання мети і задач досліджень проведено автором разом з науковим керівником – д.х.н. Андрієвською О. Р. Дисертантом самостійно виконано пошук і аналіз даних літератури, основну частину експериментальної роботи та обробку результатів. Рентгенофазовий аналіз виконано спільно з к.т.н. Биковим О. І. та провідним інженером Широковим О. В. (ІПМ НАН України); мікроструктурні дослідження – спільно із н.с. Ковиляєвим В. В. (Proton 21) та н.с. Самелюком А. В. (ІПМ НАН України); петрографічні дослідження – спільно з н.с. Богатирьовою Ж. Д. (Фізико-технологічний інститут металів та сплавів НАН України).

Отриманні результати обговорено з науковим керівником д.х.н. Андрієвською О. Р.

Апробація результатів дисертації. Матеріали дисертаційної роботи представлені на 16 міжнародних та всеукраїнських наукових конференціях:

V і VI Міжнародній конференції студентів, аспірантів та молодих вчених з хімії та хімічної технології, Київ (Україна), 2014, 2016; EMRS, Warsaw (Poland), 2014, 2015, 2017; VIII Міжнародній конференції молодих вчених та спеціалістів «Зварювання та споріднені технології», Київ (Україна), 2015; конференция "Технология Международноя научно-техническоя И применение огнеупоров и технической керамики в промышленности", Харьков (Украина), 2015, 2016; International Research and Practice Conference "Nanotechnology and Nanomaterials". Nanocomposites and Nanomaterials, Lviv (Ukraine), 2015; The Eleventh Students Meeting, SM-2015 Processing and Application of Ceramics, Novi Sad (Serbia), 2015; BIT's 2nd Annual World Congress of Smart Materials, Singapore, 2016; 5th International Workshop Directionally Solidified Eutectic Ceramics (DSEC V), Warsaw (Poland), 2016; 14th International Ceramics Congress and 7th Forum on New Materials CIMTEC. Perugia (Italy), 2016; IX Международная конференция «Материалы и покрытия В экстремальных условиях: исследования, применение, экологически чистые технологии производства и утилизации изделий», Киев (Украина), 2016.

Публікації. За матеріалами дисертації опубліковано 21 наукову працю у вигляді 6 статей у міжнародних і вітчизняних фахових виданнях та 15 тез доповідей на наукових конференціях.

Структура та об'єм дисертації. Дисертаційна робота складається із вступу, огляду літератури по темі дослідження, п'яти розділів, які присвячені основним результатам роботи та методам дослідження, висновків та списку використаної літератури із 138 найменувань. Дисертацію викладено на 215 сторінках, містить 98 рисунків, 39 таблиць та додатки.

1 ОГЛЯД ЛІТЕРАТУРИ

1.1 Властивості і структура оксидів рідкісноземельних елементів

Лантаноїдами прийнято вважати рідкісноземельні елементи (РЗЕ), у яких електронами заповнюється 4f-підрівень. Відповідно до принципу максимальної мультиплетності заповнення 4f-підрівня проходить таким чином, що у перших семи елементів – від церію до гадолінію – спіни електронів паралельні між собою, а у наступних елементах – від тербію до лютецію – наявні електрони з антипаралельними спінами по відношенню до 4f-підрівня перших. Електрони знаходяться завжди під захисною екрануючою дією електронів п'ятого шару і мають другорядний вплив на хімічні властивості РЗЕ. Однак, маючи незначний вплив на хімічні властивості, 4f-електрони обумовлюють цілий ряд характерних тільки для **P3**E фізико-хімічних властивостей (забарвлення, парамагнетизм, феромагнетизм і т. д.). Зі збільшенням атомної маси лантаноїдів радіус позитивного іона зменшується, а густина збільшується [34].

Усі РЗЕ утворюють позитивні іони із ступенем окиснення 3+. Прагнення електронних оболонок до утворення конфігурації f⁰, f⁷ i f¹⁴ приводить до того, що наряду зі ступенем окиснення 3+ зустрічається більш високий (Ce⁴⁺, Pr⁴⁺, Tb⁴⁺) і більш низький (Eu²⁺, Y²⁺, Sm²⁺) ступінь окиснення. Валентність 4+ i 2+ пояснюється переходом додаткових електронів із 4f на 5d підрівень і навпаки.

Відміності у властивостях лантаноїдів пов'язані також зі зменшенням радіусів їхніх атомів та іонів у ряду церій – лютецій внаслідок f-стиснення (лантаноїдне стиснення). Явище f-стиснення зумовлене збільшенням енергії притягання зовнішніх валентних електронів до ядра, заряд якого зростає від +58 у церія до +71 у лютеція. Цей ефект лише частково компенсується зростаючою екранувальною дією f-електронів, число яких змінюється від одного у церія до чотирнадцяти – у лютеція. У результаті радіуси атомів

зменшуються від 187 пм у La і 183 пм у Ce до 173 пм у Lu, послідовно зменшуються і радіуси іонів Me³⁺ (табл. 1.1).

У залежності від температури та іонного радіуса катіонів R³⁺ (рис. 1.1) відомо п'ять поліморфних модифікацій оксидів лантаноїдів: гексагональна (А), моноклінна (В), кубічна (С), високотемпературні гексагональна (Н) і кубічна (Х), які вперше були описані у [32, 35] і пізніше у [33]. Кристалічні структури всіх поліморфних модифікацій оксидів РЗЕ залежно від температури показано на рис. 1.2–1.6.

Гексагональна А-модифікація стабільна для оксидів La, Ce, Pr, Nd (рис. 1.1). Структура А-Ln₂O₃ (рис. 1.2) належить до просторової групи Р3m1.

Рисунок 1.1 – Залежність температурних інтервалів стабільності поліморфних модифікацій оксидів РЗЕ від атомного номера [37]

Елементарна комірка містить одну формульну одиницю Ln_2O_3 , в якій кожен іон Ln^{3+} оточений чотирма іонами кисню.

Моноклінна В-модифікація стабільна для оксидів Sm, Eu, Gd. Структура В- Ln_2O_3 належить до просторової групи C2/m. Елементарна комірка має шість формульних одиниць Ln_2O_3 . Кожен катіон Ln^{3+} має сім сусідніх аніонів кисню і структура може бути представлена як деформований октаедр (рис. 1.3).

Кубічна С-модифікація, характерна для оксидів Lu, Y, Sc. C-структура належить до просторової групи Ia3 та з 16-ма формульними одиницями на елементарну комірку. Ця структура є похідною від структури флюориту і відноситься до типу Tl_2O_3 . В елементарній комірці кожен атом металу Tl розташований у центрі деформованого октаедра, який можна представити у вигляді координаційного куба, у вершинах якого знаходяться вісім аніонних позицій, із яких дві заняті атомами кисню (рис. 1.4).

Гексагональна Н модифікація існує вище 2000 °С для всіх оксидів РЗЕ, крім лютецію і скандію, у яких полуторні оксиди належать до кубічної модифікації. Високотемпературна Н-форма оксидів РЗЕ відповідає просторовій групі Р6₃/mmc. Кристалічна структура Н-типу оксидів Ln₂O₃ представлена на рис. 1.5.

Високотемпературна кубічна Х-модифікація знайдена поблизу температури плавлення для оксидів РЗЕ [35]. Х-форма має кубічну об'ємноцентровану структуру (рис. 1.6), (просторова група Im3m). У цій структурі аніони кисню утворюють деформовану щільну кубічну упаковку, а катіони металу розташовуються в октаедричних пустотах за принципом: два шари заповнені, а один пустий. Розглянута структура складна, оскільки на атомних площинах, перпендикулярних до осі, маємо тільки один вид катіонів металу або аніони кисню. Завдяки деформації упаковки координація атомів металу у такій ґратці доволі складна: кожен тривалентний катіон зв'язаний із 7 аніонами кисню 4 короткими і 3 довгими зв'язками, як це показано на прикладі координаційного поліедра навколо іона лантану [34], (рис. 1.7).

Фізико-хімічні властивості і температури поліморфних перетворень оксидів РЗЕ представлено у табл. 1.1–1.5.

1 – аніони кисню, 2 – катіони Ln³⁺

Рисунок 1.2 – Кристалічна структура А-типу Ln₂O₃ [34]

1 – аніони кисню, 2 – катіони Ln³⁺ Рисунок 1.3 – Кристалічна структура В-типу Ln₂O₃ [34]

Рисунок 1.5 – Кристалічна структура Н-типу Ln₂O₃ [34]

1 – аніони кисню, 2 – катіони Ln³⁺ Рисунок 1.6 – Кристалічна структура X-типу Ln₂O₃ [34]

Таблиця 1.1 – Деякі характеристики лантану і лантаноїдів [39]

Заряд ядра	P3E	Відносна атомна маса	Електронна конфігурація Ln	Ступінь окиснення	Іонний радіус по Арренсу, нм [40]	Забарв- лення іона Ln ³⁺	Вміст у земній корі, мол. %
57	Лантан	138,9055	$4f^05d^16s^2$	+3	0,114	Немає	$2 \cdot 10^{-4}$
58	Церій	140,115	$4f^25d^06s^2$	+3, +4	0,090	Немає	$6 \cdot 10^{-4}$
59	Празеодим	140,90765	$4f^35d^06s^2$	+3	0,106	Зелене	9·10 ⁻⁵
60	Неодим	144,24	$4f^45d^06s^2$	+3	0,104	Червоно-	3,5.10 ⁻⁴
						фіолетове	
61	Прометій	144,9127	$4f^55d^06s^2$	+3	_	Рожеве	_
62	Самарій	150,36	$4f^65d^06s^2$	+2, +3	0,100	Жовте	9·10 ⁻⁵
63	Європій	151,965	$4f^75d^06s^2$	+2, +3	0,0985	Блідо-	$1,8.10^{-5}$
						рожеве	
64	Гадоліній	157,25	$4f^75d^16s^2$	+3	0,0972	Немає	$1 \cdot 10^{-4}$
65	Тербій	158,92534	$4f^85d^16s^2$	+3, +4	0,093	Блідо-	$1 \cdot 10^{-5}$
						рожеве	
66	Диспрозій	162,50	$4f^{10}5d^{1}6s^{2}$	+3	0,092	Жовте	$5 \cdot 10^{-5}$
67	Гольмій	164,93032	$4f^{11}5d^16s^2$	+3	0,089	Жовте	$5 \cdot 10^{-5}$
68	Ербій	167,26	$4f^{12}5d^06s^2$	+3	0,881	Червоно-	$5 \cdot 10^{-5}$
						рожеве	
69	Тулій	168,93421	$4f^{13}5d^06s^2$	+3	0,087	Зелене	$8 \cdot 10^{-6}$
70	Ітербій	173,04	$4f^{14}5d^06s^2$	+2, +3	0,086	Немає	$3 \cdot 10^{-5}$
71	Лютецій	174,967	$4f^{14}5d^16s^2$	+3	0,085	Немає	$1 \cdot 10^{-5}$

Таблиця 1.2 – Деякі фізико-хімічні властивості оксидів рідкісноземельних елементів

	Провідність,σ	Провідність,	Густина,	Густина,
	$_{650^{\circ}\text{C}} \cdot 10^{9}$	$\sigma_{400^{\circ}C} \cdot 10^{9}$	кг/см ³	(рентг.) 10 ³
Оксид	Ω^{-1} см $^{-1}$	Ω^{-1} см $^{-1}$	при	кг/см ³
	[34]	[34]	20 °C	[42, 43]
			[41]	
La ₂ O ₃	1700	230	6,51	6,57
CeO ₂	_	_	7,3	6,87
Pr_2O_3	3450	300	7,07	7,06
Nd ₂ O ₃	1450	25	6,908	7,327
				6,59**
Pm ₂ O ₃	_	_	_	7,3
Sm_2O_3	880	20	7.43	7.25*
2 3			,	7,69**
Eu ₂ O ₃	150	5	7.42	7.283*
2 3			,	7,99**
Gd ₂ O ₃	130	5	7,407	7,607*
-				8,33**
Tb ₂ O ₃	200	3		8,167*
				8,48**
Dy ₂ O ₃	_	_	7,81	8,79**
Ho ₂ O ₃	160	5	8,41	8,413*
				9,09**
Y ₂ O ₃	55	_	5,85	4,84
Er ₂ O ₃	_	_	8,64	8,66*
				9,33**
Tm_2O_3	_	_		8,88*
				9,57**
Yb ₂ O ₃	50	3	9,17	9,213*
				10,00**
Lu_2O_3	_	_	9,42	9,42*
				10,16**

*С – форма оксидів РЗЕ

** В – форма оксидів РЗЕ

Оксид	Точка плавлення, °С	Точка кипіння,°С
	[36, 40]	[44]
La ₂ O ₃	2310	3620
Ce ₂ O ₃	2142–2160	3730
Pr ₂ O ₃	2260	3760
Nd ₂ O ₃	2320	3760
Pm ₂ O ₃	2135	_
Sm ₂ O ₃	2340	3780
Eu ₂ O ₃	2050–2330	3790
Gd ₂ O ₃	2380	3900
Tb ₂ O ₃	2370	_
Dy ₂ O ₃	2228-2391	3900
Ho ₂ O ₃	2370	3900
Er ₂ O ₃	2410	3920
Tm ₂ O ₃	2390	3945
Yb ₂ O ₃	2380	4070
Lu ₂ O ₃	2400	3980
	2367–2447	

Таблиця 1.3 – Точки плавленя і кипіння оксидів РЗЕ

Оксид	Температури поліморфних перетворень, °С						
	C≓B	C≓A	B≓A	A≓H	B≓H	С≓Н	Н≓Х
La ₂ O ₃				2040			2110
CeO ₂				2120±20			2170±20
Pr ₂ O ₃				1950			2150
Nd ₂ O ₃		650		2100			2200
Sm ₂ O ₃			1900	2100			2250
Eu ₂ O ₃	1075		2040	2140			2270
Gd ₂ O ₃	2170		2200				2360
Tb ₂ O ₃	1850				2160		2340±20
Dy ₂ O ₃	1950				2200		2377
Ho ₂ O ₃	2180				2240		
Er ₂ O ₃						2280	
Tm ₂ O ₃	2350					2350	
Yb ₂ O ₃	2360					2380	
Y ₂ O ₃						2310	
Pm ₂ O ₃			1740			2135	2225

Таблиця 1.4 – Поліморфні перетворення оксидів РЗЕ [34, 37]

Оксиди	ΔH_{f}° ,	ΔS_{f}° ,	Примітка
	кДж/моль	Дж/моль•К	
$La_2O_3(A)$	-1791,6	127,32	[46]
	-1791,78	127,24	[47]
$La_2O_3(B)$	-1786,93	127,19	[47]
$Nd_2O_3(A)$	-1806,9	158,7	[46]
	-1808,81	158,78	[47]
$Nd_2O_3(B)$	-1808,26	158,73	[47]
$Sm_2O_3(A)$	-1820,12	151,52	[47]
$Sm_2O_3(B)$	-1823	150,6	[46]
	-1822,6	150,38	[47]
$Eu_2O_3(B)$	-1653,45	144,25	[47]
$Eu_2O_3(C)$	-1662,5	135,4	[46]
	-1657,95	138,95	[47]
$Gd_2O_3(B)$	-1825,19	155,5	[47]
$Gd_2O_3(C)$	-1819,7	150,6	[46]
	-1830,93	150,62	[47]
$Yb_2O_3(C)$	-1814,5	133,1	[46]
	-1814,52	133,77	[47]
$Y_2O_3(C)$	-1932,8	99,13	[47]

Таблиця 1.4 – Термодинамічні характеристики утворення фаз Ln₂O₃

Оксид європію зустрічається у багатьох мінералах, але часто в сукупності з оксидами інших лантаноїдів. Зазвичай у цих мінералах спостерігається перевага елементів однієї підгрупи (церію або ітрію), хоча у невеликих кількостях присутня і решта лантаноїдів. Відомо більше 200 мінералів, які містять лантаноїди до 0,01%. Однак тільки 56 мінералів містять більше 5–6% оксидів лантаноїдів. Хімічний склад основних мінералів, із яких вилучають лантаноїди, показано у табл. 1.5.

Вилучення концентратів лантаноїдів із мінералів включає ряд операцій, у результаті яких поступово видаляють основну масу присутніх нелантаноїдних складових. Як кінцевий продукт отримують оксиди лантаноїдів. Вперше у чистому вигляді Eu₂O₃ був отриманий Бернігхаузеном і Брауером випалом при 900°C з еквімолярної суміші Eu₂O₃ і EuO у середовищі аргону [46].

Мінерал	Склад
	50–68% CeO ₂ , La ₂ O ₃ , Eu ₂ O ₃ i т.д.
Монацит	22–31% Р ₂ О ₅ ; до 5% Ү ₂ О ₃ ; до 7%
(Ce, La)PO ₄	ZrO ₂ ; до 6% SiO ₂ ; до 35% ThO ₂ ; 0,1-
	0,3% U ₂ O ₃
	36,9–40,5% CeO ₂
Бастнезит	36,3% (La Pr) ₂ O ₃ ;
(Ce, La, Pr)CO ₃ F	19,8–20,2% CO ₂ ; 2,2–3,5% F
	39,2–40% TiO; 32–34%(Ce ₂ O ₃ , La ₂ O ₃
Лопарит	$+ Eu_2O_3 +);$
(Na, Ca, Ce, Eu) (Ti, Nb)O ₃	8–10% Nb ₂ O ₅ + Ta ₂ O ₅ ;4,2–5,2% CaO;
	7–9% Na ₂ O

Таблиця 1.5 – Склад мінералів, які містять лантаноїди [48]

Таблиця 1.6 – Періоди кристалічної гратки Eu₂O₃ [48]

0	Періоди ґратки, нм			
Оксид	а	b	С	
	1,0085	1,2054	0,3302	
Eu_2O_3	1,0094	1,2068	0,3300	

Оксид ітрію, як перспективний оптичний матеріал, має відмінні фізичні та хімічні властивості: високі температуру плавлення (2410 °C) та корозійну стійкість, а також широкий діапазон прозорості (0,2–8 мм).

Типові фізичні властивості Y_2O_3 включають у себе теплопровідність 13,6 Вт/мК при температурі 300 К, показник заломлення 1,935, густину 5,03 г/см³ (табл. 1.7). Завдяки високій густині Y_2O_3 може бути більш ефективним сцинтилятором, ніж $Y_3Al_5O_{12}$ (YAG) (35 і 4,56 г/см³, відповідно).

Оксид ітрію має високу теплопровідність і нижчий коефіцієнт теплового розширення, ніж широко використовуваний YAG, який має вирішальне значення для управління як тепловими, так і лазерними процесами. Інші можливості Y_2O_3 включають його застосування як інфрачервоного купола, сопла, вогнетриву, компонентів напівпровідникових приладів. Завдяки своїй вогнетривкій природі Y_2O_3 більше використовується як прозора кераміка, ніж монокристали. Перший прозорий керамічний матеріал на основі оксиду ітрію розробили Le Fever і Мацко в 1967 р. [4]. Було кілька розробок прозорої кераміки на основі Y_2O_3 за допомогою спікання у вакуумі без тиску або в середовищі H₂ [49].

Оптичні властивості кераміки на основі оксиду ітрію, легованого рідкісноземельними іонами, дають можливість її застосування у різних галузях [1, 45, 50–53].

Структура	Кубічна
Тип структури	$D^{*}5_{3}$
Просторова група	La3
Параметри гратки, нм	<i>a</i> = 1,0604
Густина при 293 К, г.см ⁻³	5,03
Температура плавлення, °С	2410
Коефіцієнт заломлення при λ = 589 нм	1,77
Теплопровідність, Вт·м ⁻¹ ·К ⁻¹ при:	
293 К	0,013
573 К	0,0076
873 K	0,0054
1173 К	0,0041
Мікротвердість H, кг·мм ⁻²	715
Діапазон оптичної прозорості, мкм	0,17–6,5

Таблиця 1.7 – Фізико-технічні характеристики Y₂O₃ [4]

1.2 Діаграми стану подвійних систем Ln_2O_3 - Y_2O_3 , де Ln = La, Nd, Sm, Eu, Gd, Yb

1.2.1 Система La₂O₃-Y₂O₃

Дані про фазові рівноваги в системі La₂O₃–Y₂O₃ (рис. 1.7) та її практичне використання наведено в [36, 54-65]. Вказана система характеризується перитектичним перетворенням при 2310 °C і ~82 мол. % Y₂O₃ та мінімумом при 2215 °C і 30 мол. % Y₂O₃ [59]. У системі утворюються широкі області твердих розчинів на основі різних кристалічних модифікацій вихідних компонентів. Температури поліморфних перетворень La₂O₃ (X \rightleftharpoons H, H \rightleftharpoons A) при додаванні оксиду ітрію та Y₂O₃ (H \rightleftharpoons C) при додаванні оксиду лантану знижуються. Протяжність областей гомогенності A і X фаз збільшується з підвищенням температури (рис. 1.7).

− дані ДТА у гелії; о – високотемпературного РФА,
× – метод випалу і загартування

Рисунок 1.7 – Діаграма стану подвійної системи La₂O₃-Y₂O₃ [59]

У Х-формі La₂O₃ розчиняється ~83 мол. % Y₂O₃ при ~2290 °C. Тверді розчини Н-форми оксидів РЗЕ утворюють неперервний ряд. Гранична крива, що розділяє фазові поля твердих розчинів на основі Х- та Н-форм оксидів РЗЕ, має мінімум при 1945 °C. Поля твердих розчинів на основі Х- і Н-форм оксидів РЗЕ розділені вузькою двофазною областю X + H. Область гомогенності A-форми La₂O₃ досягає 41 мол. % Y₂O₃ при ~1740 °C і ~18 мол. % Y₂O₃ при 1350°C. Параметри елементарної комірки змінюються від a = 0,3935 нм, c = 0,6128 нм для La₂O₃ до a = 0,3865 нм, c = 0,6072 нм для зразка, що містить 30 мол. % Y₂O₃. Показники заломлення у даній концентраційній області зменшуються від $n_g = 2,10$, $n_p = 2,08$ до 2,06 > n_g > 2,05, 2,04 > n_p > 2,03.

Розчинність La₂O₃ в С-модифікації оксиду ітрію в інтервалі температур 1350–1900 °С незначно змінюється та при 1900 °С складає 15 мол. % La₂O₃. Показник заломлення змінюється від n = 1,910 до n = 1,923.

У системі утворюється упорядкована фаза LaYO₃ (R) зі структурою типу перовскиту з ромбічним спотворенням. Параметри елементарної комірки впорядкованої фази LaYO₃ складають: a = 0,5883 нм, b = 0,6093 нм, c = 0,8501 нм. Кристалооптичні характеристики LaYO₃: прозорі анізотропні кристали, двовісні, від'ємні 2v $\approx 90^\circ$, $n_p = 1,98$; $n_g = 2,03$. Впорядкована Rфаза характеризується вузькою областю гомогенності (48-53 мол. % У2О3 Параметри елементарної комірки зменшуються при 1350 °C). віл a = 0,5895 нм, b = 0,6102 нм, c = 0,8510 нм до a = 0,5878 нм, b = 0,6085 нм, c = 0,8497 нм. Максимальна температура існування впорядкованої фази LaYO₃ – 1585 °C. Вище вказаної температури утворюється фаза змінного складу з моноклінною структурою В-типу оксидів РЗЕ [59]. Фаза В бере нонваріантних перетвореннях участь y трьох за евтектоїдною та перитектоїдною реакціями:

Поля твердих розчинів на основі А- і Н-, В- і Н-форм оксидів РЗЕ розділені вузькими двофазними областями А + Н, В + Н, відповідно. На кривих, які відокремлюють поле твердих розчинів на основі Н-форми оксидів РЗЕ від областей твердих розчинів на основі А-, В- і С-модифікацій оксидів РЗЕ, є евтектоїдна точка з координатами 45 мол. % Y_2O_3 і 1730 °C [59]. Координати інваріантних точок діаграми стану системи La₂O₃–Y₂O₃ наведено у табл. 1.8.

Хімічний		Фазова рівновага	Тип	Температура,
склад, мол. %			перетворення	°C
La_2O_3	Y_2O_3			
100	0	$A-La_2O_3 \rightleftarrows H-La_2O_3$	Поліморфне	2030
			перетворення	
100	0	$H-La_2O_3 \rightleftarrows X-La_2O_3$	Поліморфне	2100
			перетворення	
100	0	X-La₂O₃ ⇄ рідина	Плавлення	2310
55	45	$H-La_2O_3 \rightleftharpoons B-La_2O_3 + A-La_2O_3$	Евтектоїд	1730
50	40	$R-LaYO_3 \rightleftharpoons B-Ln_2O_3$	Реакція у	1585
			твердому стані	
45	55	$B-Ln_2O_3 \rightleftharpoons R-LaYO_3 + C-$	Евтектоїд	
		Y_2O_3		1570
29	71	$H-Ln_2O_3 + C-Y_2O_3 \rightleftharpoons B-Ln_2O_3$		
			Перитектоїд	1900
18	82	$H-Y_2O_3$ + рідина \rightleftarrows X-La ₂ O ₃	Перитектика	2310
0	100	$C-Y_2O_3 \rightleftharpoons H-Y_2O_3$	Поліморфне	2370
			перетворення	
0	100	Н-Ү₂О₃ ≓ рідина	Плавлення	2440

Таблиця 1.8 – Координати інваріантних точок діаграми стану системи La₂O₃-Y₂O₃ [36]

1.2.2 Система Nd₂O₃-Y₂O₃

Систему Nd₂O₃–Y₂O₃ описано в роботах [34, 66–73]. Будова діаграми стану системи з оксидом неодиму подібна до діаграми стану системи з оксидом лантану в області високих температур (>1900 °C), але суттєво відрізняється при низьких температурах (рис. 1.8). Система характеризується перитектичним перетворенням L + H \rightleftharpoons X при 2370 °C і 84 мол. % Y₂O₃ та мінімумом при ~2250 °C і 30 мол. % Y₂O₃. У системі утворюється неперервний ряд твердих розчинів на основі H-модифікації оксидів РЗЕ та широкі області гомогенності твердих розчинів на основі X-, A-, B- і Cкристалічних модифікацій вихідних компонентів, а також спостерігаються твердофазні перетворення H + C \rightleftharpoons B і, напевно, H \rightleftharpoons A + B. Фазові рівноваги найбільш детально досліджено при високих температурах (2000–2400 °C). При температурах нижче 1900 °С експериментальні дані наведено в роботах [66, 67], але в обох випадках діаграму стану системи в області низьких температур показано гіпотетично пунктирними лініями і визначено з малою точністю ±10 мол %.

Фазові співвідношення у системі Nd₂O₃-Y₂O₃ при 1300-1600 °С вивчено експериментально і зроблено їх термодинамічну оцінку [68]. Межі фазових полів визначено для твердого розчину С-У2О3 в інтервалі температур 1300-1600 °С 35 мол. % Nd₂O₃ і двофазної області (С + В) – 50 мол. % Nd₂O₃. Надвеликий концентраційний інтервал від 10 до 20 мол. %, що роботах, є причиною низької точності використовували у вказаних експериментального визначення меж фазових полів (рис. 1.9). Область твердих розчинів на основі B-Nd₂O₃ експериментально не визначено, але розраховано за допомогою програми Thermo-Calc. Ці дані дещо суперечать раніше опублікованим результатам [66, 67], тому для побудови діаграм стану потрійних систем, які засновані на відповідних знаннях про подвійні системи, необхідно дослідити взаємодію оксидів неодиму та ітрію і встановити межі фазових полів при температурах нижче 1600 °С.

Рисунок 1.8 – Діаграма стану системи $Nd_2O_3-Y_2O_3$ [66]

 A_{ss} – тверді розчини на основі гексагональної модифікації Nd_2O_3 , B_{ss} – тверді розчини на основі моноклінної модифікації Nd_2O_3 , C_{ss} – тверді розчини на основі кубічної модифікації Y_2O_3

Рисунок 1.9 – Діаграма стану системи Nd₂O₃–Y₂O₃ [68]

1.2.3 Система Sm₂O₃-Y₂O₃

Для системи $Sm_2O_3-Y_2O_3$ характерне утворення твердих розчинів на основі різних поліморфних модифікацій оксидів самарію та ітрію (рис. 1.10). Фазові перетворення у високотемпературній області системи відбуваються у вузькому температурному інтервалі, тому фрагмент діаграми стану системи винесено у збільшеному масштабі.

Система характеризується перитектичним перетворенням при ~2400 °C і ~65 мол. % Y_2O_3 . Протяжність області твердих розчинів на основі Х-форми оксиду самарію суттєво менша, ніж у системі La₂O₃–Y₂O₃ (рис. 1.7), що являється характерним для цієї поліморфної модифікації чистого оксиду самарію. Тверді розчини на основі Н-форми оксидів РЗЕ утворюють безперервний ряд. У системі наявні евтектоїдна та перитектоїдна точки з координатами 2050 °C і 30 мол. % Y₂O₃ та 2200 °C і 65 мол. % Y₂O₃, відповідно [74].

Рисунок 1.10 – Діаграма стану системи Sm₂O₃–Y₂O₃ [74]

Розчинність оксиду ітрію у В-формі оксиду самарію сутєво залежить від температури і становить 25 мол. % Y_2O_3 при 1300 °C та 65 мол. % Y_2O_3 при 2200 °C. З підвищенням температури розчинність оксиду ітрію у В-формі оксиду самарію збільшується до 45 мол. % Y_2O_3 при 1700 °C і 52,5 мол. % Y_2O_3 при 1900 °C. Параметри елементарної комірки В-Sm₂O₃ та показники заломлення при різних температурах наведено у табл. 1.9.

Таблиця 1.9 – Параметри елементарної комірки В-Sm₂O₃ та показники заломлення при різних температурах [74]

T,°C	а, нм	<i>b</i> , нм	С, НМ	β	V, нм ³	N _p
_	1,4180	0,3636	0,8843	100,08	0,449	_
1300	1,4130	0,3580	0,8782	100,11	0,437	2,10
1700	1,4080	0,3547	0,8728	100,12	0,429	2,03
1900	1,4070	0,3541	0,8721	100,17	0,427	2,01

Розчинність оксиду самарію у С-формі оксиду ітрію також суттєво залежить від температури: з підвищенням температури протяжність твердого розчину на основі С-форми У₂O₃ зменшується. Концентраційні межі цієї форми при 1300, 1700 і 1900 °С становлять 67, 43 і 38 мол. % Sm₂O₃, відповідно. Параметри елементарної комірки збільшуються від a = 1,0604 нм, V = 1,193 нм³ для Y_2O_3 до a = 1,0815 нм, $V = 1.265 \text{ Hm}^3$ (1300 °C); a = 1.0738 Hm $V = 1.238 \text{ Hm}^3$ (1700 °C) i a = 1,0728 нм V = 1,235 нм³ (1900 °C). Показник заломлення твердих розчинів на основі С-форми оксиду ітрію змінюється від n = 1,91 для чистого Y₂O₃ до n = 1,973 (1300 °C), n = 1,952 (1700 °C), n = 1,946 (1900 °C). Координати інваріантних точок діаграми стану системи Sm₂O₃-Y₂O₃ наведено у табл. 1.10.

Таблиця 1.10 – Координати інваріантних точок діаграми стану системи Sm₂O₃-Y₂O₃ [36]

Хіміч	ний	Фазова рівновага	Тип	Температура,
склад, м	юл. %		перетворень	°C
Sm ₂ O ₃	Y_2O_3			
100	0	$B-Sm_2O_3 \rightleftarrows A-Sm_2O_3$	Поліморфне	1870
			перетворення	
100	0	$A-Sm_2O_3 \rightleftarrows H-Sm_2O_3$	Поліморфне	2075
			перетворення	
100 0		$H-Sm_2O_3 \rightleftarrows X-Sm_2O_3$	Поліморфне	2220
			перетворення	
100	0	X-Sm ₂ O ₃ <i>컱</i> рідина	Плавлення	2320
70	30	$H-Sm_2O_3 \rightleftharpoons B-Sm_2O_3 + A-$	Евтектоїд	2050
		Sm_2O_3		
35	65	$H-Y_2O_3 + C-Y_2O_3 \rightleftharpoons B-Sm_2O_3$	Перитектоїд	2200
36	64	Рідина + H-Y ₂ O ₃ \rightleftharpoons X-Sm ₂ O ₃	Перитектика	2400
0	100	$C-Y_2O_3 \rightleftharpoons H-Y_2O_3$	Поліморфне	2370
			перетворення	
0	100	Н-Ү₂О₃ <i>컱</i> рідина	Плавлення	2440

1.2.4 Система Eu₂O₃-Y₂O₃

Для системи $Eu_2O_3-Y_2O_3$ характерне утворення областей твердих розчинів різної протяжності на основі А-, В-, С-, Н- і Х-форм оксиду європію [76–84], що показано на рис. 1.11.

Рисунок 1.11 – Діаграма стану системи Еи₂O₃–Y₂O₃ [77]

Система характеризується наявністю перитектики при температурі ~2370 °C і ~58 мол. % Y_2O_3 , а також локального мінімуму ~2310 °C і 10 мол. % Y_2O_3 . Протяжність області твердих розчинів на основі X-Eu₂O₃ становить ~59 мол. %, що менше на 5 мол. %, ніж у системі Sm₂O₃-Y₂O₃. У системі присутні дві перитектоїдні точки з координатами 2160°C і 23 мол. % Y_2O_3 та 2210°C і 58 мол. % Y_2O_3 . Ця особливість виділяє діаграму стану системи Eu₂O₃-Y₂O₃ серед інших, де перетворення $H \rightleftharpoons A + B$ носить евтектоїдний характер. Розчинність оксиду ітрію у B-Eu₂O₃ суттєво залежить від температури і складає 17 мол. % при 1250 °C,

29 мол. % при 1500 °С і 58 мол. % Y₂O₃ при 2210°С. Параметри елементарної комірки твердих розчинів на основі B-Eu₂O₃ при 1500°С зменшуються від a = 1,4195 нм, b = 0,3605 нм, c = 0,8728 нм, $\beta = 91,5$ для Eu₂O₃ до a = 1,4096 нм, b = 0,3589 нм, c = 0,8654 нм, $\beta = 96,7$ для граничного складу твердого розчину. Показник заломлення *n* змінюється від 2,10 до 2,03 [77].

Розчинність оксиду європію у С-Y₂O₃ також суттєво залежить від температури: з підвищенням температури границі твердих розчинів на основі С-форми Y₂O₃ зменшуються і при 1250, 1500, 2210 ° С становлять 70, 59 та ~35 мол % Eu₂O₃, відповідно. Параметри елементарної комірки збільшуються від a = 1,0604 нм для Y₂O₃ до a = 1,0715 нм для граничного складу твердого розчину загартованого від 1500 °С. Показник заломлення n змінюється від 1,91 для Y₂O₃ до 1,94 для граничного складу твердого розчина інваріантних точок діаграми стану системи Eu₂O₃— Y₂O₃ наведено у табл. 1.11.

Таблиця 1.11 – Координати інваріантних точок діаграми стану системи Eu₂O₃-Y₂O₃ [36]

Хімічний склад,		Фазова рівновага	Тип	Температура,
МОЛ	. %		перетворення	°C
Eu ₂ O ₃	Y_2O_3			
100	0	$B \rightleftharpoons A$	Поліморфне	2040
			Перетворення	
100	0	A≓H	Поліморфне	2140
			перетворення	
100 0		H≓X	Поліморфне	2270
			Перетворення	
100	0	$X \rightleftharpoons L$	Плавлення	2325
77	23	$H + B \rightleftharpoons A$	Перитектоїд	2160
42	58	$X + L \rightleftharpoons H$	Перитектика	2370
0	100	H≓C	Поліморфне	2350
			перетворення	
0	100	H∠L	Плавлення	2440

1.2.5 Система Gd₂O₃-Y₂O₃

Система $Gd_2O_3-Y_2O_3$ характеризується утворенням областей твердих розчинів різної протяжності на основі В-, А-, Н- і Х- поліморфних форм Gd_2O_3 і С-, Н-форм Y_2O_3 (рис. 1.12), [74].

Рисунок 1.12 – Діаграма стану системи Gd₂O₃-Y₂O₃ [74]

Система характеризується наявністю евтектики при 2390 °C і 30 мол. % Y_2O_3 . Протяжність області твердих розчинів на основі X-форми Gd₂O₃ у цій системі помітно менша, ніж у системах $Sm_2O_3-Y_2O_3$ і Eu₂O₃-Y₂O₃. У розглянутих системах утворюється неперервний ряд твердих розчинів на основі H-форми оксидів P3E. У системі наявні евтектоїдна та перитектоїдна точки з координатами 2190°C і 22 мол. % Y_2O_3 та 2240 °C і 65 мол. % Y_2O_3 , відповідно.

Область існування В-фази із збільшенням температури розширюється. Розчинність Y₂O₃ у моноклінній В-модифікації оксиду гадолінію при 1300, 1700, 1900 °C становить 5, 25 і 36 мол. %, відповідно.

Розчинність Gd₂O₃ в C-формі оксиду ітрію також суттєво залежить від температури і становить 90 (1300 °C), 67 (1700 °C) і 57 (1900°С) мол. %. Параметри елементарної комірки збільшуються від a = 1,0604 нм, V = 1,193 нм³ для Y₂O₃ до a = 1,0772 нм, V = 1,250 нм³ (1300 °C), a = 1,0723 нм, V = 1,233 нм³ (1700 °C), a = 1,0712 нм, V = 1,229 нм³ (1900 °C). Аналогічно показники заломлення зменшуються від N_p = 1,910 до N_p = 1,950 (1700 °C) і N_p = 1,946 (1900 °C). Координати інваріантних точок діаграми стану системи Gd₂O₃–Y₂O₃ наведено у табл. 1.12.

Таблиця 1.12 – Координати інваріантних точок діаграми стану системи Gd₂O₃-Y₂O₃ [36]

Хімічний		Фазова рівновага	Тип	Температура
склад,	мол. %		ΠΑΝΑΤΡΟΝΑΙΙΙΙα	°C
Gd_2O_3	Y_2O_3		перстворення	C
100	0	$B-Gd_2O_3 \rightleftarrows A-Gd_2O_3$	Поліморфне	2170
			перетворення	
100	0	$A-Gd_2O_3 \rightleftarrows H-Gd_2O_3$	Поліморфне	2200
			перетворення	
100 0		$H-Gd_2O_3 \rightleftarrows X-Gd_2O_3$	Поліморфне	2370
			перетворення	
100	0	X-Gd ₂ O ₃ ⇄ рідина	Плавлення	2410
78	22	$\text{H-Gd}_2\text{O}_3 \rightleftarrows \text{B-Gd}_2\text{O}_3 + \text{A-Gd}_2\text{O}_3$	Евтектоїд	2190
70	30	рідина \rightleftarrows X-Gd ₂ O ₃ + H-Gd ₂ O ₃	Евтектика	2390
35	65	$C-Gd_2O_3 + H-Gd_2O_3 \rightleftharpoons B-Gd_2O_3$	Перитектоїд	2240
0 100		$C-Y_{2}O_{2} \neq H-Y_{2}O_{2}$	Поліморфне	2370
	100	C $T_2C_3 \leftarrow TT$ T_2C_3	перетворення	
0	100	Н-Ү₂О₃ ≓ рідина	Плавлення	2440

Діаграми стану систем з Y_2O_3 та оксидами лантаноїдів кінця ряду (Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃) належать до систем з повною взаємною розчинністю компонентів [84]. Система Y_2O_3 –Yb₂O₃ характеризується утворенням неперервних твердих розчинів на основі H- і C-форм оксидів РЗЕ вихідних компонентів.

1.3. Діаграми стану подвійних систем La_2O_3 - Ln_2O_3 (Ln = Nd, Sm, Eu, Gd, Yb)

Фазові рівноваги у системі $La_2O_3-Nd_2O_3$ (рис. 1.13) досліджено у [57, 58] за допомогою рентгенівського та термічного аналізів при високих температурах [73]. Встановлено, що в системі утворюються неперервні ряди твердих розчинів на основі високотемпературної кубічної Х-модифікації оксидів РЗЕ зі структурою типу Tl_2O_3 та гексагональних А- і високотемпературної Н-модифікацій $La_2O_3(Nd_2O_3)$.

Перехід A \rightleftharpoons H в системі La₂O₃–Nd₂O₃ зафіксовано за допомогою термічного аналізу за присутністю екзотермічного ефекту на кривих охолодження. Система характеризується мінімумом поблизу складу 60 мол. % La₂O₃.

Рисунок 1.13 – Діаграма стану системи La₂O₃–Nd₂O₃ [73]

Характер фазових рівноваг у системах $La_2O_3-Ln_2O_3$ (Ln = Sm, Eu, Gd) подібний [36, 41, 54, 57, 58, 73, 85–89]. При температурах вище 2000 °C у вказаних системах встановлено існування трьох неперервних областей гомогенності на основі гексагональних (A i H) та кубічної (X) модифікацій оксидів лантаноїдів. Зі зниженням температури спостерігаються деякі відмінності у будові діаграм стану вказаних систем, що пов'язано з поліморфізмом вихідних компонентів.

Фазові рівноваги у системі La₂O₃–Sm₂O₃ (рис. 1.14, а) досліджено за допомогою рентгенівського та термічного аналізів при високих температурах [73] та визначено межі фазових полів при 1500 °C (рис. 1.14, б) [85]. У системі утворюється три типи неперервних твердих розчинів: на основі А-, H- і Х-модифікацій оксидів лантану і самарію та обмежена область гомогенності на основі моноклінної (В) модифікації Sm₂O₃. Максимальна температура існування твердого розчину на основі B-Sm₂O₃ складає 1800 °C, що відповідає температурі фазового перетворення В \rightleftharpoons A чистого Sm₂O₃. Розчинність La₂O₃ у B-Sm₂O₃ становить 24 мол. % при 1500 °C [85], 10 мол. % при 1780 °C і 20 мол. % при 1700 °C.

Рисунок 1.14 – Діаграма стану системи La_2O_3 – Sm_2O_3 (*a*) [73] і (б) [85]

Фазовий перехід A \rightleftharpoons H у системі La₂O₃–Sm₂O₃ зафіксовано за допомогою термічного аналізу за присутністю екзотермічного ефекту на кривих охолодження. Зміну фазового складу зразків отриманих у залежності від швидкості охолодження розплаву в системі La₂O₃–Sm₂O₃ показано на рис. 1.15.

а – гартування із швидкістю 10 °C · c⁻¹; δ – гартування із швидкістю 500 °C · c⁻¹; ϵ – випал при 1400 °C

Рисунок 1.15 – Фазовий склад зразків отриманих в залежності від швидкості охолодження розплаву в системі La₂O₃–Sm₂O₃ [73]

Для системи La₂O₃–Eu₂O₃ рентгенівським методом встановлено широкі області гомогенності з гексагональною і моноклінною структурами, які розділені вузькою двофазною областю. З підвищенням температури розчинність Eu₂O₃ у твердому розчині A-La₂O₃ збільшується, а розчинність La₂O₃ у B-Eu₂O₃ зменшується [73]. Розчинність La₂O₃ у B-Eu₂O₃ становить 19 мол. % при 1500 °C [86].

 A_{ss} – тверді розчини на основі гексагональної модифікації La₂O₃, B_{ss} – тверді розчини на основі моноклінної модифікації La₂O₃ і Eu₂O

Рисунок 1.16 – Елемент діаграми стану системи La₂O₃–Eu₂O₃ в субсолідусній області [89]

Фазові рівноваги у системі La₂O₃–Gd₂O₃ (рис. 1.17, а) досліджено за допомогою рентгенівського та термічного аналізів при високих температурах (2000–2400 °C) [73] та розраховано (рис. 1.17, б) [34]. Встановлено, що у системі утворюються три типи неперервних твердих розчинів на основі гексагональних (A i H) і кубічної (X) модифікацій оксидів РЗЕ. Обмежену область гомогенності отримано на основі моноклінної (B) модифікації Gd₂O₃. Максимальна температура існування моноклінного твердого розчину складає 2080 °C, що відповідає температурі фазового перетворення B \rightleftharpoons A чистого Gd₂O₃. Розчинність La₂O₃ в B-Gd₂O₃ становить 10 мол. % при 2020 °C, 20 мол. % при 1900 °C і 50 мол. % при 1580 °C [73].

Фазовий перехід A \rightleftharpoons H у системі La₂O₃–Gd₂O₃ зафіксовано тільки за допомогою термічного аналізу за наявністю екзотермічного ефекту на кривих охолодження. Система характеризується мінімумом поблизу складу 60 мол. % La₂O₃ і ~2300 °C [73]. Фазовий склад зразків залежно від швидкості охолодження розплаву в системі La₂O₃–Gd₂O₃ показано на рис. 1.18. Розчинність La₂O₃ у B-Gd₂O₃ становить 32 мол. % при 1500 °C [87].

Рисунок 1.17 – Діаграма стану системи La₂O₃–Gd₂O₃ (*a*) [73] і (б) [34]

а – гартування із швидкістю 10 °C · c⁻¹; δ – гартування із швидкістю 500 °C · c⁻¹; ϵ – випал при 1400 °C

Рисунок 1.18 – Фазовий склад зразків отриманих залежно від швидкості охолодження розплаву в системі La₂O₃–Gd₂O₃ [73]

Дослідження фазових рівноваг у системі La₂O₃–Yb₂O₃ (рис. 1.19) та структури отриманих фаз представлено в роботах [34, 57, 58, 73, 90–94].

Рисунок 1.19 – Діаграма стану системи La₂O₃–Yb₂O₃ [57]

За допомогою рентгенівських досліджень зразків в інтервалі температур 1650–2000 °C виявлено упорядковану фазу зі структурою типу перовскиту LaYbO₃ (R) з областю гомогенності, що при 1650 °C простягається від 38 до 55 мол. % Yb₂O₃ [92]. Параметри елементарної комірки LaYbO₃ становлять: a = 0,601 нм, b = 0,581 нм, c = 0,839 нм, Z = 4 [93]. У ранніх роботах [57, 73] поліморфізм даної упорядкованої фази не виявлено, а за даними [94] упорядкована фаза LaYbO₃ має дві поліморфні модифікації: ромбічну та гексагональну; температура переходу між ними становить 1850 °C.

За даними [58], область гомогенності R-фази при 1400 °C складає 47– 62 мол. %, а при 1800 °C — 45–63 мол. %. Температурний інтервал існування упорядкованої фази зі структурою типу перовскиту LaYbO₃ становить 2040 °C, вище якої утворюється твердий розчин на основі високотемпературної кубічної (X) модифікації Yb₂O₃. Область гомогенності X-Yb₂O₃ простягається від 0 до 91–92 мол. % Yb₂O₃, дані тверді розчини також зазнають перетворення за перетектичною та двома евтектоїдними реакціями поблизу складів, що містять 28 мол. % при 1820 °C і 72 мол. % при 1930 °C.

Встановлено існування твердих розчинів на основі низькотемпературної А- та високотемпературної Н-модифікацій La₂O₃. За даними термічного аналізу спостерігали наявність екзотермічного ефекту на кривих охолодження, що відповідає фазовому перетворенню A *≓* H.

Система La_2O_3 -Yb₂O₃ характеризується мінімумом поблизу складу, що містить 50 мол. % Yb₂O₃ і ~2100 °C. Зміну фазового складу зразків отриманих залежно від швидкості охолодження розплаву в системі La_2O_3 -Yb₂O₃ показано на рис. 1.20.

а – гартування із швидкістю 10 °C·с⁻¹; δ – гартування із швидкістю 500 °C·с⁻¹; ϵ – випал при 1400 °C

Рисунок 1.20 – Фазовий склад зразків отриманих залежно від швидкості охолодження розплаву в системі La₂O₃–Yb₂O₃ [73]

Поліморфізм оксидів РЗЕ впливає на будову діаграм стану наведених систем. Те, що деякі поліморфні форми існують тільки при високих температурах, обумовлює методичні особливості дослідження даних Поліморфізм систем. вихідних компонентів визначається також стабільністю фаз, що утворюються у системах ряду La₂O₃-Ln₂O₃. Взаємна розчинність компонентів або утворення впорядкованих фаз залежить від співвідношення іонних радіусів та типів кристалічної ґратки при одній і тій же температурі [38, 49, 50, 55, 56, 71, 86, 90, 95–104]. На рис. 1.21 представлено області існування різних поліморфних модифікації оксидів РЗЕ залежно від іонного радіуса Ln^{3+} [105].

Рисунок 1.21 – Області існування різних поліморфних модифікації оксидів РЗЕ залежно від іонного радіуса Ln³⁺ [91]

У подвійних системах $La_2O_3-Ln_2O_3$ (Ln = Er, Yb, Lu i Y) утворюється упорядкована фаза ABO₃ із структурою типу перовскиту. Особливості фаз типу перовскиту для різних лантаноїдів вивчено у [104–111]. Фактор толерантності *t* по Гольдшмідту [105]:

$$t = (R_A + R_O) / \sqrt{2} (R_B + R_O)$$

для структури перовскиту знаходиться в межах $0,75 \le t \le 1$.

У системах ряду La₂O₃–Ln₂O₃ (Ln = Ho, Er, Yb, Lu i Y) утворення фази типу перовскиту спостерігається, починаючи з оксиду гольмію оскільки фактор толерантності *t* становить: 0,786; 0,790; 0,793; 0,798; 0,800 для LaHoO₃, LaErO₃, LaTmO₃, LaYbO₃, LaLuO₃, відповідно. На рис. 1.22 та 1.23 представлено кристаллічні структури фази типу перовскиту LaLn'O₃ (Ln = Y, Ho–Lu). Температури перетворення фаз типу перовскиту ABO₃ для різних РЗЕ представлено в таблиці 1.13. На рис. 1.24–1.27 представлено залежності фактора толерантності від властивостей (іонний радіус, стабільність фаз, орієнтація магнітних моментів) фаз типу перовскиту.

Таблиця 1.13 – Температура перетворення фаз типу перовскиту ABO₃ для різних P3E, °C [104]

А		В						
	Но	Er	Tm	Yb	Lu	Y		
La	1700	1820	1955	2040	_	1600		
Ce	_	_	1700	1900	2050	_		
Pr	_	_	_	1500	1950	_		
Nd	_	_	_	_	1300	_		

Структура типу перовскиту	t _{IR,CN6}	t _{IR,CN12}	t _{BV}	Структура іншого типу	t _{IR,CN6}	t _{IR,CN12}	t _{BV}
LaLuO ₃	0,7615	0,8632	0,8523	LaDyO ₃	0,7445	0,8465	0,8410
LaYbO ₃	0,7592	0,8605	0,8546	CeErO ₃	0,7448	0,8485	0,8393
PrLuO ₃	0,7482	_	0,8415	CeHoO ₃	0,7412	0,8444	0,8256
CeLuO ₃	0,7545	0,8569	0,8457	CeDyO ₃	0,7376	0,8403	0,8344
LaTmO ₃	0,7551	0,8560	0,8414	PrTmO ₃	0,7418	_	0,8307
CeYbO ₃	0,7522	0,8543	0,8479	PrErO ₃	0,7385	_	0,8352
LaErO ₃	0,7517	0,8522	0,8459	PrHoO ₃	0,7349	_	0,8216
CeTmO ₃	0,7481	0,8498	0,8348	PrDyO ₃	0,7314	_	0,8304
LaYO ₃	0,7484	0,8485	0,8343	NdLuO ₃	0,7459	0,8373	0,8311
LaHoO ₃	0,7481	0,8482	0,8322	NdYbO ₃	0,7436	0,8347	0,8333
PrYbO ₃	0,7458	_	0,8438	NdDyO ₃	0,7292	0,8185	0,8200

Таблиця 1.14 – Фактор толерантності структур типу перовскиту та не перовскиту ABO₃ для різних лантаноїдів при кімнатній температурі [107]

Рисунок 1.22 – Ідеальна кубічна (Рm3m) структура перовскиту [106]

Рисунок 1.23 – Ромбічна (Pnma) структура перовскиту [105]

Рисунок 1.24 – Залежність фактора толерантності LaLnO₃ від іонного радіуса лантаноїдів [107]

Рисунок 1.25 – Залежність значень кореня кубічного об'єму комірки від фактора толерантності LaLnO₃ [106]

Рисунок 1.26 – Температура перетворення фаз типу перовскиту залежно від фактора толерантності [107]

Рисунок 1.27 – Кристалічна структура і орієнтація магнітних моментів фаз типу перовскиту LaYbO₃ і LaErO₃ [107]

Матеріали на основі фаз типу перовскиту АВО3 знаходять широке використання в різних областях від функціональних елементів електроніки та спінтроніки до кисневих паливних комірок. Багато характеристик матеріалів на основі перовскиту, такі як електронна та іонна провідність, значення діелектричної проникності, магнітного та електричного моментів є чуттєвими до стехіометрії складу, або до будь-яких змін в структурі АВО₃ [96]. Реалізація тих чи інших фізико-хімічних властивостей здійснюється або в ідеальній, що не містить дефектів, структурі, або в структурі з дефектами, що утворені за рахунок заміщення катіонів у позиціях А та В [97]. Особливий інтерес викликає гетеровалентне заміщення в структурі ABO₃, у процесі якого необхідна зарядова компенсація в ґратці здійснюється за рахунок утворення великої кількості кисневих вакансій, що призводить до утворення в структурі змішаної електрон-іонної провідності. Складні оксиди зі змішаною електрон-іонною провідністю привертають увагу вчених в усьому світі як перспективні матеріали для створення електрохімічних, каталітичних та магнітних пристроїв. Ha сьогодні проведено велику кількість досліджень взаємозв'язку «склад-властивості» оксидів АВО₃ та А_{n+1}B_nO_{3n+1}, де А – катіон РЗЕ, катіони Ca, Sr, Ba; a B – катіон перехідного металу, а також Ga, In. Одна з перспективних областей застосування таких оксидів – катодні матеріали в твердооксидному паливному елементі (ТОПЕ) [100].

1.4 Діаграми стану потрійних систем $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb)

Фазові рівноваги у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) не вивчено. У літературі розглянуто лише один фазовий склад із системи $La_2O_3-Y_2O_3-Gd_2O_3$ [112], проте відомості про фазові співвідношення відсутні, діаграму стану не побудовано.

1.5 Висновки до першого розділу

результаті 1. У розгляду структур властивостей оксидів та рідкісноземельних елементів показано, що для цих оксидів характерне явище поліморфізму. Залежно від температури та іонного радіуса катіонів R³⁺ оксиди кристалізуються в різних поліморфних структурах. Відомо п'ять поліморфних модифікацій оксидів рідкісноземельних елементів: (А), моноклінна (В), кубічна (С), високотемпературна гексагональна високотемпературна кубічна (H) (X). Стабільність гексагональна та низькотемпературних модифікацій оксидів РЗЕ в інтервалі 1000-1800 °С залежить від розміру іонного радіуса Ln^{3+} .

2. У результаті аналізу будови діаграм стану подвійних систем $Ln_2O_3 - Y_2O_3$ (Ln = La, Nd, Sm, Eu, Gd, Yb) встановлено, що системи $La_2O_3 - Y_2O_3$, $Sm_2O_3 - Y_2O_3$, $Eu_2O_3 - Y_2O_3$, $Gd_2O_3 - Y_2O_3$, $Yb_2O_3 - Y_2O_3$ вивчено достатньо добре в широкому інтервалі температур (1600–2500 °C) і концентрацій (0–100 мол. %). Система $Nd_2O_3 - Y_2O_3$ потребує додаткового дослідження для уточнення границь фазових полів нижче 1600 °C.

3. У результаті аналізу літературних даних щодо будови діаграм стану подвійних систем $La_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) показано, що систему $La_2O_3-Yb_2O_3$ вивчено не достатньо добре, вона потребує ретельного дослідження для встановлення границь фазових полів, зокрема при температурах ≤ 1600 °C.

4. Відомості про фазові рівноваги у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) у літературі відсутні.

2 МЕТОДИ ДОСЛІДЖЕННЯ ФАЗОВИХ РІВНОВАГ У ПОДВІЙНИХ La₂O₃-Yb₂O₃, Nd₂O₃-Y₂O₃ I ПОТРІЙНИХ La₂O₃-Y₂O₃-Ln₂O₃ СИСТЕМАХ

дослідження фазових рівноваг Для вказаних y системах методів фізико-хімічного використовували комплекс аналізу: (PΦA), петрографію, рентгенофазовий аналіз растрову електронну мікроскопію та локальний рентгеноспектральний аналіз (ЛРСА).

2.1 Вихідні речовини і приготування зразків

Як вихідні речовини використовували La₂O₃ (ЛаО-1), Nd₂O₃ (HO-Ж), Sm₂O₃ (CмО-М), Eu₂O₃ (Ево-Ж), Gd₂O₃ (ГдО-Д), Yb₂O₃, Y₂O₃ (ИТо1) з вмістом основного компонента не менше 99,99% і азотну кислоту марки «ч.д.а.». Перед приготуванням вихідних сумішей оксиди РЗЕ попередньо просушували у муфелі при 200 °C протягом 2 годин.

Для вивчення фазових рівноваг у системах при температурах 1100, 1500 і 1600 °С зразки готували з концентраційним кроком 1–5 мол. %. Наважки оксидів розчиняли у HNO₃ (1:1) випарювали та прожарювали при 800 °С протягом 2 год. Порошки пресували в таблетки діаметром 6 мм і висотою 3–4 мм одностороннім пресуванням у сталевій пресформі без зв'язки під тиском 10–30 МПа.

Зразки з великим вмістом оксиду лантану, неодиму та самарію, схильних до гідратації, зберігали в ексикаторі з силікагелем у вигляді засипки.

Термообробку зразків проводили у декілька стадій (табл. 2.1). Зразки нагрівали від кімнатної до потрібної температури із швидкістю 3,5 град·хв⁻¹. Випал зразків був неперервним. Через деякий час перевіряли повноту синтезу. Потім зразки перетирали, пресували та піддавали наступній термообробці. Охолодження проводили разом з піччю.

Таблиця 2.1 – Термообробка зразків

Система	T = 1100 °C	T = 1500 °C	T = 1600 °C
La ₂ O ₃ -Yb ₂ O ₃	13316 годин	$T_1 = 1100$ °C $\tau = 120$ годин $T_2 = 1500$ °C $\tau = 50$ годин	$\begin{array}{c} T_1 = 1100 \ ^\circ C \ \tau = 120 \ годин \\ T_2 = 1500 \ ^\circ C \ \tau = 50 \ годин \\ T_3 = 1600 \ ^\circ C \ \tau = 10 \ годин \end{array}$
Nd ₂ O ₃ -Y ₂ O ₃		$T_1 = 1100$ °C $\tau = 250$ годин $T_2 = 1500$ °C $\tau = 60$ годин	$T_1 = 1100$ °C $\tau = 250$ годин $T_2 = 1500$ °C $\tau = 50$ годин $T_3 = 1600$ °C $\tau = 10$ годин
La ₂ O ₃ -Y ₂ O ₃ -Nd ₂ O ₃		$T_1 = 1100$ °C $\tau = 1080$ годин $T_2 = 1500$ °C $\tau = 50$ годин	T_1 = 1100 °C τ = 1080 годин T_2 = 1500 °C τ = 50 годин T_3 = 1600 °C τ = 10 годин
La ₂ O ₃ -Y ₂ O ₃ -Sm ₂ O ₃		$\begin{array}{c} T_1 = 1100 \ ^\circ C \ \tau = 2464 \ годин \\ T_2 = 1500 \ ^\circ C \ \tau = 50 \ годин \end{array}$	$T_1 = 1100$ °C $\tau = 2464$ годин $T_2 = 1500$ °C $\tau = 50$ годин $T_3 = 1600$ °C $\tau = 10$ годин
La ₂ O ₃ -Y ₂ O ₃ -Eu ₂ O ₃		$T_1 = 1100$ °C $\tau = 1301$ годин $T_2 = 1500$ °C $\tau = 50$ годин	$T_1 = 1100$ °C $\tau = 1301$ годин $T_2 = 1500$ °C $\tau = 50$ годин $T_3 = 1600$ °C $\tau = 10$ годин
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		$T_1 = 1100$ °C $\tau = 168$ годин $T_2 = 1500$ °C $\tau = 50$ годин	$T_1 = 1100$ °C $\tau = 168$ годин $T_2 = 1500$ °C $\tau = 50$ годин $T_3 = 1600$ °C $\tau = 10$ годин
La ₂ O ₃ -Y ₂ O ₃ -Yb ₂ O ₃		$T_1 = 1100$ °C $\tau = 246$ годин $T_2 = 1500$ °C $\tau = 50$ годин	

2.2 Рентгенофазовий аналіз

Рентгенофазовий аналіз зразків виконано за методом порошку на установці ДРОН–3 (ДРОН–3М) при кімнатній температурі (СиКα – випромінювання). Напруга на рентгенівській трубці складала 30 кВ, сила струму – 20 мА, крок сканування – 0,05–0,1 град, експозиція 4 с у діапазоні кутів 20 від 15 до 90°. Параметри елементарних комірок розраховано за методом найменших квадратів, використовуючи програму LATTIC. Для ідентифікації фаз використовували базу даних Міжнародного комітету порошкових стандартів (JSPDS Міжнародний центр дифракційних даних 1999).

Об'єм елементарної комірки визначали за допомогою даних розрахунку параметрів комірки, отриманих рентгенівським методом [113–115]:

кубічна симетрія: $V_{ek} = a^3$ моноклінна симетрія: $V_{ek} = a \cdot b \cdot c \cdot sin\beta$ гексагональна симетрія: $V_{ek} = 0,866 \cdot a^2 \cdot b$ ромбічна симетрія: $V_{ek} = a \cdot b \cdot c$

2.3 Растрова електронна мікроскопія і локальний рентгеноспектральний аналіз

Мікроструктури зразків вивчали з використанням растрової електронної мікроскопії. Локальний рентгеноспектральний аналіз (ЛРСА) виконано на установках SUPERPROBE-733 (JEOL, Japan, Palo Alto, CA) і JUMP-9500F (JEOL-Japan, INCA Penta FET×3, Oxford Instruments) у зворотно (BSE) і вторинно відбитих (SE) електронах.

Для приготування шліфів випалені зразки заливали сіркою, шліфували на абразивному папері різної зернистості і полірували алмазною пастою. Для вивчення мікроструктури зразки звільняли від сірки і піддавали ізотермічному випалу у повітрі в печі з нагрівачами H23U5T (фехраль) при 800 °C протягом 2 год для видалення залишків сірки. Мікроструктурні дослідження проводили на нетравлених шліфах, які попередньо піддавали ультразвуковій очистці у ацетоні з подальшим напиленням золотом.

2.4 Петрографічні дослідженя

Петрографічні дослідження випалених зразків проведено у поляризаційному світлі з використанням мікроскопів МІН-8 та Leica. Кристалооптичні характеристики фаз визначали на поляризаційному мікроскопі МІН-8 за допомогою високозаломлюючих імерсійних рідин (стандартний набір ИЖ-1).

2.5 Висновки до другого розділу

У роботі застосовано традиційний і апробований комплекс методів фізико-хімічного аналізу, що дозволяє отримати достовірні результати дослідження фазових рівноваг у подвійних La₂O₃-Yb₂O₃, Nd₂O₃-Y₂O₃ та потрійних La₂O₃-Y₂O₃-Ln₂O₃ системах.

3 ФАЗОВІ РІВНОВАГИ В ОБМЕЖУЮЧИХ ПОДВІЙНИХ СИСТЕМАХ La₂O₃-Yb₂O₃ і Nd₂O₃-Y₂O₃

3.1 Фазові рівноваги у системі La₂O₃−Yb₂O₃ в інтервалі температур 1100–1600 °C

Вихідний хімічний і фазовий склади зразків, випалених при 1100, 1500 і 1600 °С, параметри елементарної комірки фаз, що знаходяться у рівновазі при цих температурах, наведено в таблицях 3.1–3.3.

Дослідження твердофазної взаємодії La_2O_3 (гексагональна А модифікація) і Yb₂O₃ (кубічна С модифікація оксидів рідкісноземельних елементів, структура типу Tl₂O₃) при температурах 1100, 1500 і 1600 °C показало, що в системі La_2O_3 –Yb₂O₃ утворюються три типи твердих розчинів: на основі гексагональної модифікації A-La₂O₃, кубічної модифікації C-Yb₂O₃ і впорядкованої фази LaYbO₃ (R), що кристалізується у структурі типу перовскиту з ромбічним спотворенням (рис. 3.1).

Розчинність La₂O₃ в C-модифікації Yb₂O₃ становить ~2 мол. % при 1100, 1500 і 1600 °C. Параметр елементарної комірки збільшується від a = 1,0432 нм для чистого Yb₂O₃ до a = 1,0446 нм (1100 °C), a = 1,0453 нм (1500 °C), a = 1,0441 нм (1600 °C) для граничного складу твердого розчину.

Розчинність Yb₂O₃ в гексагональній А-модифікації La₂O₃ становить 4 мол. % при 1100 °C та ~9 мол. % при 1500 і 1600 °C. Згідно з даними РФА, в зразках, що містять від 100 до 55 мол. % La₂O₃, замість A-La₂O₃ спостерігали утворення гексагональної модифікації на основі гідроксиду лантану A-La(OH)₃. Параметри елементарної комірки змінюються від a = 0,6523 нм, c = 0,3855 нм для чистого La(OH)₃ до a = 0,6557 нм, c = 0,3864 нм для двофазного зразка (A + R), що містить 55 мол. % La₂O₃ – 45 мол. % Yb₂O₃ (1500 °C).

Таблиця 3.1 – Вихідний хімічний і фазовий склади, параметри елементарних комірок фаз системи La₂O₃–Yb₂O₃ після випалу зразків при 1100 °C 13316 год (за даними РФА та петрографії)

N⁰	Хімічни мој	ій склад, 1. %	Фазовий склад	Параметри елементарних комірок фаз,		НМ			
зразка	LaoOa	Vh ₂ O ₂		<a2< td=""><td colspan="2"><a>* <</td><td colspan="2">R</td><td></td></a2<>	<a>* <		R		
	La ₂ O ₃	10203		A	С	а	а	b	С
1	100	0	<a>* (<i>c</i>/<i>a</i> = 0,5897)	0,6523	0,3855	-	-	-	-
2	95	5	<a>*(c/a = 0,5891) + R	0,6523	0,3843	-	0,6019	0,5847	0,8304
3	90	10	<a>* (<i>c/a</i> = 0,5874) + R	0,6537	0,3840	-	0,6186	0,5824	0,8295
4	85	15	<a>*(c/a = 0,5878) + R↑	0,6535	0,3841	_	0,6020	0,5839	0,8391
5	80	20	$\langle A \rangle * (c/a = 0,5878)$ + R↑	0,6535	0,3841	-	0,6016	0,5843	0,8403
6	75	25	$*\downarrow(c/a=0,5873)$ + R↑	0,6528	0,3834	-	0,6001	0,5815	0,8393
7	$\begin{array}{c c} 70 & 30 & *\downarrow(c/a = \\ + R\uparrow \end{array}$		$*\downarrow(c/a=0,5872)$ + R↑	0,6531	0,3835	-	0,6030	0,5816	0,8392
8	$\begin{array}{ c c c c } 65 & 35 & * \downarrow (c/a = 0,587 \\ & + R \uparrow \end{array}$		$*\downarrow(c/a=0,5871)$ + R↑	0,6537	0,3838	-	0,6036	0,5813	0,8392
9	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0,6536	0,3805	-	0,5988	0,5825	0,8444	
10	55	45	$*\downarrow\downarrow(c/a=0,5805)$ + R $\uparrow\uparrow$	0,6538	0,3795	-	0,5979	0,5829	0,8444
11	50	50	R	-	-	-	0,6029	0,5823	0,8435
12	49	51	R	-	-	-	0,6019	0,5820	0,843
13	48	52	R	-	-	-	0,6020	0,5821	0,8417
14	47	53	R	-	-	-	0,6018	0,5834	0,8412
15	46	54	R	-	-	-	0,6025	0,5821	0,8404
16	45	55	Косн .	-	-	-	0,6011	0,5836	0,8399
17	40	60	<c>+R</c>	-	-	1,0447	0,6030	0,5835	0,8396
18	35	65	<c>+R</c>	-	-	1,0441	0,6023	0,5830	0,8422
19	30	70	<c>+R</c>	-	-	1,0435	0,6022	0,5834	0,8381
20	25	75	$\langle C \rangle \uparrow + R \downarrow$	-	-	1,0436	0,6016	0,5834	0,8392
21	20	80	$\langle C \rangle \uparrow + R \downarrow$	-	-	1,0448	0,6024	0,5827	0,8375
22	15	85	$\langle C \rangle \uparrow \uparrow + R \downarrow \downarrow$	-	-	-	-	-	-
23	10	90	$<\!\!C\!\!>\uparrow\uparrow + R\downarrow\downarrow$	-	-	1,0448	0,6169	0,5685	0,8359
24	5	95	$\langle C \rangle + R \downarrow \downarrow$	-	-	1,0446	0,6030	0,5809	0,8406
25	4	96	<c>+ R сл.</c>	-	-	1,0448	-	-	-
26	3	97	<c>+ R сл.</c>	-	-	1,0448	-	-	-
27	2	98	<c></c>	-	-	1,0446	-	-	-
28	1	99	<c></c>	-	-	1,0440	-	-	-
29	0	100	<c></c>	-	-	1,0432	-	-	-

Таблиця 3.2 – Вихідний хімічний і фазовий склади, параметри елементарних комірок фаз системи La₂O₃–Yb₂O₃ після випалу зразків при 1500 °C 50 год (за даними РФА та петрографії)

№	Хімічни мол	й склад, . %	Фазовий склал	Парам	метри елем	иентарн	их комір	оок фаз, н	HM
зразка	LaO	Vh O		<a< td=""><td colspan="2"><a>*</td><td colspan="3">R</td></a<>	<a>*		R		
	La_2O_3	$10_{2}0_{3}$		A	С	a	а	b	С
1	100	0	<a>*	0,6523	0,3855	-	-	-	-
2	95	5	<А>*осн.	0,6511	0,3829	_	-	-	-
3	90	10	<a>* осн. + R	0,6505	0,3840	-	0,5875	0,5958	0,8509
4	85	15	<a> *+ R↑	0,6551	0,3831	-	0,5875	0,6069	0,8481
5	80	20	<a> *+ R↑	0,6573	0,3850	-	0,5848	0,5982	0,8455
6	75	25	$*\downarrow + R\uparrow$	0,6532	0,3827	-	0,5853	0,6045	0,8330
7	70	30	$*\downarrow + R\uparrow$	0,6555	0,3849	-	0,5878	0,6062	0,8641
8	65	35	$*\downarrow + R\uparrow$	0,6565	0,3859	-	0,5994	0,5824	0,8435
9	60	40	$*\downarrow\downarrow + R\uparrow\uparrow$	0,6553	0,3861	-	0,6022	0,5800	0,8440
10	55	45	$*\downarrow\downarrow + R\uparrow\uparrow$	0,6557	0,3864	-	0,6028	0,5802	0,8441
11	50	50	R	-	-	-	0,6015	0,5805	0,8438
12	49	51	R	-	-	-	0,6012	0,5803	0,8430
13	48	52	R	-	-	-	0,6026	0,5817	0,8418
14	47	53	R	-	-	-	0,6021	0,5817	0,8411
15	46	54	R	-	-	-	0,6024	0,5813	0,8402
16	45	55	R осн.	-	-	-	0,6016	0,5814	0,8492
17	40	60	$<\!\!C\!\!>+R$	-	-	1,0461	0,6033	0,5846	0,8395
18	35	65	$<\!\!C\!\!>+R$	-	-	1,0452	0,6025	0,5846	0,8380
19	30	70	<c>+R</c>	-	-	1,0455	0,6026	0,5822	0,8372
20	25	75	$\langle C \rangle \uparrow + R \downarrow$	-	-	1,0461	0,6042	0,5806	0,8492
21	20	80	$\langle C \rangle \uparrow + R \downarrow$	-	-	1,0458	0,6021	0,5822	0,8390
22	15	85	$\uparrow\uparrow+R\downarrow\downarrow$	-	-	1,0453	0,6020	0,5822	0,8402
23	10	90	$\uparrow\uparrow+R\downarrow\downarrow$	-	-	1,0454	0,5996	0,5823	0,8411
24	5	95	<c> + R сл,</c>	-	-	1,0456	-	-	-
25	4	96	$\langle C \rangle + R \downarrow$	-	-	1,0458	-	-	-
26	3	97	$\langle C \rangle + R \downarrow \downarrow$	-	-	1,0456	-	-	-
27	2	98	<c></c>	-	_	1,0453	-	-	-
28	1	99	<c></c>	-	-	1,0439	-	-	-
29	0	100	<c></c>	-	-	1,0432	-	-	-

* При заданих умовах (T = 1500 °C, 50 год, у повітрі) гексагональна модифікація на основі A–La₂O₃ в зазначених складах гідратує, замість неї спостерігали утворення гексагональної модифікації гідроксиду на основі A–La(OH)₃. Позначення фаз: <A> – тверді розчини на основі гексагональної модифікації La₂O₃; <C> – тверді розчини на основі кубічної модифікації Yb₂O₃; R – проміжна фаза; сл. – сліди фази; ↓ – вміст фази збільшується; ↓ – вміст фази зменшується.

Таблиця 3.3 – Вихідний хімічний і фазовий склади, параметри елементарних комірок фаз системи La₂O₃–Yb₂O₃ після випалу зразків при 1600 °C 10 год (за даними РФА та петрографії)

№ Хімічний склад зразка мол. %		й склад, 1. %	Фазовий склад	Пара	метри ел	іемента	рних ког	мірок фа	3, HM
зразка	LanOn	Yh ₂ O ₂		<a< td=""><td>>*</td><td><c></c></td><td></td><td>R</td><td></td></a<>	>*	<c></c>		R	
	Lu ₂ O ₃	10203		а	С	а	а	b	С
1	100	0	<a>*(c/a = 0,5893)	0,6523	0,3855	-	-	-	-
2	95	5	<a>*(c/a = 0,5919)	0,6513	0,3835	-	-	-	-
3	90	10	<a>* (c/a = 0,5890) + R	0,6506	0,3832	-	0,6018	0,5839	0,8367
4	85	15	<a>*(c/a = 0,5920) + R\uparrow	0,6476	0,3834	-	0,6001	0,5832	0,8371
5	80	20	$*(c/a = 0,5799) + R\uparrow$	0,6525	0,3784	-	0,6005	0,5827	0,8393
6	75	25	<a>*(c/a = 0,5850) + R\uparrow	0,6518	0,3813	-	0,6012	0,5832	0,8389
7	70	30	<a>*(c/a=0,5879) + R↑	0,6503	0,3824	-	0,6013	0,5838	0,8385
8	65	35	<a>*(c/a = 0,5799) + R↑	0,6561	0,3805	-	0,6009	0,5823	0,8412
9	60	40	$*(c/a = 0,5793) + R\uparrow\uparrow$	0,6574	0,3808	-	0,6020	0,5849	0,8370
10	55	45	$\langle A \rangle^* \downarrow \downarrow + R \uparrow \uparrow$	-	-	-	0,6012	0,5846	0,8440
11	50	50	R	-	-	-	0,6005	0,5817	0,8436
12	49	51	R	-	-	-	0,6019	0,5814	0,843
13	48	52	R	-	-	-	0,6020	0,5819	0,8388
14	47	53	R	-	-		0,6021	0,5817	0,8411
15	46	54	R	-	-		0,6014	0,5818	0,8404
16	45	55	<c>+R</c>	-	-	1,0410	0,6025	0,5817	0,8405
17	40	60	<c>+R</c>	-	-	1,0479	0,6033	0,5814	0,8406
18	35	65	<c>+R</c>	-	-	1,0471	0,6018	0,5808	0,8401
19	30	70	<c>+R</c>	-	-	1,0447	0,6004	0,5809	0,8416
20	25	75	$\langle C \rangle \uparrow + R \downarrow$	-	-	1,0454	0,6012	0,5807	0,8395
21	20	80	$\langle C \rangle \uparrow + R \downarrow$	-	-	1,0462	0,6041	0,5809	0,8405
22	15	85	$<\!\!C\!\!>\uparrow\uparrow+R\downarrow\downarrow$	-	-	1,0458	0,6014	0,5803	0,8398
23	10	90	<c>↑↑ + R сл.</c>	-	-	-	-	-	-
24	5	95	<С> + R сл.	-	-	1,0456	-	-	-
25	4	96	$\langle C \rangle + R \downarrow$	-	-	1,0450	-	-	-
26	3	97	$<\!\!C\!\!>+R\downarrow\downarrow$	-	-	1,0451	-	-	-
27	2	98	<c></c>	-	-	1,0441	-	-	-
28	1	99	<c></c>	-	-	1,0439	-	-	-
29	0	100	<c></c>	-	-	1,0432	-	-	-

1 – однофазні, 2 – двофазні зразки

Рисунок 3.1 – Діаграма стану системи La₂O₃–Yb₂O₃: в інтервалі температур 1100–1600 °C за даними експерименту та вище 1600 °C за даними [57]

З використанням даних рентгенофазового аналізу і концентраційних залежностей параметрів елементарної комірки встановлено, що впорядкована фаза LaYbO₃ (R) існує в інтервалі концентрацій 48–56 мол. % Yb₂O₃ при 1100 і 1500 °C та 48–54 мол. % Yb₂O₃ при 1600 °C. Параметри елементарної комірки Rфази змінюються від a = 0,6015 нм, b = 0,5805 нм, c = 0,8438 нм для однофазного зразка, що містить 50 мол. % La₂O₃ до a = 0,6033 нм, b = 0,5846 нм, c = 0,8395 нм для двофазного зразка (R + C), що містить 40 мол. % La₂O₃ (1500 °C).

Концентраційні залежності параметрів елементарної комірки твердих розчинів на основі C-Yb₂O₃ і LaYbO₃ (R) у системі La₂O₃-Yb₂O₃ представлено на рис. 3.2 і 3.3, відповідно. Дифрактограми зразків, що характеризують фазові області твердих розчинів у системі La₂O₃-Yb₂O₃ при 1500 °C, представлено на рис. 3.4.

Рисунок 3.2 – Концентраційні залежності параметра *a* елементарної комірки твердих розчинів на основі C-Yb₂O₃ у системі La₂O₃–Yb₂O₃ при 1100 (1), 1500 (2), 1600 °C (3)

Рисунок 3.3 – Концентраційні залежності параметра c елементарної комірки твердих розчинів на основі LaYbO₃(R) у системі La₂O₃–Yb₂O₃ при 1100 (1), 1500 (2), 1600 °C (3)

а – 100 мол. % La₂O₃, A*–La(OH)₃ (№ 1); б – 85 мол. % La₂O₃–15 мол.
% Yb₂O₃, A*-La(OH)₃ + R (№ 4); в – 49 мол. % La₂O₃–51 мол. % Yb₂O₃,
R, LaYbO₃ (№ 12); г – 30 мол. % La₂O₃–70 мол. % Yb₂O₃, R + C (№ 19);
∂ – 5 мол. % La₂O₃–95 мол. % Yb₂O₃, C (№ 24).

Рисунок 3.4 – Дифрактограми зразків системи La₂O₃–Yb₂O₃ після випалу при 1500 °C

Рисунок 3.4, аркуш 2

69

Для визначення положення меж фазових полів разом з даними РФА про фазовий склад зразків використовували петрографічні дослідження. Так, доповнено дані РФА для двофазного (C + R) зразка, що містить 10 мол. % La₂O₃-90 мол. % Yb₂O₃. У цьому зразку чітко проявляються дві структурні складові у вигляді напівпрозорої ізотропної фази С-Уb₂O₃, що становить основу, і анізотропної з яскравими кольорами інтерференції фази LaYbO₃, меншій кількості. яка знаходиться V значно Встановлено, що В концентраційному інтервалі від 3 до 40 мол. % La₂O₃ у зразках разом з ізотропною фазою C-Yb₂O₃ присутня анізотропна R-фаза. Вміст анізотропної фази LaYbO₃ помітно зменшується зі збільшенням концентрації Yb₂O₃. Для зразка складу 2 мол. % La₂O₃-98 мол. % Yb₂O₃ виявлено тільки одна ізотропна фаза – С-Уb₂O₃.

Мікроструктури зразків, що відповідають на діаграмі стану двофазній області C + R показано на рис. 3.5. У зразках 40 мол. % La₂O₃-60 мол. % Yb₂O₃ (№ 17), 35 мол. % La₂O₃-65 мол. % Yb₂O₃ (№ 18), 30 мол. % La₂O₃-70 мол. % Yb₂O₃ (№ 19), 25 мол. % La₂O₃-75 мол. % Yb₂O₃ (№ 20) чітко проявляються обидві фази: сіра анізотропна пориста фаза (R) і світла ізотропна фаза (C). Результати мікрорентгеноспектрального аналізу підтвердили наявність двох фаз (табл. 3.4). У зразку, що містить 40 мол. % La₂O₃-60 мол. % Yb₂O₃, сіра фаза є матрицею (рис. 3.5, а). Кількісний аналіз елементів у локальних точках (S01, S02, S03) показав, що вона містить Yb₂O₃ - 53,0 мол. % і трохи менше La₂O₃ - 47,0 мол. %. Отже, це R-фаза (табл. 3.4). Світла фаза представлена зернами поліедричної форми розміром ~0,3-5,9 мкм в значно меншій кількості, ніж R-фаза. Кількісний аналіз елементів у локальних точках (S04, S05, S06) показав, що вони містять значно більше Yb₂O₃ - 94,5 мол. % і значно менше La₂O₃-5,0 мол. % (табл. 3.4). Таким чином, світла фаза ідентифікована як C-Yb₂O₃. Чорні області – пори.

а) 40 мол. % La₂O₃-60 мол. % Yb₂O₃,<C-Yb₂O₃> + R (№ 21); б) 35 мол. % La₂O₃-65 мол. % Yb₂O₃, <C-Yb₂O₃> + R (№ 20); в) 30 мол. % La₂O₃-70 мол. % Yb₂O₃, <C-Yb₂O₃> + R (№ 19);г) 25 мол. % La₂O₃-75 мол. % Yb₂O₃, <C-Yb₂O₃> + R (№ 19);г) 25 мол. % La₂O₃-75 мол. % Yb₂O₃, <C-Yb₂O₃> + R (№ 18)

Рисунок 3.5 – Мікроструктури зразків системи La₂O₃–Yb₂O₃, випалених при 1500 °C, у відбитих електронах (СОМРО)

У зразку складу 35 мол. % La_2O_3 -65 мол. % Yb_2O_3 вміст світлої фази C-Yb₂O₃ зростає (рис. 3.5, б). Дві фази розподілені приблизно в рівних кількостях. Мікрорентгеноспектральний аналіз показав вміст елементів в локальних точках Yb₂O₃-45,8 мол. % і La₂O₃-54,2 мол. % в сірій R-фазі (S01, S02, S03); Yb₂O₃-96,6 мол. % і La₂O₃-3,4 мол.% в світлій C-фазі (S04, S05, S06) (табл. 3.4). У зразку складу 25 мол. % La_2O_3-75 мол. % Yb_2O_3 обидві фази представлені зернами поліедрічної форми розміром ~0,5–7,7 мкм і рівномірно розподілені на поверхні шліфа (рис. 3.5, г). Кількість і розмір пор (2,6–5,3 мкм) помітно зростає. Кількісний аналіз показав вміст елементів у локальних точках на поверхні розподілу: в точках (S01, S02, S03) сіра фаза (R) містить більше Yb_2O_3 -55,3 мол. % і менше La_2O_3 -44,7 мол. %; у точках (S04, S05, S06) світла фаза (C) містить набагато більш Yb_2O_3 – 96,4 мол. % і менше La_2O_3 – 3,6 мол. % (табл. 3.4).

Хмічниї мол	й склад, 1. %	Вміст оксидів за даними ЛРСА, мол. %					
La_2O_3	Yb ₂ O ₃	Спектр	La ₂ O ₃	Yb ₂ O ₃	Разом	Фаза	
40	60	S01-S03	47,0	53,0	100,0	R	
40		S04-S06	5,0	95,0	100,0	C-Yb ₂ O ₃	
35	65	S01-S03	45,8	54,2	100,0	R	
55	05	S04-S06	3,4	96,6	100,0	C-Yb ₂ O ₃	
25	75	S01-S03	44,7	55,3	100,0	R	
		S04-S06	3,6	96,4	100,0	C-Yb ₂ O ₃	

Таблиця 3.4 – Дані ЛРСА зразків системи La2O3–Yb2O3 після випалу при 1500 °C

Мікроструктурні дослідження дозволили спостерігати за процесом впорядкування R-фази. Встановлено, що метод отримання зразків шляхом змішування розчинів нітратів РЗЕ призводить до неодночасної ïχ кристалізації. Наступне прожарювання нітратів лантану та ітербію також внаслідок їх різної термічної стабільності. проходить неодночасно Розкладення суміші нітратів приводить до утворення мікронеоднорідності суміші оксидів РЗЕ з параметром просторової неоднорідності, рівному розміру кристалу нітрату РЗЕ, який виріс при випарюванні розчину. З аналізу мікроструктур можна припустити, що цей розмір досягає 100-150 мкм Для (рис. 3.5). гомогенізації ШИХТ вибрано двостадійний режим
термообробки: прожарювання при 1100 °С (120 год.), що дозволяє позбутися залишків нітратів, та випал при 1500 °С (50 год.), в результаті якого відбувається дифузійно-контрольоване вирівнювання складу відповідно з діаграмою стану системи. Таким чином, відбувається взаємна дифузія іонів La^{3+} та Yb³⁺, що не ускладнена зарядовою компенсацією. Оскільки розміри іонів розрізняються в 1,34 рази, це обумовлює особливості гомогенізації хімічного складу фази. Зокрема, процес впорядкування ромбоедричної фази LaYbO₃ протікає внаслідок дифузії іонів La³⁺ в твердий розчин на основі C-Yb₂O₃ та наступним перебудуванням ґратки.

Різниця об'ємів елементарних комірок орторомбічної фази R (0,2961 нм³) та твердого розчину на основі кубічної модифікації С-Yb₂O₃ $(1,1448 \text{ нм}^3)$ досить значна для того, щоб великі іони La³⁺ (0,114 нм) заміщали малі іони Yb³⁺ (0,086 нм) в гратці твердого розчину на основі С-Yb₂O₃. Заміщення іонів Yb³⁺ іонами La³⁺ супроводжується фазовим $(C \rightarrow R)$ 3i зменшенням об'єму переходом та утворенням пор. Впорядкування фази LaYbO₃ є дифузійно-контрольованим процесом, який проходить поступово. На початку спікання зразки набувають високої відносної щільності, а далі в щільній кераміці відбувається впорядкування R-фази. У результаті формується велика кількість пор, які локалізуються на границях зерен світлої фази, яка належить неупорядкованому твердому розчину на основі C-Yb₂O₃, та темно-сірих зерен впорядкованої фази LaYbO₃. Світла фаза (C-Yb₂O₃) майже не містить пор, в той час, коли сіра фаза (R) характеризується великою кількістю пор. Усадка в процесі впорядкування, напевно, супроводжується розтягуючими напругами, що концентруються на міжфазних границях. Даних напруг може бути досить для зародження пор та стимулювання їх росту. Кераміка на основі LaYbO₃ має низьку міцність, тому пори легко відкриваються в процесі підготовки шліфів, внаслідок поступового руйнування краю пори. Таким чином, в області гомогенності R-фази високотемпературна гомогенізація хімічного складу в зразку приводить до поступового розпаду світлої фази (С-Yb₂O₃) та росту пористості всередині темної сірої фази (R). Збільшення параметрів елементарної комірки R-фази в області гомогенності (рис. 3.5, а) з ростом концентрації іонів La³⁺ відповідає значній ємності ромбоедричної ґратки по відношенню до великих іонів лантану. У двофазній області зерна твердого розчину на основі оксиду ітербію та фази типу перовскиту знаходяться у розупорядкованому стані, і в цьому випадку пористість невисока. Високотемпературний випал приводить до того, що обидві фази утворюють зерна поліедричної форми з чіткою огранкою розміром 0,3–8 мкм (рис. 3.5, г).

3.2 Фазові рівноваги у системі Nd₂O₃-Y₂O₃ при 1500 і 1600 °C

Вихідний хімічний і фазовий склади зразків, випалених при 1500 і 1600 °С, параметри елементарних комірок фаз, які знаходяться у рівновазі при цих температурах, наведено у табл. 3.5–3.6.

Дослідження твердофазової взаємодії Nd_2O_3 (гексагональна модифікація, A) і Y_2O_3 (кубічна модифікація, C) при температурі 1500 і 1600 °C показали, що в системі Nd_2O_3 – Y_2O_3 утворюються три типи твердих розчинів: на основі гексагональної модифікації A- Nd_2O_3 , моноклінної модифікації B- Nd_2O_3 і кубічної модифікації C- Y_2O_3 , які розділені двофазними полями (A + B) і (B + C) (рис. 3.6).

Межі областей гомогенності твердих розчинів на основі A-Nd₂O₃, B-Nd₂O₃ і C-Y₂O₃ визначені складами, які містять 0–4, 20–45, 65–100 мол.% Y₂O₃ (1500 °C), відповідно. З отриманих даних видно, що розчинність Nd₂O₃ у C-модифікації Y₂O₃ становить ~28 мол. % при 1500 °C (60 год витримки) і 30 мол. % при 1600 °C (10 год витримки) (рис. 3.7). Параметр елементарної комірки збільшується від a = 1,0604 нм для чистого Y₂O₃ до a = 1,0715 нм (1500 °C) та 1,0718 (1600 °C) для граничного складу твердого розчину.

Таблиця 3.5 – Вихідний хімічний і фазовий склади, параметри елементарної комірки фаз системи Nd₂O₃–Y₂O₃ після випалу зразків при 1500 °C 60 год (за даними РФА і петрографії)

Хіміч	аний											
скл	ад,	Фазовий	Параметри елементарної комірки фаз, нм									
мол	. %	склад										
Nd ₂ O ₃	Y_2O_3		<a< td=""><td>.>*</td><td><c></c></td><td></td><td><b< td=""><td>></td><td></td></b<></td></a<>	.>*	<c></c>		<b< td=""><td>></td><td></td></b<>	>				
			а	С	а	а	b	С	β			
100	0	<a>*	0,6418	0,3748	-	-	-	-	-			
		(c/a = 0,5835)										
99	1	<a>*	0,6445	0,3730	-	-	-	-	-			
		(c/a = 0,5787)										
98	2	<a>*	0,6457	0,3745	-	-	-	-	-			
		(c/a = 0,5800)										
97	3	<a> *	0,6445	0,3716	-	-	-	-	-			
		(c/a = 0,5766)										
96	4	<a> *	0,6440	0,3743	-	-	-	-	-			
		(c/a = 0,5812)										
95	5	<a>*(c/a=	0,6447	0,3722	-	0,6439	0,4747	0,6735	85,40			
		0,5773) + 										
90	10	<a>*(c/a =	0,6430	0,3738	-	0,6347	0,3817	0,6702	81,37			
		0,5813) + 										
85	15	<a>*(c/a =	0,6428	0,3762	-	0,6368	0,4085	0,6710	81,63			
		0,5853) + 										
80	20		-	-	-	0,6889	0,4101	0,6709	94,43			
75	25		-	-	-	0,6895	0,4105	0,6703	94,55			
70	30		-	-	-	0,6899	0,4107	0,6694	94,53			
65	35		-	-	-	0,6902	0,4127	0,6687	95,16			
60	40		-	-	-	0,6880	0,4124	0,6673	94.98			
55	45		-	-	-	0,6881	0,4135	0,6666	95,41			
50	50	+<c></c>	-	-	1,0689	0,6897	0,4139	0,6678	95,63			
45	55	+<c></c>	-	-	1,0731	0,6873	0,4131	0,6684	95,36			
40	60	+<c></c>	-	-	1,0716	0,6660	0,4038	0,6693	89,17			
35	65	<В>сл. + <С>	-	-	1,0711	-	-	-	-			
30	70	<В>сл. + <С>	-	-	1,0715	-	-	-	-			
25	75	<c></c>	-	-	1,0677	-	-	-	-			
20	80	<c></c>	-	-	1,0668	-	-	-	-			
15	85	<c></c>	-	-	1,0638	-	-	-	-			
10	90		-	-	1,0625	-	-	-	-			
5	95	< <u>C</u> >	-	-	1,0613	-	-	-	-			
0	100	<c></c>	-	-	1,0604	-	-	-	-			

* При заданих умовах (T = 1500 °C, 60 год, у повітрі) гексагональна модифікація на основі A–Nd₂O₃ в зазначених складах гідратує, замість неї спостерігали утворення гексагональної модифікації гідроксиду на основі A–Nd(OH)₃. Позначення фаз: <A> – тверді розчини на основі гексагональної модифікації Nd₂O₃; – тверді розчини на основі моноклінної модифікації Nd₂O₃; <C> – тверді розчини на основі кубічної модифікації Y₂O₃; сл. – сліди фази.

Таблиця 3.6 – Вихідний хімічний і фазовий склади, параметри елементарних комірок фаз системи Nd₂O₃–Y₂O₃ після випалу зразків при 1600 °C 10 год (за даними РФА і петрографіїї)

	Хімічний	і́ склад,	Фазовий		Парамет	ри елеме	нтарної в	сомірки ф	аз, нм		
N⁰	мол.	. %	склад								
зразка											
	Nd_2O_3	Y_2O_3		<a< td=""><td>.>*</td><td><c></c></td><td></td><td><e< td=""><td colspan="2"><u></u></td></e<></td></a<>	.>*	<c></c>		<e< td=""><td colspan="2"><u></u></td></e<>	<u></u>		
				а	С	а	а	b	С	β	
1	100	0	<a>*	0,6418	0,3748	-	-	-	-	-	
			(c/a = 0,6690)								
2	99	1	<a>*	0,6415	0,4294	-	-	-	-	-	
_			(c/a = 0,6694)								
3	98	2	<a>*	0,6421	0,4294	-	-	-	-	-	
			(c/a = 0,6687)	0.0440							
4	97	3	<a> *	0,6419	0,4294	-	-	-	-	-	
	0.6		(c/a = 0,6690)	0.6400	0.4004						
5	96	4	$\langle A \rangle *$	0,6420	0,4294	-	-	-	-	-	
	07		(c/a = 0,6688)				0.6720	0.40.61	0.67.60	00.50	
6	95	5	<a>* + 	-	-	-	0,6720	0,4061	0,6760	90,53	
7	90	10	<a>* + 	-	-	-	0,6683	0,4046	0,6797	90,06	
8	85	15	<a>* + 	-	-	-	0,6693	0,4066	0,6760	90,71	
9	80	20	<a>* + 	-	-	-	0,6615	0,3615	0,6708	75,93	
10	75	25		-	-	-	0,6966	0,3699	0,6703	81,59	
11	70	30		-	-	-	0,6960	0,3677	0,6693	81,09	
12	65	35		-	-	-	0,6954	0,3662	0,6683	80,69	
13	60	40		-	-	-	0,6944	0,3674	0,6677	81,33	
14	55	45	+<c>сл.</c>	-	-	-	0,6524	0,3596	0,6665	76,10	
15	50	50	+<c></c>	-	-	1,0720	0,6936	0,3638	0,6659	80,45	
16	45	55	+<c></c>	-	-	1,0741	0,6603	0,3565	0,6651	75,27	
17	40	60	+<c></c>	-	-	1,0725	0,6589	0,3565	0,6650	75,09	
18	35	65	+<c></c>	-	-	1,0737	0,6601	0,3547	0,6652	74,93	
19	30	70	<В>сл. + <С>	-	-	1,0718	-	-	-	-	
20	25	75	<c></c>	-	-	1,0704	-	-	-	-	
21	20	80	<c></c>	-	-	1,0679	-	-	-	-	
22	15	85	<c></c>	-	-	1,0661	-	-	-	-	
23	10	90	<c></c>	-	-	1,0642	-	-	-	-	
24	5	95	<c></c>	-	-	1,0620	-	-	-	-	
25	0	100	<c></c>	-	-	1,0604	-	-	-	-	

1 – однофазні, 2 – двофазні зразки, 3 – дані ЛРСА

Рисунок 3.6 – Діаграма стану системи Nd₂O₃–Y₂O₃: в інтервалі температур 1500–1600 °C за даними експерименту та вище 1600 °C за даними прогнозу

Розчинність Y₂O₃ у гексагональній А-модифікації Nd₂O₃ становить ~4 мол. % Y₂O₃ при 1500 і 1600 °C. Відповідно до даних РФА, у зразках, які містять від 100 до 55 мол. % Nd₂O₃, замість гексагональної фази A-Nd₂O₃ спостерігали утворення гексагональної модифікації гідроксиду на основі A-Nd(OH)₃. Параметри елементарної комірки змінюються від a = 0,6418 нм, c = 0,3748 нм для чистого A-Nd(OH)₃ до a = 0,6428 нм, c = 0,3762 нм для двофазного зразка (A + B) складу 85 мол. % Nd₂O₃ і 15 мол. % Y₂O₃ при 1500 °C.

Концентраційні залежності параметрів елементарної комірки твердих розчинів на основі C-Y₂O₃ і B-Nd₂O₃ у системі Nd₂O₃–Y₂O₃ представлено на рис. 3.7 і 3.8, відповідно. Дифрактограми зразків, які характеризують фазові області твердих розчинів у системі Nd₂O₃–Y₂O₃ при 1500 °C показано на рис. 3.9.

Розчинність Y₂O₃ в B-Nd₂O₃ змінюється від ~20 до 45 мол. % при 1500 °C та від 21 до 50 мол. % при 1600 °C (рис. 3.8).

Рисунок 3.7 – Концентраційні залежності параметра *а* елементарної комірки твердих розчинів на основі C-Y₂O₃ у системі Nd₂O₃–Y₂O₃ при 1500 і 1600°C

Рисунок 3.8 – Концентраційні залежності параметра c елементарної комірки твердих розчинів на основі B-Nd₂O₃ у системі Nd₂O₃–Y₂O₃ при 1500 і 1600 °C

a – 99 мол. % Nd₂O₃–1 мол. % Y₂O₃, A*–A-Nd(OH)₃ (№ 2), *б* – 85 мол.% Nd₂O₃–15 мол. % Y₂O₃, A*–A-Nd(OH)₃ + B-Nd ₂O₃ (№ 8), *e* – 65 мол. % Nd₂O₃–35 мол. % Y₂O₃, B-Nd₂O₃ (№ 12), *г* – 50 мол. % Nd₂O₃–50 мол. %Y₂O₃, B-Nd₂O₃ + C-Y₂O₃ (№ 15), ∂ – 40 мол. % Nd₂O₃–60 мол. % Y₂O₃, B-Nd₂O₃ + C-Y₂O₃ (№ 15), ∂ – 40 мол. % Y₂O₃, C-Y₂O₃ (№ 22).

Рисунок 3.9 – Дифрактограми зразків системи $Nd_2O_3-Y_2O_3$ після випалу при 1500 °C

Рисунок 3.9, аркуш 2

Рисунок 3.9, аркуш 3

Для визначення меж фазових полів, окрім даних рентгенофазового аналізу, використано петрографічні дослідження. Встановлено, що у концентраційному інтервалі 45–65 % Y_2O_3 у зразках разом з ізотропною фазою C- Y_2O_3 присутня анізотропна фаза B-Nd₂O₃, вміст якої помітно зменшується із збільшенням концентрації Y_2O_3 . Для зразка з 20 мол. % Nd₂O₃ виявлено тільки одну ізотропну фазу C- Y_2O_3 .

Мікроструктури двофазного (В + С) зразка при 1500 °С показано на рис. 3.10, а–б. У зразках складу 55 мол. % Y_2O_3 –45 мол. % Nd_2O_3 (№ 12) та 60 мол. % Y_2O_3 –40 мол. % Nd_2O_3 (№ 17) присутні дві фази, які значно розрізняються за контрастом. Кількісний аналіз у локальних точках (S01, S02, S3) для зразку складу 55 мол. % Y_2O_3 –45 мол. % Nd_2O_3 показав, що вони містять 56,4 мол. % Nd_2O_3 і 43,6 мол. % Y_2O_3 . Таким чином, світла фаза, яка являє собою матрицю, є моноклінною (В) модифікацією оксиду неодиму (рис. 3.10, в, табл. 3.7). Кількісний аналіз у локальних точках (S04, S05, S06), показав що вони містять 71,3 мол. % Y_2O_3 і 28,7 мол. % Nd_2O_3 . Таким чином, другу фазу більш темного кольору ідентифіковано як кубічну (С) модифікацію Y_2O_3 , її присутність підтверджена за допомогою рентгенівської дифракції та петрографії (табл. 3.5).

a) 55 мол. % Y_2O_3 -45 мол. % Nd_2O_3 <B-Nd₂O₃>основа + <C-Y₂O₃> (№ 12), COMPO; світла фаза - <B-Nd₂O₃>, сіра фаза -<C-Y₂O₃>, чорне- пори; б) 60 мол. % Y_2O_3 -40 мол. % Nd_2O_3 <C-Y₂O₃>основа + <B-Nd₂O₃>↓ (№ 17), COMPO; в) 55 мол. % Y_2O_3 -45 мол. % Nd_2O_3 <B-Nd₂O₃>ocнова + <C-Y₂O₃> (№ 16), COMPO; г) 10 мол. % Y_2O_3 -90 мол. % Nd_2O_3 <A-Nd₂O₃> + <B-Nd₂O₃> (№ 23), SE.

Рисунок 3.10 – Мікроструктури зразків системи Nd_2O_3 – Y_2O_3 після випалу при 1500 °C

При зменшенні концентрації оксиду неодиму вміст ізотропної С-фази зростає. У зразках, що містять від 30 до 40 мол. % Nd_2O_3 , кубічна модифікація оксиду ітрію утворює матричну фазу (рис. 3.10, б). Для зразка, що містить 20 мол. % Nd_2O_3 , виявлено тільки одну фазу С- Y_2O_3 . Результатами ЛРСА (табл. 3.7) підтверджено дві структурні складові A- Nd_2O_3 і B- Nd_2O_3 у зразку 10 мол. % Y_2O_3 –90 мол. % Nd_2O_3 , які за контрастом не розрізняються (рис. 3.10, г).

Хімічни	ийсклад,		Дані ЛРСА,						
мол	I. %	мол. %							
Y_2O_3	Nd_2O_3	Спектр	Y_2O_3	Nd ₂ O ₃	Разом	Фази			
55	45	S01-S03	43,6	56,4	100,0	B-Nd ₂ O ₃			
		S04-S06	71,3	28,7	100,0	$C-Y_2O_3$			
10	90	S01-S03	22,4	77,6	100,0	B-Nd ₂ O ₃			
		S07-S09	4,2	95,8	100,0	$A-Nd_2O_3$			

Таблиця 3.7 – Дані ЛРСА зразків системи Nd₂O₃–Y₂O₃, випалених при 1500 °C

Мікроструктуру двофазних (В + С) зразків при 1600 °С показано на рис. 3.11, а-б.

а) 60 мол. % Y_2O_3 -40 мол. % $Nd_2O_3 < B-Nd_2O_3 > + <C-Y_2O_3 > (No 17);$ б) 65 мол. % Y_2O_3 -35 мол. % $Nd_2O_3 < B-Nd_2O_3 > + <C-Y_2O_3 > (No 18);$ в) 70 мол. % Y_2O_3 -30 мол. % $Nd_2O_3 < B-Nd_2O_3 > + <C-Y_2O_3 > (No 19);$ г) 85 мол. % Y_2O_3 -15 мол. % $Nd_2O_3 < C-Y_2O_3 > (No 22).$

Рисунок 3.11 – Мікроструктури зразків системи Nd₂O₃–Y₂O₃ після випалу при 1600 °C, BSE

У зразках, що містять 60 мол. % Y_2O_3 -40 мол. % Nd_2O_3 , 65 мол. % Y_2O_3 -35 мол. % Nd_2O_3 та 70 мол. % Y_2O_3 -30 мол. % Nd_2O_3 виявлено дві фази, які чітко розрізняються за контрастом. Світла фаза належить моноклінній В-модифікації Nd_2O_3 , яка розподілена нерівномірно. Друга, більш крихка фаза, темного кольору ідентифікована як кубічна С-модифікація Y_2O_3 , що підтверджено даними рентгенівської дифракції та петрографії. При зменшені концентрації оксиду неодиму кількість ізотропної С-фази зростає, а зразок складу 85 мол. % Y_2O_3 -15 мол. % Nd_2O_3 ($N_2 22$) містить лише одну фазу C- Y_2O_3 .

3.3 Висновки до розділу 3

Екпериментальні дані, представлені у цьому розділі, опубліковано в [116–127].

1. У результаті вивчення фазових рівноваг у системі La_2O_3 -Yb₂O₃ при 1100, 1500, 1600 °C, підтверджено, що в системі утворюються області твердих розчинів на основі гексагональної (А) і кубічної (С) кристалічних модифікацій вихідних компонентів, а також упорядкованої фази типу перовскиту LaYbO₃ (R). Встановлено межі області гомогенності C-фази від 98 до 100 мол. % Yb₂O₃ в усьому температурному інтервалі. Границі області гомогенності R-фази становлять 48–56 мол. % Yb₂O₃ (1100 і 1500 °C) та 48– 54 мол. % Yb₂O₃ (1600 °C). Границі області гомогенності A-фази становлять 4 мол. % Yb₂O₃ (1100 °C) та 9 мол. % Yb₂O₃ (1500 і 1600 °C).

2. Підтверджено, що в системі $Nd_2O_3-Y_2O_3$ при 1500 та 1600 °C утворюються тверді розчини на основі гексагональної (A), моноклінної (B) модифікацій оксиду неодиму та кубічної (C) модифікації оксиду ітрію. Область гомогенності твердих розчинів на основі A-Nd₂O₃ становить 0–4 мол. % Y₂O₃ при 1500 і 1600 °C, B-Nd₂O₃ — 20–45 мол. % Y₂O₃ при 1500°C і 21–50 мол. % Y₂O₃ при 1600 °C та C-Y₂O₃ — 2 8 мол. % Y₂O₃ при 1500°C і 30 мол. % Y₂O₃ при 1600 °C. Нових фаз не знайдено.

4 ФАЗОВІ РІВНОВАГИ У ПОТРІЙНИХ СИСТЕМАХ La₂O₃-Y₂O₃-Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) ПРИ 1500 ТА 1600 °C

4.1 Фазові рівноваги у системі La₂O₃-Y₂O₃-Nd₂O₃ при 1500 та 1600 °C

4.1.1 Ізотермічний переріз діаграми стану системи La₂O₃–Y₂O₃–Nd₂O₃ при 1500 °C

Для дослідження фазових рівноваг у потрійній системі приготовлено зразки, склади яких лежать на трьох променях: Y_2O_3 -(50 мол. % La_2O_3 -50 мол. % Nd_2O_3 , Nd_2O_3 -(50 мол. % La_2O_3 -50 мол. % Y_2O_3), Y_2O_3 -(90 мол. % La_2O_3 -10 мол. % Nd_2O_3) та двох ізоконцентратах 45 та 50 мол. % Y_2O_3 .

Вихідний хімічний і фазовий склади зразків, випалених при 1500 °С, параметри елементарної комірки фаз, що знаходяться у рівновазі при цій температурі, наведено в табл. 4.1.

Встановлено, що при 1500 °С у системі $La_2O_3-Y_2O_3-Nd_2O_3$ утворюються поля твердих розчинів на основі кубічної (С) модифікації Y_2O_3 , гексагональної (А) і моноклінної (В) модифікацій La_2O_3 і Nd_2O_3 , а також впорядкованої фази типу перовскиту $LaYO_3$ (R). Нові фази не виявлено. Характер фазових рівноваг визначає будова обмежуючих подвійних систем.

На основі отриманих результатів побудовано ізотермічний переріз діаграми стану системи La₂O₃-Y₂O₃-Nd₂O₃ при 1500 °C (рис. 4.1).

Для визначення положення меж фазових полів, крім даних про фазовий склад зразків, використовували концентраційні залежності параметрів елементарних комірок утворених фаз (рис. 4.2–4.4).

Таблиця 4.1 – Вихідний хімічний і фазовий склади, параметри елементарних комірок фаз системи La₂O₃–Y₂O₃–Nd₂O₃ після випалу зразків при 1500 °C 50 год (за даними РФА і петрографії)

Хімі	чний ск	лад,	Фазовий склад,	Пара	метри ел	ементар	них ком	ірок
мол. %			параметри	-	1	фаз, нм		-
			елементарних	< <u>C></u> < <u>B></u>				
Y ₂ O ₃	La ₂ O ₃	Nd ₂ O ₃	комірок, нм	а	а	b	С	β
1	2	3	4	5	6	7	8	9
		Пе	ереріз Y ₂ O ₃ (50 мол. % L	a_2O_3-50	мол. % N	d ₂ O ₃)		
0	50	50	<a>* (<i>a</i> = 0,6473; <i>c</i> = 0,3739)					
5	47,5	47,5	<a>* (<i>a</i> = 0,6472; <i>c</i> = 0,3775)					
10	45	45	<a>*och. (a = 0,6458; c = 0,3745) +					
15	42,5	42,5	<a>* (a = 0,6436; c = 0,3758) + och.		1,4338	0,3637	0,8846	82,5
20	40	40	<a>(a = 0,6433; c = 0,3746) +		1,3466	0,3888	0,8657	67,9
25	37,5	37,5	<a>+ och.		1,3210	0,3875	0,8698	70,4
30	35	35	<a>+ och.		1,4104	0,3655	0,8915	90,6
35	32,5	32,5	< <u>B</u> >		1,4633	0,3639	0,8955	91,6
40	30	30			1,4228	0,3558	0,8933	81,04
45	27,5	27,5	осн. + <С>сл. + R		1,4051	0,3616	0,8872	85,7
50	25	25	осн. + <С>сл. + R	1,0653	1,4052	0,3606	0,8860	85,58
55	22,5	22,5	+ <c>+R och. ($a = 0,5848; b = 0,6059;$ c = 0,8498)</c>	1,0634	1,3996	0,3596	0,9137	89,94
60	20	20	$+\uparrow + R \text{ och.}$ (a = 0,5844; b = 0,6096; c = 0,8585)	1,0741	1,2718	0,3685	0,8771	77,21
65	17,5	17,5	<c> + R (<i>a</i> = 0,5842; <i>b</i> = 0,6047; <i>c</i> = 0,8526)</c>	1,0742		—		—
70	15	15	<C> + R ($a = 0.5845$; b = 0.6046; $c = 0.8530$	1,0744				
75	12,5	12,5	<c></c>	1,0652				
80	10	10	<c></c>	1,0697				
85	7,5	7,5	<c></c>	1,068				
90	5	5	<c></c>	1,0655				
95	2,5	2,5	<c></c>	1,0636				
100	0	0	<c></c>	1,0604				
	•	Пе	ереріз Nd ₂ O ₃ (50 мол. %	La_2O_3-50	0 мол. %	(120_3)	•	-

Продовження таблиці 4.1

1	2	3	4	5	6	7	8	9
50	50	0	R ($a = 0,5868;$ b = 0,6098; c = 0,8498)					
49,5	49,5	1	R ($a = 0,5876$; b = 0,6089; $c = 0,8483$)					
49	49	2	R ($a = 0,5833$; b = 0,6083; $c = 0,8489$)					
48,5	48,5	3	R ($a = 0,5834$; b = 0,6076; $c = 0,8457$)					
48	48	4	R ($a = 0,5832$; b = 0,6074; $c=0,8453$)					
47,5	47,5	5	R ($a = 0,5827$; b = 0,6061; $c = 0,8491$)					
45	45	10	+R (a = 0.5844;b = 0.6053; c = 0.8508)		1,4169	0,3630	0,8660	85,65
42,5	42,5	15	 + R och.	_	1,4069	0,3618	0,8929	85,49
40	40	20		—	1,4131	0,3653	0,8805	85,21
37,5	37,5	25	< <u>B</u> >		1,3144	0,3648	0,8098	86,60
35	35	30	осн. +<А>*сл.		1,2818	0,3706	0,8743	77,28
32,5	32,5	35	+<a>*↑		1,4145	0,3647	0,8819	85,60
30	30	40	+<a>*		1,4115	0,3652	0,8910	85,67
27,5	27,5	45	+<a>*		1,4135	0,3654	0,8923	85,64
25	25	50	+<a>*		1,4148	0,3664	0,8867	85,63
22,5	22,5	55	+<a>*		1,4152	0,3666	0,8751	85,62
20	20	60	<a>* (a = 0.6425; c = 0.3769) +		1,3718	0,3712	0,8704	73,92
17,5	17,5	65	<a>* (a = 0,6424; c = 0,3755) + och.		1,3881	0,3675	0,8758	75,76
15	15	70	<a>* (a = 0,6423; c = 0,3734) +		1,4167	0,3561	0,8781	84,27
12,5	12,5	75	<a>* (a = 0,6410; c = 0,3774) +		1,4234	0,3772	0,8805	81,82
10	10	80	<a>* (a = 0,6429; c = 0,3709) +		1,4298	0,3603	0,8791	80,52
7,5	7,5	85	<a>* (a = 0.6425; c = 0.3709) +		1,4284	0,3597	0,8786	80,52
5	5	90	<a>* (a = 0,6423; c = 0,3715) + 		1,4611	0,3425	0,9291	83,59
2,5	2,5	95	<a>* (<i>a</i> = 0,6425; <i>c</i> = 0,3727)					
0	0	100	<a>* (a = 0,6424; c = 0,3734)		—	—		
		Π	ереріз Y ₂ O ₃ -(90 мол. %L	a_2O_3-10	мол. % N	d ₂ O ₃)		

Продовження таблиці 4.1

1	2	3	4	5	6	7	8	9
5	85,5	9,5	<a>* (<i>a</i> = 0,6424;					
			c = 0.3745)					
10	81	9	<a>* (<i>a</i> = 0,6458;					
			<i>c</i> = 0,3745)					
15	76,5	8,5	<a>* (<i>a</i> = 0,6442;		—	—		
			<i>c</i> = 0,3742)					
20	72	8	<a>* (<i>a</i> = 0,6455;		—	—	—	—
			c = 0,3743) +					
25	67,5	7,5	<a>*↓ (<i>a</i> = 0,6417;		—	—	—	
			$c = 0,3755) + \langle B \rangle$ осн.					
30	63	7	$*\downarrow$ (<i>a</i> = 0,6457;		—	—		
			c = 0,3731) + och.					
35	58,5	6,5	осн + <a>*сл.					
40	54	6	<B $>$ + R (a = 0,5873;	—	—	—		—
			b = 0,6114; c = 0,8684)					
45	49,5	5,5	R ($a = 0,5835$;		—			
	10.7		b = 0,6089; c = 0,8458)	1.0=1.1				
55	40,5	4,5	<c>+R (a = 0.5882;</c>	1,0711	—	—		
	2.5		b = 0.6125; c = 0.8457	1.0.000				
60	36	4	$\uparrow + R (a = 0.5823;$	1,0699	—	—		
-	21.5	2.5	b = 0.6181; c = 0.8437					
65	31,5	3,5	<c>+R (a = 0.5844;</c>		—	—		
70	07	2	b = 0,6136; c = 0,8699)	1.07				
70	27	3	<c>+R (a = 0.5828;</c>	1,07				
75	22.5	2.5	b = 0.61 / 1; c = 0.8650	1.0710				
15	22,5	2,5	<c>+R(a=0.5885; h = 0.6001; a = 0.8470)</c>	1,0/12				
80	10	2	b = 0,0091; c = 0,8470	1.0602				
80	18	<u> </u>	< $C > 0$ $C + R$	1,0093				
83	15,5	1,3		1,0074				
90	9	1		1,0034				
93	4,3	0,5		1,0042				
			Ізоконцентрати 4:	5 мол. %	Y_2O_3			
45	55	0	+R (a = 0.5870:		1.2445	0.3341	0.8971	75.98
		-	b = 0.6185; c = 0.8459)		_,	-,		
45	50	5	R ($a = 0.5876$;					
			b = 0.6103; c = 0.8509)					
45	45	10	+R ($a = 0.5843$;		1,2623	0,3650	0,8792	82,33
			b = 0.6080; c = 0.8487)		ŕ	, ,	,	, , , , , , , , , , , , , , , , , , ,
		• •		1.0.100		0.0.0	0.0071	
45	35	20	$\langle B \rangle + \langle C \rangle + R$	1,0638	1,3272	0,3678	0,8851	80,27
			(a = 0,5842; b = 0,6158;					
		:	$c = 0,844^{-7}$				0.55	0
45	30	25	$\langle B \rangle + \langle C \rangle + R$	1,0645	1,4074	0,3644	0,8895	85,41
45	25	30	+ <c>+R och.</c>	1,0609	1,4067	0,3618	0,8888	85,42

Продовження	таблиці	4.1
-------------	---------	-----

						1		
1	2	3	4	5	6	7	8	9
45	15	40	+<c></c>	1,0625	1,4063	0,3607	0,7805	84,95
45	10	45	+<c></c>	1,0633	1,3245	0,3591	0,8861	87,27
45	5	50	+<c></c>	1,0603	1,3236	0,3587	0,8856	87,25
45	0	55			1,4995	0,3398	0,8925	76,10
			Ізаконцентрати 50	0 мол. %	Y ₂ O ₃			
50	49	1	R (<i>a</i> = 0,5879;					
			<i>b</i> = 0,6077; <i>c</i> = 0,8489)					
50	48	2	R (<i>a</i> = 0,5828;					
			<i>b</i> = 0,6086; <i>c</i> = 0,8504)					
50	47	3	R (<i>a</i> = 0,5831;					
			<i>b</i> = 0,6152; <i>c</i> = 0,8499)					
50	46	4	R (<i>a</i> = 0,5831;				—	
			<i>b</i> = 0,6158; <i>c</i> = 0,8494)					
50	45	5	R (<i>a</i> = 0,5829;	—		—	—	—
			<i>b</i> = 0,6157; <i>c</i> = 0,8486)					
50	40	10	+ <c>+R</c>	1,0586			—	
			(<i>a</i> = 0,5907; <i>b</i> = 0,6147;					
			<i>c</i> = 0,8453)					
50	35	15	< B > + < C > + R	1,0624				
			(a = 0,5892; b = 0,6123;					
			<i>c</i> = 0,8452)					
50	30	20	$\langle B \rangle + \langle C \rangle + R$	1,0642				
			(a = 0,5882; b = 0,6125;					
			c = 0,8457)					

* При заданих умовах (T = 1500 °C, 50 год, у повітрі) гексагональна модифікація A–La₂O₃ (Nd₂O₃) в зазначених складах гідратує, замість неї спостерігали утворення гексагональної модифікації на основі гідроксиду A–La(OH)₃ і Nd(OH)₃. Позначення фаз: <A> – тверді розчини на основі гексагональної модифікації La₂O₃; <C> – тверді розчини на основі кубічної модифікації Y₂O₃; R – упорядкована фаза LaYO₃ типу перовскиту; осн. – фаза, яка складає основу; сл. – сліди фази; \uparrow , \downarrow – вміст фази, відповідно, збільшується і зменшується.

○ – однофазні, • – двофазні, • – трифазні зразки

Рисунок 4.1 – Ізотермічний переріз діаграми стану системи $La_2O_3-Y_2O_3-Nd_2O_3$ при 1500 °C. На конодах вказані параметри елементарної комірки (нм): в області (A + B) – значення a_B , в областях (C + B) і (R + C) – a_C

Рисунок 4.2 – Концентраційна залежність параметра *а* елементарної комірки твердго розчину на основі C-Y₂O₃: у перерізі Y₂O₃–(90 мол. % La₂O₃–10 мол. % Nd₂O₃) та у перерізі Y₂O₃–(50 мол. % La₂O₃–50 мол. % Nd₂O₃) системи La₂O₃–Y₂O₃–Nd₂O₃

Рисунок 4.3 – Концентраційна залежність параметра *b* елементарної комірки твердго розчину на основі R-фази у зразках перерізу LaYO₃–Nd₂O₃ системи La₂O₃–Y₂O₃–Nd₂O₃, випалених при 1500 °C

При 1500 °C знайдено чотири області твердих розчинів на основі A- і Bмодифікацій La₂O₃ і Nd₂O₃, C-Y₂O₃, а також упорядкованої фази LaYO₃ (R). Показано, що у системі при температурі дослідження протікають твердофазні процеси. Дифрактограми зразків характерних фазових областей, які присутні у системі La₂O₃–Y₂O₃–Nd₂O₃ при 1500 °C, представлено на рис. 4.5.

В області з високим вмістом Y_2O_3 утворюються тверді розчини на основі кубічної модифікації оксиду ітрію. Досить протяжне поле твердих розчинів на основі C-Y₂O₃ опукле в напрямку протилежної сторони концентраційного трикутника подвійної системи La₂O₃–Nd₂O₃ і проходить відповідно до її границь у обмежуючих подвійних системах Nd₂O₃–Y₂O₃ (0–28 мол. % Nd₂O₃) та La₂O₃–Y₂O₃ (0–15 мол. % La₂O₃). Направленість області гомогенності C-фази свідчить проте, що переважає заміщення іонів Y³⁺ на Nd³⁺. При збільшенні концентрації Nd₂O₃ до 10 мол. % вздовж ізоконцентрати 15 мол. % La₂O₃ відбувається заміщення іонів Y³⁺ на Nd³⁺, з іншої сторони вздовж ізоконцентрати ~70 мол. % Y₂O₃ відбувається заміщення іонів Nd³⁺ на La³⁺, між цим відбувається заміщення іонів у вузлах A і B.

a – 22,5 мол. % Y₂O₃–22,5 мол. % La₂O₃–55 мол. % Nd₂O₃, (B); *б* – 49,5 мол. % Y₂O₃–49,5 мол. % La₂O₃–1 мол. % Nd₂O₃, (R, LaYO₃); *в* – 70 мол. % Y₂O₃–27 мол. % La₂O₃–3 мол. % Nd₂O₃, (R + C); *г* – 7,5 мол. % Y₂O₃–7,5 мол. % La₂O₃–85 мол. % Nd₂O₃, (A^{*} + B); *д* – 25 мол. % Y₂O₃–67,5 мол. % La₂O₃–7,5 мол. % Nd₂O₃, (A^{*} + R)

Рисунок 4.5 – Дифрактограми зразків системи La₂O₃–Y₂O₃–Nd₂O₃ після випалу при 1500 °C

Рисунок 4.5, аркуш 2

Розчинність La₂O₃ в C-Y₂O₃ у перерізі Y₂O₃–(50 мол. % La₂O₃–50 мол. % Nd₂O₃) становить ~14 мол. %. Межа області гомогенності твердого розчину на основі C-Y₂O₃ при 1500 °C проходить поблизу таких складів: 70 мол.% Y₂O₃–15 мол. % La₂O₃–15 мол. % Nd₂O₃, 80 мол. % Y₂O₃–18 мол. % La₂O₃–2 мол. % Nd₂O₃ – двофазні (C + R), 75 мол. % Y₂O₃–12,5 мол. % La₂O₃–12,5 мол. % Nd₂O₃, 85 мол. % Y₂O₃–13,5 мол. % La₂O₃–1,5 мол. % Nd₂O₃ – однофазні (C). Концентраційні залежності параметрів елементарної комірки C-фази представлено на рис. 4.2. Встановлено, що область гомогенності твердих розчинів на основі C-Y₂O₃ простягається від 72 до 100 мол. % Y₂O₃ у перерізі Y₂O₃–(50 мол. % La₂O₃–50 мол. % Nd₂O₃) та від 82 до 100 мол. % Y₂O₃ у перерізі Y₂O₃ у перерізі Y₂O₃ (90 мол. % La₂O₃–10 мол. % Nd₂O₃) (рис. 4.2). Кубічну модифікацію C-Y₂O₃ спостерігали в двофазних (B + C; C + R) і трифазній (B + C + R) областях.

У системі La₂O₃–Y₂O₃–Nd₂O₃ утворюється неперервний ряд твердих розчинів на основі моноклінної (В) модифікації оксидів неодиму та лантану. Область гомогенності В-фази проходить відповідно до її границь в обмежуючих подвійних системах La₂O₃–Y₂O₃ (30–35 мол. % Y₂O₃) і Nd₂O₃–Y₂O₃ (20–45 мол. % Y₂O₃). Параметри елементарної комірки В-фази у перерізі Nd₂O₃–(50 мол. % La₂O₃–50 мол. % Y₂O₃) змінюються від a = 1,4069 нм, b = 0,3618 нм, c = 0,8892 нм для двофазного зразка (B + R) складу 42,5 мол. % Y₂O₃–42,5 мол. % La₂O₃–15 мол. % Nd₂O₃ до a = 1,3144 нм, b = 0,3648 нм, c = 0,8098 нм для граничного складу твердого розчину 37,5 мол. % Y₂O₃–37,5 мол. % La₂O₃–25 мол. % Nd₂O₃ (табл. 4.1).

У системі La₂O₃–Y₂O₃–Nd₂O₃ при 1500 °С присутня упорядкована фаза типу перовскиту з ромбічними спотвореннями. Межі області гомогенності впорядкованої фази LaYO₃ (R) при 1500 °С мають протяжність 48–52 мол. % Y₂O₃ уздовж сторони La₂O₃–Y₂O₃ концентраційного трикутника. Поле твердих розчинів на основі фази типу перовскиту направлене в протилежну сторону концентраційного трикутника відповідної подвійної системи Nd₂O₃– Y₂O₃. Гранична розчинність оксиду неодиму в R-фазі становить ~7 мол. % у перерізі Nd₂O₃–(50 мол. % La₂O₃–50 мол. % Y₂O₃) та ~9 мол. % уздовж ізоконцентрати 50 мол. % Y₂O₃. Додавання великого іона неодиму Nd³⁺ (0,104 нм) приводить до заміщення ним іона лантану La³⁺ (0,114 нм) у вузлі А та зниження стабільності R-фази (зниження температури перетворення).

У досліджуваній системі при 1500 °С утворюється одна трифазна область В + С + R. Координати вершин конодного трикутника --<C>--R наведено в табл. 4.2.

Таблиця 4.2	– Координати	вершин	конодного	трикутника	В	системі	La_2O_3-
Y ₂ O ₃ –Nd ₂ O ₃ г	іісля випалу зр	азків прі	и 1500 °С				

Фаза	Cı	клад фаз, мол. %	
	Y_2O_3	La_2O_3	Nd_2O_3
	44	18	38
<c></c>	68	11	21
<r></r>	46	45	9

Область гомогенності твердого розчину на основі гексагональної (А) модифікації оксидів лантану і неодиму, так як і тверді розчини на основі моноклінної (В) модифікації оксидів РЗЕ, має досить велику протяжність. Фази A-La₂O₃ і A-Nd₂O₃ утворюють неперервний ряд твердих розчинів. Нижня концентраційна межа області гомогенності твердих розчинів на основі A-La₂O₃ (Nd₂O₃) увігнута в напрямку зменшення вмісту оксиду ітрію і проходить відповідно до її границь в обмежуючих подвійних системах La₂O₃–Y₂O₃ (0–21 мол. % Y₂O₃) і Nd₂O₃–Y₂O₃ (0–4 мол. % Y₂O₃). Направленність області гомогенності А-фази свідчить проте, що в A-фазі іон Nd³⁺ заміщає одночасно іони La³⁺ і Y³⁺, тоді, як La³⁺ більш схильний заміщати Nd³⁺, ніж Y³⁺. Протяжність твердих розчинів на основі A-форми оксидів РЗЕ визначено за рентгенограмами зразків наступних складів: 2,5 мол. % Y₂O₃–2,5 мол. % La₂O₃–15 мол. % Y₂O₃–76,5 мол. % La₂O₃–8,5 мол. % Nd₂O₃

однофазні (А), 5 мол. % Y₂O₃–5 мол. % La₂O₃–90 мол. % Nd₂O₃, 10 мол. %
Y₂O₃–45 мол. % La₂O₃–45 мол. % Nd₂O₃, 20 мол. % Y₂O₃–72 мол. % La₂O₃–8 мол.
% Nd₂O₃ – двофазні (А + В) (табл. 4.1).

Слід зазначити, що оксиди лантану і неодиму на повітрі гідратують і замість гексагональної модифікації A-La₂O₃ і A-Nd₂O₃ у зразках з вмістом від 100 до 45 мол. % La₂O₃ і Nd₂O₃ при 1500 °C спостерігали утворення гексагональної модифікації на основі гідроксиду лантану (неодиму). Параметри елементарної комірки змінюються від a = 0,6473 нм, c = 0,3739 нм для твердого розчину Nd(OH)₃, що містить 50 мол. % La₂O₃–50 мол. % Nd₂O₃ до a = 0,6458 нм, c = 0,3745 нм (1500 °C) для двофазного зразка (A + B) складу 10 мол. % Y₂O₃–45 мол. % La₂O₃–45 мол. % Nd₂O₃.

Петрографічні дослідження у поляризованому світлі випалених зразків показали, що у складі 50 мол. % La₂O₃-50 мол. % Nd₂O₃ проявляється анізотропна фаза (А*) на основі гідроксиду лантану і неодиму у вигляді кристалів у схрещених ніколях жовтими і голчастих i3 яскраво інтерференції. Зустрічаються помаранчевими кольорами кольори інтерференції від сірого до жовтого залежно від відколу і оптичного напрямку кристала. У зразку складу 10 мол. % Y₂O₃-45 мол. % La₂O₃-45 мол. % Nd₂O₃ виявлено дві анізотропні фази: твердий розчин на основі гексагональної модифікації La(OH)₃, який становить матрицю, і твердий розчин на основі моноклінної модифікації В-типу оксидів РЗЕ в меншій кількості з більш високими показником заломлення (n_g ≤ 2,04) та кольорами інтерференції. У зразках перерізу Y₂O₃-(50 мол. % La₂O₃-50 мол. % Nd₂O₃), що містять від 15 до 30 мол. % Y₂O₃, анізотропна пластинчата фаза <A*> з низьким показником заломлення (n < 2,02) присутня у невеликій кількості. Анізотропна фаза В у вигляді округлих зернистих кристалів становить основу. У зразках складу 35 мол. % Y₂O₃-32,5 мол. % La₂O₃-32,5 мол. % Nd₂O₃ і 40 мол. % Y₂O₃-30 мол. % La₂O₃-30 мол. % Nd₂O₃ присутня тільки одна анізотропна В-фаза.

Для визначення фазового складу зразків у системі La₂O₃–Y₂O₃–Nd₂O₃ при 1500 °C разом з РФА і петрографією проведено мікроструктурні дослідження. Мікроструктура двофазного зразка 32,5 мол. % Y₂O₃– 32,5 мол. % La₂O₃–35 мол. % Nd₂O₃ (B + A) перерізу Nd₂O₃–(50 мол. % La₂O₃–50 мол. % Y₂O₃) проявляється у вигляді рельєфних зерен поліедричної форми розміром ~3,3–21 мкм, на яких спостерігаються досить важкі світліші невеликі включення (рис. 4.6, а). Згідно з даними мікрорентгеноспектрального аналізу, ці світлі включення містять золото, яке залишилося після напилення (рис. 4.7). Для структури характерне утворення, в основному, інтеркристалітних тріщин, які йдуть по межі зерна, але є і транскристалітні тріщини, які проходять по тілу зерна. Фази А- і В-фази оксиду лантана не розрізняються.

Мікроструктура трифазного (B + C + R) зразка складу 45 мол. % Y_2O_3 -40 мол. % La_2O_3 -15 мол. % Nd_2O_3 на ізоконцентраті 45 мол. % Y_2O_3 представлена на рис. 4.6, б. Матрицю становить світла фаза – LaYO₃ (R), в якій видно темні дуже дрібнозернисті точкові включення кубічної модифікації C-Y₂O₃. Сіра фаза, збагачена лантаном, є моноклінною B-формою La₂O₃ і спостерігається у невеликій кількості. Аналогічні три фази виявлено в складах, що містять від 10 до 20 мол. % Nd_2O_3 , уздовж ізоконцентрати 50 мол. % Y_2O_3 (рис. 4.6, в).

Мікроструктури зразків, що характеризує двофазну область (B + C) представлено на рис. 4.6, г–е. Зразок складу 45 мол. % Y_2O_3 –15 мол. % La_2O_3 –40 мол. % Nd_2O_3 містить дві структурні складові, що розрізняються за контрастом. Світла матриця – B-форма La_2O_3 , темні дрібнозернисті включення – C-Y₂O₃.

Зміну мікроструктури двофазних зразків (C + R) залежно від концентрації Y_2O_3 можна чітко простежити на рис. 4.8, а–и. Згідно з даними мікрорентгеноспектрального аналізу, темна область містить, в основному, ітрій, і, отже, є фазою C-Y₂O₃. Світла фаза збагачена лантаном і ітрієм. За цими даними її можна ідентифікувати як фазу LaYO₃ (R), що підтверджено даними РФА і петрографії.

a) $\langle B \rangle + \langle A \rangle^*$, 32,5 мол. % Y_2O_3 –32,5 мол. % La_2O_3 –35 мол. % Nd_2O_3 , × 500; б) R основа + $\langle B \rangle$ + $\langle C \rangle$, 45 мол. % Y_2O_3 –40 мол. % La_2O_3 –15 мол. % Nd_2O_3 , × 500; світла фаза – R, сіра фаза – $\langle B \rangle$, темна фаза (включення) – $\langle C-Y_2O_3 \rangle$, чорне – пори; в) R + $\langle B \rangle$ + $\langle C \rangle$ сліди \uparrow , 50 мол. % Y_2O_3 –35 мол. % La_2O_3 –15. мол % Nd_2O_3 , × 500; г) $\langle B \rangle$ + $\langle C \rangle$ включення, 45 мол. % Y_2O_3 –15 мол. % La_2O_3 –40 мол. % Nd_2O_3 , × 150; світла фаза – $\langle B \rangle$, темна фаза (включення) – $\langle C-Y_2O_3 \rangle$, чорне – пори; д) $\langle B \rangle$ + $\langle C \rangle$ включення, 45 мол. % Y_2O_3 –15 мол. % La_2O_3 –40 мол. % Nd_2O_3 , × 300; е) $\langle B \rangle$ + $\langle C \rangle$ включення, 45 мол. % Y_2O_3 –15 мол. % La_2O_3 –40 мол. % Nd_2O_3 , × 300; е) $\langle B \rangle$ + $\langle C \rangle$ включення, 45 мол. % Y_2O_3 –15 мол. % La_2O_3 –40 мол. % Nd_2O_3 , × 300; е) $\langle B \rangle$ + $\langle C \rangle$ включення, 45 мол. % Y_2O_3 –15 мол. % La_2O_3 –40 мол. % Nd_2O_3 , × 300; е) $\langle B \rangle$ + $\langle C \rangle$ включення, 45 мол. % Y_2O_3 –15 мол. % La_2O_3 –40 мол. % Nd_2O_3 , × 300; е) $\langle B \rangle$ + $\langle C \rangle$ включення, 45 мол. % Y_2O_3 –15 мол. % La_2O_3 –40 мол. % Nd_2O_3 .

Рисунок 4.6 – Мікроструктури зразків системи La₂O₃–Y₂O₃–Nd₂O₃, випалених при 1500 °C, СОМРО

Рисунок 4.7 – Концентраційні профілі розподілу елементів двофазного (В + А) зразка системи La₂O₃–Y₂O₃–Nd₂O₃, випаленого при 1500 °C

Зі збільшенням вмісту оксиду ітрію кількість фази із структурою типу перовскиту зменшується, змінюється морфологія зразків, з'являються пори, характерні для більш крихкої С-фази. Відбувається формування зерен поліедричної форми R-фази розміром ~2–3 мкм.

a) R + <C> \uparrow , 60 мол. % Y₂O₃-36 мол. % La₂O₃-4 мол. % Nd₂O₃, × 500; світла фаза-R, темна фаза-<C-Y₂O₃>, чорне-пори; б) <C> + R, 65 мол. % Y₂O₃-31,5 мол. % La₂O₃-3,5 мол. % Nd₂O₃, × 450; в) <C> + R, 65 мол. % Y₂O₃-31,5 мол. % La₂O₃-3,5 мол. % Nd₂O₃, × 1500; г) <C> + R, 70 мол. % Y₂O₃-27 мол. % La₂O₃-3 мол. % Nd₂O₃, × 1500; г) <C> + R, 70 мол. % Y₂O₃-27 мол. % La₂O₃-3 мол. % Nd₂O₃, × 1500; е) <C>основа + R, 75 мол. % Y₂O₃-22,5 мол. % La₂O₃-2,5 мол. % Nd₂O₃, × 1500; з) <C>основа + R, 75 мол. % Y₂O₃-22,5 мол. % La₂O₃-2,5 мол. % Nd₂O₃, × 1500; з) <C>основа + R, 80 мол. % Y₂O₃-18 мол. % La₂O₃-2 мол. % Nd₂O₃, × 1500.

Рисунок 4.8 — Мікроструктури зразків системи La₂O₃-Y₂O₃-Nd₂O₃, випалених при 1500 °C, СОМРО

4.1.2 Ізотермічний переріз діаграми стану системи La₂O₃–Y₂O₃–Nd₂O₃ при 1600 °C

Для дослідження взято зразки, склади яких лежать на двох променях Y₂O₃-(50 мол. % La₂O₃-50 мол. % Nd₂O₃) і Y₂O₃-(90 мол. % La₂O₃-10 мол. % Nd₂O₃).

Вихідний хімічний і фазовий склади зразків після випалу при 1600 °С, параметри елементарних комірок фаз, які знаходяться у рівновазі при даній температурі, наведено у табл. 4.3.

За отриманими результатами побудовано ізотермічний переріз діаграми стану системи La₂O₃-Y₂O₃-Nd₂O₃ при 1600 °C (рис. 4.9).

Встановлено, що при 1600 °С у системі La₂O₃–Y₂O₃–Nd₂O₃ утворюються поля твердих розчинів на основі кубічної (С) модифікації Y₂O₃, гексагональної (А) і моноклінної (В) модифікацій La₂O₃ і Nd₂O₃. На відміну від 1500 °С, у вказаній системі із збільшенням температури утворюється менша кількість фазових полів, оскільки фазу типу перовскиту при 1600 °С не виявлено.

Поле твердих розчинів на основі C-Y₂O₃ проходять відповідно до границь розчинності у обмежуючих подвійних системах La₂O₃–Y₂O₃ (85–100 мол. % Y₂O₃) і Y₂O₃–Nd₂O₃ (70–100 мол. % Y₂O₃). Межа області гомогенності C-фази увігнута в напрямку до вершини Y₂O₃ концентраційного трикутника, що пов'язано зі зміною характеру взаємодії в системі при 1600 °C, а саме розпадом R-фази. Встановлено, що область твердих розчинів на основі C-Y₂O₃ простягається від 82 до 100 мол. % Y₂O₃ у перерізі Y₂O₃–(50 мол. % La₂O₃–50 мол. % Nd₂O₃).

Поле твердих розчинів на основі A-(La, Nd)₂O₃ має велику протяжність і її межа увігнута в напрямку зменшення вмісту оксиду ітрію та проходить відповідно до границь в обмежуючих подвійних системах $La_2O_3-Y_2O_3$ (0–27 мол. %. Y_2O_3) і Nd₂O₃- Y_2O_3 (0–4 мол. % Y_2O_3). Встановлено, що область гомогенності твердих розчинів на основі A-фази простягається від 0 до 19 мол. % Y_2O_3 у перерізі Y_2O_3 -(90 мол. % La_2O_3 -10 мол. % Nd₂O₃).

Таблиця 4.3 – Вихідний хімічний і фазовий склади, параметри елементарних комірок фаз системи La₂O₃–Y₂O₃–Nd₂O₃ після випалу зразків при 1600 °C 10 год (за даними РФА та петрографії)

Xim	іічний ск мол. %	слад,	Фазовий склад, параметри елементарних комірок фаз, нм	Парам	етри еле	ментарни нм	х комірок	: фаз,
Y ₂ O ₂	LanOn	Ndo			а		с С	ß
1	2	3	4	5	6	7	8	9 9
-		Π	ереріз Y ₂ O ₃ — (50 мол. %.	La_2O_3 —5	0 мол. %I	Nd ₂ O ₃		-
0	50	50	<a*>(a=0,6479, c=0,3795, c/a=0,5857)</a*>		—			
5	47,5	47,5	<a*>(a=0,6460, c=0,3798, c/a=0,5879)</a*>	—				
10	45	45	<a*>(a=0,6464, c=0,3798, c/a=0,5876)</a*>	—				
15	42,5	42,5	<a*>(a=0,6460, c=0,3798, c/a=0,5879) + </a*>	—	1,4223	0,3700	0,8790	85,303
20	40	40	<a*>(a=0,6460, c=0,3798, c/a=0,5879) + </a*>	—	1,4180	0,3685	0,8761	85,438
25	37,5	37,5	+<a*></a*>		1,4187	0,3676	0,8730	85,269
30	35	35	+ <a*></a*>		1,4157	0,3661	0,8703	85,031
35	32,5	32,5			1,4155	0,3653	0,8677	85,093
40	30	30			1,4118	0,3639	0,8658	85,195
45	27,5	27,5	<В>+<С>сл.		1,4080	0,3621	0,8620	84,996
50	25	25	<В>+<С>сл.	—	1,4065	0,3610	0,8862	85,714
55	22,5	22,5	 + <c></c>	1,072	1,4037	0,3593	0,8843	85,555
60	20	20	+<c></c>	1,0728	1,4006	0,3611	0,8825	85,700
65	17,5	17,5	+<c></c>	1,0726	1,4009	0,3594	0,8843	85,543
70	15	15	+<c></c>	1,0725	1,4068	0,3705	0,8759	83,109
75	12,5	12,5	<В>сл. + <С>	1,0669				
80	10	10	<В>сл.+<С>	1,0638	_		—	
85	7,5	7,5	<c></c>	1,0618				
90	5	5	<c></c>	1,0612				
100	0	0	<c></c>	1,0604				
	1	Пе	neniз У2О2— (90 мол % I	$a_{2}O_{2} = 10$	0 мол % 1	NdrOr	1	1
0	90	10	<pre><a*>(a=0,6492, c=0,3795, c/a=0,5846)</a*></pre>		0 WIQJI /0.1			

Продовження таблиці 4.3

1	2	3	4	5	6	7	8	9
5	85,5	9,5	<a*>(a=0,6481,</a*>					
			<i>c</i> =0,3860, <i>c/a</i> = 0,5956)					
10	81	9	<a*>(a=0,6471,</a*>					
			<i>c</i> =0,3844, <i>c/a</i> = 0,5940)					
15	76,5	8,5	<a*>(a=0,6462,</a*>					
			<i>c</i> =0,3831, <i>c/a</i> = 0,5929)					
20	72	8	<a*>(a=0,6560,</a*>		1,4800	0,3694	0,8839	88,56
			<i>c</i> =0,3729, <i>c/a</i> =0,5681)					
			+ 					
25	67,5	7,5	<a*>(a=0,6474,</a*>		1,4803	0,3690	0,8816	88,03
			<i>c</i> =0,3734, <i>c/a</i> = 0,5768)					
			+ 					
30	63	7	+ <a*></a*>		1,4801	0,3678	0,8799	88,07
35	58,5	6,5			1,4778	0,3665	0,8762	88,03
40	54	6			1,4709	0,3644	0,8713	87,95
45	49,5	5,5	<В>+<С>сл.		1,4671	0,3634	0,8936	88,21
55	40,5	4,5	+<c></c>	1,0709	1,4597	0,3598	0,8885	88,14
60	36	4	+<c></c>	1,0727	1,4624	0,3611	0,8891	88,62
65	31,5	3,5	+<c></c>	1,0725	1,4596	0,3606	0,8861	88,48
70	27	3	+<c></c>	1,0719	1,4616	0,3608	0,8853	88,42
75	22,5	2,5	+<c></c>	1,0715	1,4610	0,3606	0,8841	88,68
80	18	2	<В>сл. + <С>	1,0722				
85	13,5	1,5	<c></c>	1,0661				
90	9	1	<c></c>	1,0657				
95	4,5	0,5	<c></c>	1,0641				

* При заданих умовах (T = 1600 °C, 10 год, у повітрі) гексагональна модифікація на основі A–La₂O₃, A–Nd₂O₃ в зазначених складах гідратує замість неї спостерігали утворення гексагональної модифікації на основі гідроксиду A–La(OH)₃, A–Nd(OH)₃. Позначення фаз: <A> – тверді розчини на основі гексагональної модифікації La₂O₃, Nd₂O₃; – тверді розчини на основі кубічної модифікації La₂O₃ і Nd₂O₃; <C> – тверді розчини на основі кубічної модифікації Y₂O₃; сл. – сліди фази.

Межі області гомогенності В-фази проходять відповідно до її границь у обмежуючих подвійних системах $La_2O_3-Y_2O_3$ (33–56 мол. % Y_2O_3) і $Y_2O_3-Nd_2O_3$ (21–50 мол. % Y_2O_3). Поле твердих розчинів на основі В-фази простягається від 33 до 44 мол. % Y_2O_3 у перерізі $Y_2O_3-(90 \text{ мол. % } La_2O_3-10 \text{ мол. % } Nd_2O_3)$ і від 33 до 43 мол. % Y_2O_3 у перерізі $Y_2O_3-(50 \text{ мол. % } La_2O_3-50 \text{ мол. % } Nd_2O_3)$.

о — однофазні, ● — двофазні зразки

Рисунок 4.9 – Ізотермічний переріз діаграми стану системи $La_2O_3-Y_2O_3-Nd_2O_3$ при 1600 °С. На конодах вказані параметри елементарної комірки a_B (нм)

Положення меж фазових полів і конод утворених фаз у системі визначено відповідно до табл. 4.3 і концентраційних залежностей параметрів елементарних комірок фаз твердих розчинів рис. 4.10 – 4.13.

Оцінка термодинамічної стабільності оксидів Ln_2O_3 досліджених систем $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) показав, що відносна різниця між значеннями ΔG_f° для них невелика, якщо не враховувати B- і C-Eu₂O₃ ($\Delta G_f^{\circ} = -1653,5 \text{ кДж/моль}$ і $\Delta G_f^{\circ} = -1699,37$, відповідно). Найбільша різниця спостерігається між ΔG_f° A-La₂O₃ (-1829,71 кДж/моль) і B-Sm₂O₃ (-1868 кДж/моль), що становить ~2 %. Можна зробити висновок про те, що у досліджених системах із Nd₂O₃, Sm₂O₃ і Gd₂O₃ коноди у двофазних областях A + B і B + C проходять близько до променів через вершину Y₂O₃. Параметри елементарної комірки зразків на цих променях повністю підтвердили таке припущення. Для області B + C взято значення параметрів наступних складів: 60 мол. % Y₂O₃-50 мол. % La₂O₃-50 мол. % Nd₂O₃ (1,401 нм) і 60 мол. % Y₂O₃-

36 мол. % La₂O₃-4 мол. % Nd₂O₃ (1,461 нм), а для A + B — 20 мол. % Y₂O₃-40 мол. % La₂O₃-40 мол.% Nd₂O₃ (1,420 нм) і 20 мол. % Y₂O₃-72 мол. % La₂O₃-8 мол. % Nd₂O₃ (1,480 нм).

Рисунок 4.10 – Концентраційні залежності параметра *a* елементарної комірки твердих розчинів на основі C-Y₂O₃ у перерізі Y₂O₃–(50 мол. % La₂O₃–50 мол. % Nd₂O₃) у системі La₂O₃–Y₂O₃–Nd₂O₃ після випалу зразків при 1600 °C

Рисунок 4.11 – Концентраційні залежності параметра *a* елементарної комірки твердих розчинів на основі А-фази у перерізі Y₂O₃–(90 мол. % La₂O₃–10 мол. % Nd₂O₃) у системі La₂O₃–Y₂O₃–Nd₂O₃ після випалу зразків при 1600 °C

А-фаза					В-фаза				С-фаза			
Оксид	Н°, кДж/моль	S°, кДж/ К моль	Т, К	∆f°G, кДж	Н°, кДж/моль	S°, кДж∕ К∙моль	Т, К	∆f°G, кДж	Н°, кДж/моль	S°, кДж∕ К∙моль	Т, К	∆f°G, кДж
La_2O_3	-1791,78	0,12724	298,15	-1829,71	-1786,9	0,12719	298,15	-1824,85	—	-	_	—
Nd_2O_3	-1808,81	0,15878	298,15	-1856,15	-1808,3	0,15873	298,15	-1855,58	_	_	_	—
Sm ₂ O ₃	-1820,12	0,15152	298,15	-1865,29	-1822,6	0,15038	298,15	-1867,43	-1827,2	0,14595	298,15	-1870,70
Eu_2O_3	_	—	_	_	-1653,5	0,14425	298,15	-1696,45	-1658	0,13895	298,15	-1699,37
Gd_2O_3	_	—	_	_	-1825,2	0,1555	298,15	-1871,55	-1830,9	0,15062	298,15	-1875,83
Yb ₂ O ₃	_	_	_	_	_	_	_	_	-1814,5	0,13377	298,15	-1854,40
Y_2O_3	_	_	_	_	_	_	_	_	-1932,8	0,09913	298,15	-1962,35

Таблиця 4.4 – Термодинамічні характеристики фаз оксидів рідкісноземельних елементів

Рисунок 4.12 – Концентраційні залежності параметрів *a* (а) і *b* (б) елементарної комірки твердих розчинів на основі В-фази у перерізі Y_2O_3 -(90 мол. % La₂O₃-10 мол. % Nd₂O₃) у системі La₂O₃-Y₂O₃-Nd₂O₃ після випалу зразків при 1600 °C

Рисунок 4.13 – Концентраційні залежності параметра *b* елементарної комірки твердих розчинів на основі В-фази у перерізі Y_2O_3 -(50 мол. % La₂O₃-50 мол. % Nd₂O₃) у системі La₂O₃-Y₂O₃-Nd₂O₃ після випалу зразків при 1600 °C

У зразках, які містять 100–55 мол. % La₂O₃ (Nd₂O₃) при 1600 °C так само, як і при 1500 °C спостерігали утворення гексагональної модифікації на основі гідроксиду лантану (неодиму). Параметри елементарної комірки змінюються від a = 0,6479 нм, c = 0,3795 нм, c/a = 0,5857 для твердого розчину на основі Nd(OH)₃ з вмістом 50 мол. % La₂O₃–0 мол. % Y₂O₃–50

мол.% Nd₂O₃ до *a* = 0,6460 нм, *c* = 0,3798 нм, *c/a* = 0,5879 для двофазного зразка (A + B) 40 мол. % La₂O₃-20 мол. % Y₂O₃-40 мол. % Nd₂O₃.

визначення положення меж фазових полів разом Для 3 даними аналізу про фазовий зразків рентгенофазового склад використовували петрографічні дослідження. Доповнено дані РФА для двофазного (А + В) зразка 30 мол. % Y₂O₃-35 мол. % La₂O₃-35 мол. % Nd₂O₃. У цьому зразку чітко виявлено дві структурні складові: А-La(OH)₃ з високими кольорами інтерференції від червоного до жовтого, що становить основу, та анізотропна В-фаза у вигляді одиничних сірих пластинок, яка присутня у помітно меншій кількості.

Встановлено, що при температурі дослідження у системі протікають твердофазні процеси. Дифрактограми зразків, які характеризують фазові поля, присутні у системі La₂O₃–Y₂O₃–Nd₂O₃ при 1600 °C, представлено на рис. 4.14.

a –50 мол. % La₂O₃–50 мол. % Nd₂O₃–0 мол. % Y₂O₃ (A– Nd(OH)₃);*б* –42,5 мол. % La₂O₃–42,5 мол. % Nd₂O₃–15 мол. % Y₂O₃ (A– Nd(OH)₃+B–La₂O₃); *в* –37,5 мол. % La₂O₃–37,5 мол. % Nd₂O₃–25 мол. % Y₂O₃ (B–La₂O₃); *г* –17,5 мол. % La₂O₃–17,5 мол. % Nd₂O₃–65 мол. % Y₂O₃ (B–La₂O₃ + C–Y₂O₃); *д* –12,5 мол. % La₂O₃–12,5 мол. % Nd₂O₃–75 мол. % Y₂O₃ (C–Y₂O₃).

Рисунок 4.14 – Дифрактограми зразків системи La₂O₃–Y₂O₃–Nd₂O₃ після випалу при 1600 °C

Рисунок 4.14, аркуш 2

Рисунок 4.14, аркуш 3

Фазові рівноваги в системі $La_2O_3-Y_2O_3-Nd_2O_3$ при 1500 та 1600 °C суттєво відрізняються між собою, що обумовлено будовою обмежуючих подвійних систем і особливостями фазоутворення у потрійній системі. На відміну від ізотермічного перерізу при 1600 °C (рис. 4.9), при 1500 °C (рис. 4.1) спостерігали область гомогенності впорядкованої фази типу перовскиту, що обумовлює утворення трифазної області (B + C + R).

4.2 Фазові рівноваги у системі La₂O₃-Y₂O₃-Sm₂O₃ при 1500, 1600 °С

4.2.1 Ізотермічний переріз діаграми стану системи La₂O₃-Y₂O₃-Sm₂O₃ при температурі 1500 °C

Для дослідження приготовлено зразки, склади яких лежать на трьох променях: Y₂O₃-(50 мол. % La₂O₃-50 мол. % Sm₂O₃), Sm₂O₃-(50 мол. % La₂O₃-50 мол. % Y₂O₃), Y₂O₃-(90 мол. % La₂O₃-10 мол. % Sm₂O₃).

Вихідний хімічний і фазовий склади зразків, випалених при 1500 °С, параметри елементарної комірки фаз, що знаходяться у рівновазі при заданій температурі, наведено в таблиці 4.5.

На основі отриманих результатів побудовано ізотермічний переріз діаграми стану системи La₂O₃–Y₂O₃–Sm₂O₃ при температурі 1500 °C (рис. 4.15).

109

Встановлено, що при 1500 °С у системі $La_2O_3-Y_2O_3-Sm_2O_3$ утворюються поля твердих розчинів на основі кубічної (С) модифікації Y_2O_3 , гексагональної (А) модифікації La_2O_3 , моноклінної (В) модифікації La_2O_3 і Sm_2O_3 , а також впорядкованої фази зі структурою типу перовскиту $LaYO_3$ (R). Нові фази не виявлено. Характер фазових рівноваг у потрійній системі визначає будова обмежуючих подвійних систем.

Таблиця 4.5 – Вихідний хімічний і фазовий склади, параметри елементарних комірок фаз системи La₂O₃–Y₂O₃–Sm₂O₃ після випалу зразків при 1500 °C (за даними РФА і петрографії)

Хім	ічний с	склад,	Фазовий склад,	Парам	иетри еле	ементарн	их комір	оок фаз,
	мол. %	o	параметри			HM		
			елементарних	<c></c>		<	B>	
			комірок, нм					
Y_2O_3	La_2O_3	Sm ₂ O ₃		а	a	b	С	β
1	2	3	4	5	6	7	8	9
		Пер	еріз Ү ₂ О ₃ —(50 мол.	% La ₂ O ₃	50 мол.	% Sm ₂ O ₃	3)	
0	50	50	<a>* + 		1,3735	0,3614	0,8766	97,44
5	47,5	47,5	<a>* + 		1,4168	0,3698	0,8769	85,34
10	45	45	<a>* + 		1,4293	0,3687	0,8747	85,46
15	42,5	42,5	<a>* + 		1,4294	0,3708	0,8788	81,34
20	40	40			1,4286	0,3686	0,8759	81,32
25	37,5	37,5			1,4258	0,3685	0,8750	81,18
30	35	35			1,4232	0,3674	0,8725	81,21
35	32,5	32,5			1,4196	0,3660	0,8699	81,20
40	30	30			1,4161	0,3647	0,8653	81,03
45	27,5	27,5	<В>осн. + <С>сл.		1,4164	0,3627	0,8677	81,11
50	25	25	+<c></c>	1,0721	1,4131	0,3620	0,8643	81,24
55	22,5	22,5	+<c></c>	1,0721	1,3236	0,3639	0,8645	80,79
60	20	20	+<c></c>	1,0725	1,3256	0,3617	0,8670	80,23
65	17,5	17,5	<В>сл. + <С>	1,0722				_
70	15	15	<В>сл. + <С>	1,0723				_
75	12,5	12,5	<c></c>	1,0713				
80	10	10	<c></c>	1,0678				
85	7,5	7,5	<c></c>	1,0657				
90	5	5	<c></c>	1,0637				

1	2	3	4	5	6	7	8	9
100	0	0	<c></c>	1,0604				
		Пере	еріз Sm ₂ O ₃ —(50 мол	1. % La ₂ 0	О ₃ –50 мол	I. % Y ₂ O ₃)	
50	50	0	R(a = 0,5867)					_
			<i>b</i> = 0,6071,					
			<i>c</i> = 0,8489)					
49,5	49,5	1	R(a = 0,5865,				—	—
			<i>b</i> = 0,6081,					
			<i>c</i> = 0,8486)					
49	49	2	R ($a = 0,5837$,	—			—	—
			<i>b</i> = 0,6178,					
			<i>c</i> = 0,8399)					
48,5	48,5	3	R (<i>a</i> = 0,5818,	—	1,3545	0,3646	0,8789	82,18
			<i>b</i> = 0,6158,					
			$c = 0,8377) + \langle B \rangle$					
48	48	4	R ($a = 0,5823$,	—	1,3581	0,3654	0,8845	82,02
			b = 0,6179;					
			<i>c</i> =0,8396) + 					
47,5	47,5	5			1,3579	0,3641	0,8830	81,92
45	45	10		—	1,3561	0,3654	0,8812	82,12
42,5	42,5	15			1,3561	0,3655	0,8811	82,23
40	40	20			1,3569	0,3655	0,8811	82,19
37,5	37,5	25			1,3562	0,3658	0,8806	82,19
35	35	30			1,3540	0,3659	0,8880	82,29
32,5	32,5	35			1,3562	0,3659	0,8805	82,22
30	30	40			1,4050	0,3633	0,8705	85,25
27,5	27,5	45			1,3531	0,3655	0,8838	82,15
25	25	50			1,3526	0,3658	0,8845	82,37
22,5	22,5	55						
20	20	60			1,3525	0,3660	0,8805	82,35
17,5	17,5	65		—	1,3485	0,3651	0,8823	82,61
15	15	70		—	1,3464	0,3651	0,8789	82,56
12,5	12,5	75		—	1,3431	0,3647	0,8866	82,52
10	10	80			1,3439	0,3644	0,8872	82,68
7,5	7,5	85			1,3455	0,3654	0,8856	82,65
5	5	90			1,3443	0,3651	0,8826	82,79
2,5	2,5	95			1,3441	0,3650	0,8865	82,86
0	0	100			1,3439	0,3652	0,8827	82,83
		Пере	еріз Ү ₂ О ₃ —(90 мол.	% La ₂ O ₃	—10 мол.	% Sm ₂ O ₃)	

1	2	3	4	5	6	7	8	9
5	85,5	9,5	<a>*	—		—	—	
10	81	9	<a>*(<i>a</i> = 0,6486,	—		—	—	
			<i>c</i> = 0,3806,					
			c/a = 0,5868) +					
15	76,5	8,5	<a>*(a=0,6546,				—	
			c = 0,3852,					
			c/a = 0,5939) +					
20	72	8	<a>*(a=0,6571,		1,3706	0,3704	0,8845	88,07
			c = 0,3885,					
			c/a = 0,5912) +					
25	67,5	7,5	<a>*(a=0,6561,	—	1,3663	0,3693	0,8816	88,16
			c = 0,3878,					
			c/a = 0,5911) +					
30	63	7	<А>* сл. + <В>		1,3618	0,3675	0,8791	88,27
35	58,5	6,5			1,3585	0,3660	0,8763	88,08
40	54	6			1,3536	0,3646	0,8714	88,06
45	49,5	5,5			1,4103	0,3632	0,8721	90,02
50	40,5	4,5	<c>+R+</c>	1,0710				
60	36	4	<c> + R</c>					
65	31,5	3,5	<c> + R</c>	1,0729				
70	27	3	<С>+ Rсл.	1,0725	—			
75	22,5	2,5	<С>+ Rсл.	1,0713				
80	18	2	<c></c>	1,0712				
85	13,5	1,5	<c></c>	1,0676				
90	9	1	<c></c>	1,0650				
95	4,5	0,5	<c></c>	1,0627				
		Пер	еріз Y ₂ O ₃ —(10 мол. % І	La_2O_3-90	мол. % S	Sm ₂ O ₃)		
0	10	90			1,4500	0,3642	0,8929	88,55
5	9,5	85,5			1,4507	0,3634	0,8912	88,53
10	9	81		—	1,4492	0,3628	0,8895	88,44
15	8,5	76,5			1,4484	0,3618	0,8864	88,31
20	8	72			1,4467	0,3590	0,8843	88,67
25	7,5	67,5			1,4390	0,3590	0,9082	88,17
30	7	63			1,4441	0,3583	0,8809	88,43
35	6,5	58,5			1,4418	0,3582	0,8808	88,60
40	6	54	+<c></c>					
50	5	45	+<c></c>					—
55	4,5	40,5	<c></c>	1,0734				—

1	2	3	4	5	6	7	8	9
65	3,5	31,5	<c></c>	1,0704	—	—	—	—
70	3	27	<c></c>	1,0677	—	—	—	—
80	2	18	<c></c>	1,0635		—	—	—
85	1,5	13,5	<c></c>	1,0627				

* При заданих умовах (T = 1500 °C, 50 год, у повітрі) гексагональна модифікація на основі А–La₂O₃ в зазначених складах не гартується, замість неї спостерігали утворення гексагональної модифікації гідроксиду на основі А–La(OH)₃. Позначення фаз: <A> – тверді розчини на основі гексагональної модифікації La₂O₃; – тверді розчини на основі моноклінної модифікації La₂O₃ і Sm₂O₃; <C> – тверді розчини на основі кубічної модифікації Y₂O₃; R – упорядкована фаза зі структурою типу перовскиту LaYO₃; сл. – сліди фази.

○ – однофазні, • – трифазні зразки

Рисунок 4.15 – Ізотермічний переріз діаграми стану системи $La_2O_3-Y_2O_3-Sm_2O_3$ при 1500 °C

В області з високим вмістом Y₂O₃ утворюються тверді розчини на основі кубічної модифікації оксиду ітрію. Достатньо протяжне поле вказаних твердих розчинів витягнуте вздовж подвійної системи La₂O₃–Sm₂O₃ і проходить відповідно до границь у обмежуючих подвійних системах La₂O₃–

 Y_2O_3 (85–100 мол. % Y_2O_3) і Y_2O_3 –Sm₂O₃ (46–100 мол. % Y_2O_3). Встановлено, що область гомогенності твердих розчинів на основі C– Y_2O_3 простягається від ~73 до 100 мол. % Y_2O_3 у перерізі Y_2O_3 –(50 мол. % La₂O₃–50 мол. % Sm₂O₃) (рис. 4.16) і від ~78 до 100 мол. % Y_2O_3 у перерізі Y_2O_3 –(90 мол. % La₂O₃–10 мол. % Sm₂O₃). Твердий розчин на основі кубічної модифікації C- Y_2O_3 більш чутливий до заміни катіона, ніж твердий розчин на основі кубічної понів кубічної гратки більша, ніж у ґратці В-типу, більш рихлої, порівняно з кристалічною граткою С-типу. Таким чином, утворюється насичений розчин Ln³⁺ в Y_2O_3 .

Рисунок 4.16 – Концентраційна залежність параметра *а* елементарної комірки твердих розчинів на основі C-Y₂O₃ у перерізі Y₂O₃–(50 мол. % La₂O₃–50 мол. % Sm₂O₃) у системі La₂O₃–Y₂O₃–Sm₂O₃ після випалу зразків при 1500 °C

У системі La₂O₃–Y₂O₃–Sm₂O₃ при 1500 °C утворюються тверді розчини на основі упорядкованої фази перовскиту. Межі області гомогенності R-фази проходять відповідно до границь у обмежуючій подвійній системі La₂O₃– Y₂O₃ 48–52 мол. % Y₂O₃. Область гомогенності фази типу перовскиту досить незначна у порівнянні з системою La₂O₃–Y₂O₃–Nd₂O₃ і становить ~2 мол. % Sm₂O₃ у перерізі Sm₂O₃–(50 мол. % La₂O₃–50 мол. % Y₂O₃). При додаванні іонів Sm³⁺ заміщення відбувається у вузлах A і B. Параметри елементарної комірки змінюються від a = 0,5837 нм, b = 0,6178 нм, c = 0,8399 нм для однофазного зразка (R) складу 2 мол. % Sm_2O_3-49 мол. % La_2O_3-49 мол. % Y_2O_3 до a = 0,5818 нм , b = 0,6158 нм, c = 0,8377 нм для двофазного зразка (R + B) складу 3 мол. % $Sm_2O_3-48,5$ мол. % $La_2O_3-48,5$ мол. % Y_2O_3 .

У системі La₂O₃-Y₂O₃-Sm₂O₃ при 1500 °C утворюється одна трифазна область B + C + R. Координати вершин конодного трикутника -<C>-R, наведено в таблиці 4.6.

Таблиця 4.6 – Координати вершин конодного трикутника в системі La₂O₃– Y₂O₃–Sm₂O₃ після випалу зразків при 1500 °C (за даними РФА)

Фаза	Ст	клад фаз, мол. %	
	Y ₂ O ₃	La ₂ O ₃	Sm ₂ O ₃
	45	44	11
<c></c>	71	15	14
<r></r>	49	48	3

У системі La₂O₃–Y₂O₃–Sm₂O₃ утворюється неперервний ряд твердих розчинів на основі моноклінної (В) модифікації оксидів РЗЕ. Межі області гомогенності В-фази проходять відповідно до її границь у подвійних системах La₂O₃–Y₂O₃ (30–35 мол. % Y₂O₃), Sm₂O₃–Y₂O₃ (36–46 мол. % Y₂O₃) і La₂O₃–Sm₂O₃ (41–76 мол. % Y₂O₃). Область гомогенності В-фази простягається від 18 до 40 мол. % Y₂O₃ у перерізі Y₂O₃–(50 мол. % La₂O₃– 50 мол. % Sm₂O₃). Концентраційні залежності параметрів елементарної комірки твердих розчинів на основі моноклінної (В) модифікації оксидів РЗЕ показано на рис. 4.17. Моноклінна (В) модифікація La₂O₃ (Sm₂O₃) присутня у двофазних (A + B), (B + R), (B + C) і трифазній (B + C + R) областях.

Область твердого розчину на основі гексагональної (А) модифікації оксидів РЗЕ має невелику протяжність її межа увігнута в напрямку зменшення вмісту оксиду ітрію і проходить відповідно до її границь у подвійних системах $La_2O_3-Y_2O_3$ (0–21 мол %. Y_2O_3) і $La_2O_3-Sm_2O_3$ (0–41 мол. % Sm_2O_3).

Рисунок 4.17 – Концентраційна залежність параметра *а* елементарної комірки твердих розчинів на основі В-фази у перерізі Y₂O₃–(50 мол. % La₂O₃–50 мол. % Sm₂O₃) у системі La₂O₃–Y₂O₃–Sm₂O₃ після випалу зразків при 1500 °C

Оксид самарію так само, як і оксиди лантану та неодиму, про які було зазначено у попередніх розділах, на повітрі гідратує і замість гексагональної Афази у зразках, які містять 100–55 мол. % Sm₂O₃ спостерігали утворення гексагональної модифікації на основі Sm(OH)₃.

За даними петрографії у двофазного (A + B) зразка складу 5 мол. % Y_2O_3 -47,5 мол. % La_2O_3 -47,5 мол. % Sm_2O_3 проявляються дві структурні складові (за даними РФА спостерігали одну) у вигляді прозорих частинок з яскравими кольорами інтерференції анізотропної В-фази, що становить основу, і анізотропної із світло сірими кольорами інтерференції А-фази, яка присутня у помітно меншій кількості. Вміст анізотропної В-фази помітно зростає зі збільшенням концентрації Y_2O_3 . Для зразка складу 10 мол. % Y_2O_3 -45 мол.% La_2O_3 -45 мол.% Sm_2O_3 виявлено тільки одну анізотропну В-фазу у вигляді частинок з високим рельєфом і середніми кольорами інтерференції від сірих до жовтих і червоних відтінків.

У системі $La_2O_3-Y_2O_3-Sm_2O_3$ протікають твердофазні процеси. Дифрактограми зразків системи $La_2O_3-Y_2O_3-Sm_2O_3$ після випалу при 1500 °C показано на рис. 4.18. З рисунка видно, що зі зменшенням вмісту оксиду самарію інтенсивність піків для В-фази зростає, а для складу 58,5 мол. % La_2O_3 -35 мол. % Y_2O_3 -6,5 мол. % Sm_2O_3 характерно утворення лише однієї В-фази.

a - 85,5 мол. % La₂O₃-5 мол. % Y₂O₃-9,5 мол. % Sm₂O₃, (A*-A-Sm(OH)₃); $\delta - 81$ мол. % La₂O₃-10 мол. % Y₂O₃-9 мол. % Sm₂O₃, (A*-A-Sm(OH)₃ + B-La₂O₃); $\epsilon - 67,5$ мол. % La₂O₃-25 мол. % Y₂O₃-7,5 мол. % Sm₂O₃, (A*-A-Sm(OH)₃ + B-La₂O₃); $\epsilon - 58,5$ мол. % La₂O₃-35 мол. % Y₂O₃-6,5 мол. % Sm₂O₃, (B-La₂O₃).

Рисунок 4.18 – Дифрактограми зразків системи La₂O₃-Y₂O₃-Sm₂O₃ після випалу при 1500 °C

117

Рисунок 4.18, аркуш 2

4.2.2 Ізотермічний переріз діаграми стану системи $La_2O_3-Y_2O_3-Sm_2O_3$ при 1600 °С

Для дослідження взято зразки, склади яких лежать на двох променях Y_2O_3 -(50 мол. % La₂O₃-50 мол. % Sm₂O₃) і Y_2O_3 -(90 мол.% La₂O₃-10 мол. % Sm₂O₃).

Вихідний хімічний і фазовий склади зразків після випалу при 1600 °С, параметри елементарних комірок фаз, які знаходяться у рівновазі при цій температурі, наведено у табл. 4.7.

При підвищенні температури до 1600 ° С у системі La₂O₃–Y₂O₃–Sm₂O₃ кількість фазових полів зменшується, порівнняно з 1500 °С, що обумовлено характером фазових рівноваг у подвійних системах.

За отриманими результатами побудовано ізотермічний переріз діаграми стану системи La₂O₃-Y₂O₃-Sm₂O₃ при 1600 °C (рис. 4.19).

о – однофазні, • – двофазні зразки

Рисунок 4.19 – Ізотермічний переріз діаграми стану системи $La_2O_3-Y_2O_3-Sm_2O_3$ при 1600 °C

Таблиця 4.7 – Вихідний хімічний і фазовий склади, параметри елементарних комірок фаз системи La₂O₃–Y₂O₃–Sm₂O₃ після випалу зразків при 1600 °C 10 год (за даними РФА та петрографії)

Xin	лічний с	клад,	Фазовий склад,	Парамо	Параметри елементарних комірок фаз, ни				
	мол. %)	параметри	-	-	-		-	
			елементарних комірок	<c></c>					
Y_2O_3	La ₂ O ₃	Sm ₂ O ₃	фаз, нм	а	а	b	С	в	
1	2	3	4	5	6	7	8	9	
-	_	U	Переріз У ₂ О ₂ —(50 мол %	La_2O_2-5	0 мол % S	m_2O_3	0		
0	50	50	<a*>(a=0.6458.</a*>			2 - 3)			
Ũ	00	00	c=0.3726, c/a=0.5770)						
5	47,5	47,5	< <u>A</u> *>+< <u>B</u> >	_	1,4041	0,3795	0,8440	76,57	
10	45	45	<a*>+</a*>		1,4016	0,3786	0,8438	76,52	
15	42,5	42,5			1,3988	0,3774	0,8427	76,42	
20	40	40			1,3968	0,3743	0,8398	76,70	
25	37,5	37,5	< <u>B</u> >		1,3931	0,3748	0,8386	76,186	
30	35	35	< <u>B</u> >		1,3911	0,3742	0,8369	76,04	
35	32,5	32,5			1,3868	0,3730	0,8356	75,98	
40	30	30	< <u>B</u> >		1,3837	0,3719	0,8337	75,96	
45	27,5	27,5	 + <С>сл.		1,3806	0,3709	0,8312	75,87	
50	25	25	 + <c></c>		1,3779	0,3699	0,8296	75,89	
55	22,5	22,5	+<c></c>	1,0748	1,3756	0,3693	0,8306	76,02	
60	20	20	+<c></c>	1,0739	1,3744	0,3692	0,8312	76,03	
65	17,5	17,5	+<c></c>	1,0739					
70	15	15	+<c></c>	1,0737					
75	12,5	12,5	<c></c>	1,0700		_			
80	10	10	<c></c>	1,0700		_			
85	7,5	7,5	<c></c>	1,0664					
90	5	5	<c></c>	1,0651					
95	2,5	2,5	<c></c>	1,0628					
100	0	0	<c></c>	1,0604		_			
			Переріз Y ₂ O ₃ — (90 мол. %	6 La ₂ O ₃ —	10 мол %S	m ₂ O ₃)			
0	90	10	<a*>(a=0,6482,</a*>	_		_	_		
			<i>c</i> =0,3739, <i>c/a</i> = 0,5768)						
5	85,5	9,5	<a*>(a=0,6484,</a*>		—			—	
			<i>c</i> =0,3757, <i>c/a</i> = 0,5794)						
15	76,5	8,5	<a*>(a=0,6500,</a*>	—			—	—	
			<i>c</i> =0,3752, <i>c/a</i> = 0,5772)						
20	72	8	<a*>(a=0,6455,</a*>		1,4829	0,3702	0,8862	91,67	
			<i>c</i> =0,3689, <i>c</i> / <i>a</i> = 0,5715) +						
			< <u>B></u>		1 1000	0.0.00	0.0000	0.1.1.0	
25	67,5	7,5	< <u>B></u>		1,4220	0,3690	0,8838	91,10	
30	63	·/	< <u>B></u>		1,4194	03674	0,8814	90,93	
35	58,5	6,5	< <u>B></u>		1,4175	0,3661	0,8773	90,16	
40	54	6	< <u>B></u>		1,4140	0,3646	0,8731	89,22	
45	49,5	5,5	< <u>B></u>		1,4101	0,3632	0,8938	90,70	
55	40,5	4,5	<в>+ <С>сл.		1,4056	0,3613	0,8922	89,18	
60	36	4	+<c></c>	1,0724	1,4048	0,3612	0,8905	89,25	

1	2	3	4	5	6	7	8	9
65	31,5	3,5	+<c></c>	1,0726	1,4045	0,3617	0,8910	88,00
70	27	3	+<c></c>	1,0722	1,4022	0,3677	0,8823	89,94
75	22,5	2,5	<В>сл. + <С>	1,0726			_	
80	18	2	<c></c>	1,0720			_	
85	13,5	1,5	<c></c>	1,0687	_			
90	9	1	<c></c>	1,0660				
95	4,5	0,5	<c></c>	1,0635				

Продовження таблиці 4.7

* При заданих умовах (T = 1600 °C, 10 год, у повітрі) гексагональна модифікація A–La₂O₃ в зазначених складах гідратує, замість неї спостерігали утворення гексагональної модифікації гідроксиду на основі A–La(OH)₃ Позначення фаз: <A> – тверді розчини на основі гексагональної модифікації La₂O₃; <C> – тверді розчини на основі кубічної модифікації Y₂O₃; – тверді розчини на основі моноклінної модифікації La₂O₃ і Sm₂O₃; сл. – сліди фази

Межі областей гомогенності утворених у системі фаз визначено відповідно до табл. 4.6 і концентраційних залежностей параметрів елементарної комірки твердих розчинів (рис. 4.21–4.25). Напрямок конод у двофазній області В + С визначено за параметрами елементарної комірки (*b*) В-фази. Слід звернути увагу на те, що параметри майже не змінюються у цьому напрямку (за перерізом Y_2O_3 –50% мол. La₂O₃–50 % мол. Sm₂O₃: 0,371 нм для складу 45 мол. % Y_2O_3 –27,5 мол. % La₂O₃–27,5 мол.% Sm₂O₃, 0,370 нм – 50 мол. % Y_2O_3 –25 мол. % La₂O₃–25 мол.% Sm₂O₃, 0,369 нм — 55 мол. % Y_2O_3 –22,5 мол. % La₂O₃–22,5 мол.% Sm₂O₃, 0,369 нм — 60 мол. % Y_2O_3 – 20 мол. % La₂O₃–20 мол.% Sm₂O₃; за перерізом Y_2O_3 –90% мол. La₂O₃–10 % мол. Sm₂O₃: 0,361 нм для складу 55 мол. % Y_2O_3 –40,5 мол. % La₂O₃–4,5 мол.% Sm₂O₃, 0,361 нм — 60 мол. % Y_2O_3 –36 мол. % La₂O₃–4 мол.% Sm₂O₃, 0,362 нм — 65 мол. % Y_2O_3 –31,5 мол. % La₂O₃–3,5 мол.% Sm₂O₃.

Область гомогенності С-фази проходить відповідно до її границь розчинності у обмежуючих подвійних системах $La_2O_3-Y_2O_3$ (85–100 мол. % Y_2O_3) і $Y_2O_3-Sm_2O_3$ (51–100 мол. % Y_2O_3) та має такий же вигляд, як і при 1500 °C. Поле твердих розчинів на основі С- Y_2O_3 простягається від 72 до 100 мол. % Y_2O_3 у перерізі $Y_2O_3-(50 \text{ мол. } \ La_2O_3-50 \text{ мол. } \ Sm_2O_3)$ (рис. 4.20) та від 78 до 100 мол. % Y_2O_3 у перерізі Y_2O_3 у перерізі $Y_2O_3-(90 \text{ мол. } \ La_2O_3-10 \text{ мол. } \ Sm_2O_3)$ (рис. 4.21).

Область гомогенності А-фази має невелику протяжність і увігнута в напрямку зменшення вмісту оксиду ітрію та проходить відповідно до її границь розчинності у обмежуючих подвійних системах $La_2O_3-Y_2O_3$ (0–27 мол. %. Y_2O_3) і $La_2O_3-Sm_2O_3$ (0–62 мол. % Sm_2O_3).

У вказаній системі утворюється неперервний ряд твердих розчинів на основі моноклінної модифікації B-La₂O₃ (Sm₂O₃), який займає найбільшу площу ізотермічного перерізу. Оксид ітрію стабілізує повну взаємну розчинність оксидів лантану та самарію (r(La₂O₃) = 0,114 нм, r(Sm₂O₃) = 0,100 нм, r(Y₂O₃) = 0,092 нм). Параметри елементарної комірки В-фази зменшуються, об'єм ґратки при додаванні більш важкого іона збільшується, густина відповідно також збільшується, а гратка твердих розчинів на основі В-форми оксидів РЗЕ зі збільшенням концентрації оксиду ітрію стає більш щільно упакованою. Область гомогенності В-фази у перерізі Y₂O₃-(50 мол. % La₂O₃ - 50 мол. % Sm₂O₃) простягається від 18 до 40 мол. % Y2O3 при 1500 °C (рис. 4.17) та від 14 до 44 мол. % Y₂O₃ при 1600 °C (рис. 4.22). При 1600 °C у перерізі Y₂O₃-(90 мол. % La₂O₃-10 мол. % Sm₂O₃) концентраційна границя, яка розділяє двофазну область (А + В) від однофазної (В), становить 24 мол. % У2О3 (рис. 4.23). Параметри елементарної комірки В-фази у перерізі У₂О₃-(50 мол. % La₂O₃ - 50 мол. % Sm₂O₃) змінюються від a = 1,3988 нм, b = 0,3774 нм, c = 0,8427 нм для однофазного зразка (B) складу 15 мол. % Y₂O₃-42,5 мол. % La₂O₃-42,5 мол. % Sm_2O_3 до a = 1,3806, b = 0,3709, c = 0,8312 нм для граничного складу твердого розчину 45 мол. % Y₂O₃-27,5 мол. % La₂O₃-27,5 мол. % Sm₂O₃ (1600 °C).

Для визначення розташування меж фазових полів разом з даними РФА про фазовий склад зразків використовували петрографічні дослідження. Так, у двофазному (C + B) зразку складу 45 мол. % Y_2O_3 –27,5 мол. % La_2O_3 –27,5 мол. % Sm₂O₃ чітко проявляються дві структурні складові: анізотропна фаза B-Sm₂O₃, що становить основу, та ізотропна C-фаза, яка присутня у помітно меншій кількості, тоді як для зразка складу 40 мол. % Y_2O_3 –30 мол. % Sm₂O₃ характерна лише одна анізотропна B-фаза.

Рисунок 4.20 – Концентраційна залежність параметра *a* елементарної комірки фаз твердих розчинів на основі C-Y₂O₃ у перерізі Y₂O₃–(50 мол. % La₂O₃–50 мол. % Sm₂O₃) у системі La₂O₃–Y₂O₃–Sm₂O₃ після випалу зразків при 1600 °C

Рисунок 4.21 – Концентраційна залежність параметра *a* елементарної комірки твердих розчинів на основі C-Y₂O₃ у перерізі Y₂O₃–(90 мол. % La₂O₃–10 мол. % Sm₂O₃) системи La₂O₃–Y₂O₃–Sm₂O₃ після випалу зразків при 1600 °C

Рисунок 4.22 – Концентраційна залежність параметра c елементарної комірки твердих розчинів на основі В-типу оксидів РЗЕ у перерізі Y_2O_3 – (50 мол. % La_2O_3 –50 мол. % Sm_2O_3) системи La_2O_3 – Y_2O_3 – Sm_2O_3 після випалу зразків при 1600 °C

Рисунок 4.23 – Концентраційна залежність параметра *a* елементарної комірки твердих розчинів на основі В-типу оксидів РЗЕ у перерізі Y_2O_3 -(90 мол. % La₂O₃-10 мол. % Sm₂O₃) системи La₂O₃-Y₂O₃-Sm₂O₃ після випалу зразків при 1600 °C

Дифрактограми зразків, які характеризують фазові поля, присутні в системі La₂O₃-Y₂O₃-Sm₂O₃ при 1600 °C, представлено на рис. 4.24.

a –50 мол. % La₂O₃–50 мол. % Sm₂O₃–0 мол. % Y₂O₃ (A*–A-Sm(OH)₃); *б* –47,7 мол. % La₂O₃–47,5 мол. % Sm₂O₃–5 мол. % Y₂O₃ (A + B); *в* –32,5 мол. % La₂O₃–32,5 мол. % Sm₂O₃–35 мол. % Y₂O₃ (B); *г* –31,5 мол. % La₂O₃–3,5 мол. % Sm₂O₃–65 мол. % Y₂O₃ (B + C); *д* – 13,5 мол. % La₂O₃–1,5 мол. % Sm₂O₃–85 мол. % Y₂O₃ (C)

Рисунок 4.26 – Дифрактограми зразків системи La₂O₃–Y₂O₃–Sm₂O₃ після випалу при 1600 °C

Рисунок 4.26, аркуш 2

3.3 Фазові рівноваги у системі La2O3-Y2O3-Eu2O3 при 1500, 1600 °C

4.3.1 Ізотермічний переріз діаграми стану системи La₂O₃-Y₂O₃-Eu₂O₃ при 1500 °C

Для дослідження приготовлено зразки, склади яких лежать на трьох променях: $Y_2O_3 - (50 \text{ мол. } \% \text{ La}_2O_3-50 \text{ мол. } \% \text{ Eu}_2O_3)$, $\text{Eu}_2O_3 - (50 \text{ мол. } \% \text{ La}_2O_3-50 \text{ мол. } \% \text{ Eu}_2O_3)$, $\text{Eu}_2O_3 - (50 \text{ мол. } \% \text{ La}_2O_3-50 \text{ мол. } \% \text{ La}_2O_3-10 \text{ мол. } \% \text{ Eu}_2O_3)$ та двох ізоконцентратах 50 мол. $\% Y_2O_3$ і 55 мол. $\% \text{ La}_2O_3$.

Вихідний хімічний і фазовий склади зразків, випалених при 1500 °С, параметрів елементарних комірок фаз, що знаходяться у рівновазі при заданій температурі, наведено в таблиці 4.8.

Встановлено, що при 1500 °С у системі La₂O₃–Y₂O₃–Eu₂O₃ утворюються поля твердих розчинів на основі кубічної (С) модифікації Y₂O₃, гексагональної (А) модифікації La₂O₃ і моноклінної (В) модифікацій La₂O₃ і Eu₂O₃, а також впорядкованої фази типу перовскиту LaYO₃ (R). Нові фази не виявлено. Характер фазових рівноваг визначає будова обмежуючих подвійних систем.

На основі отриманих результатів побудовано ізотермічний переріз діаграми стану системи La₂O₃–Y₂O₃–Eu₂O₃ при 1500 °C (рис. 4.24).

В області з високим вмістом Y_2O_3 утворюються тверді розчини на основі кубічної модифікації оксиду ітрію. Достатньо протяжне поле вказаних твердих розчинів проходить відповідно до границь розчинності у подвійних системах La₂O₃–Y₂O₃ (85–100 мол. % Y₂O₃) і Y₂O₃–Eu₂O₃ (41–100 мол. % Y₂O₃). Область гомогенності C-фази простягається від 83 до 100 мол. % Y₂O₃ у перерізі Y₂O₃–(50 мол. % La₂O₃–50 мол. % Eu₂O₃), (рис. 4.25). Кубічну модифікацію C-Y₂O₃ спостерігали у двофазних (C + B, C + R) і трифазній (R + C + B) областях.

Таблиця 4.8 – Вихідний хімічний і фазовий склади, параметри елементарних комірок фаз системи La₂O₃–Y₂O₃–Eu₂O₃ після випалу зразків при 1500 °C, 50 год (за даними РФА і петрографії)

Хімічний склад,			Фазовий	Параметри елементарної комірки фаз, нм						3, HM
	мол. %		склад і				<b< td=""><td>8></td><td></td><td><c></c></td></b<>	8>		<c></c>
			параметри							
La_2O_3	Y_2O_3	Eu_2O_3	елементарної		a		b	С	β	а
			комірки фаз, нм			-	-	_		-
1	2	3	4 ·	0	$\frac{5}{\sqrt{1-c}}$		6	$\frac{7}{1}$	8	9
		lle	реріз Y_2O_3 —(50 м	ол. %	$^{\circ}$ La ₂ C) ₃ —	-50 мол.	$.\% Eu_2O_3)$		
50	0	50	<a*>(a = 0.6463)</a*>	3,	1,447	9	0,3602	0,9501	87,227	
			c = 0,3895) + <b< td=""><td>></td><td></td><td></td><td></td><td></td><td></td><td>—</td></b<>	>						—
47,5	5	48,5	$(a=0,6465)$	5,	1,464	7	0,3677	0,8773	89,385	
			c = 0,3875) + <b< td=""><td>></td><td></td><td></td><td></td><td></td><td></td><td>—</td></b<>	>						—
45	10	45	$(a=0.6549)$	Э,	1,415	9	0,3677	0,7901	84,764	
10.5	1.5	10.5	c = 0.38/1) + <b< td=""><td>></td><td>1 4 6 5</td><td>1</td><td>0.2651</td><td>0.0754</td><td>00.100</td><td>—</td></b<>	>	1 4 6 5	1	0.2651	0.0754	00.100	—
42,5	15	42,5	$(a = 0.65)^{2}$	4,	1,465	1	0,3651	0,8754	88,132	
40	20	40	C = 0,3851) + < B.	>	1 150	4	0 2642	0.0064	00 127	
40	20	40	$< A^{-} > (a = 0.039)$	J, \	1,438	4	0,3043	0,9004	00,157	
37.5	25	37.5	(-0,3042) + (D)	/	1 / 61	0	0 3632	0 8991	88 304	
35	30	35	< <u>B></u>		1,401 1 458	0	0,3629	0,0771	88 464	
32.5	35	32.5	< <u>B></u>		1,450	.1	0,3610	0,9010	88 453	
30	40	30	< <u>B></u>		1,452	1	0.3606	0.8988	89.054	
27.5	45	27.5	< <u>B</u> >		1.344	.7	0.3621	0.8648	82.378	
25	50	25	+ <c>+R</c>		1.347	4	0.3615	0.8754	82,530	1.0731
			(a = 0,5851,		,		,	,	,	,
			b = 0,6201,							
			c = 0,8500)							
22,5	55	22,5	+ <c>+R</c>	2	1,370	7	0,3699	0,8675	76,550	1,0752
			(a = 0,5851,							
			b = 0,6091,							
•		•	c = 0,8502)		1 0 0 0	0	0.0.07	0.0001	00.040	1.0540
20	60	20	$\langle B \rangle + \langle C \rangle + R$	-	1,333	9	0,3625	0,8831	82,360	1,0748
			(a = 0,5969, b = 0.6102)							
			b = 0.0195, c = 0.8441)							
17.5	65	17.5	C = 0,0441)							1 0748
17,5	05	17,5	(a = 0.5847)						_	1,0740
			b = 0.6065.							
			c = 0,8525)							
15	70	15	<С>+ Rсл.						_	1,0729
12,5	75	12,5	<С>+ Rсл.					_	1 _	1,0708
10	80	10	<c>+ Rсл.</c>		_			—	1 _	1,0683
7,5	85	7,5	<c></c>		_					1,0667
5	90	5	<c></c>					—		1,0635
2,5	95	2,5	<c></c>					_		1,0623
0	100	0	<c></c>							1,0604

Продовження таблиці 4.7

1	2	3	4	5	6	7	8	9
		Пе	реріз Eu ₂ O ₃ —(50 мол.	% La ₂ O ₃ -	—50 мол.	% Y ₂ O ₃)		
50	50	0	R(a = 0,587)					
			b = 0,6084,	—		—	—	—
			c = 0,8489)					
49,5	49,5	1	R ($a = 0,5824$,	—	—	—	—	—
			<i>b</i> = 0,6138,					
			c = 0,8484)					
49	49	2	R $(a = 0.5830)$					
			b = 0.6174.	_	_		_	_
			c = 0.8388)					
48,5	48,5	3	R ($a = 0.5829$,					
,	,		b = 0.6153,	_	_	_	_	_
			c = 0,8513)					
48	48	4	R ($a = 0,5824$,					
			b = 0,6171,	—	—	—	—	_
			c = 0,8399)					
47,5	47,5	5	R (<i>a</i> = 0,5829,					
			b = 0,6054,	—	—	—	—	—
			<i>c</i> = 0,8755) + 					
45	45	10						
42,5	42,5	15		—	—	_	—	_
40	40	20		1,4085	0,3624	0,8711	85,4016	_
37,5	37,5	25		1,4086	0,3628	0,8709	85,5478	
35	35	30		1,4064	0,3625	0,8697	85,5456	
32,5	32,5	35		1,4067	0,3626	0,8706	85,5840	
30	30	40		1,4048	0,3626	0,8692	85,4803	—
27,5	27,5	45		1,4036	0,3622	0,8693	85,5560	_
25	25	50		1,4039	0,3623	0,8696	85,4185	_
22,5	22,5	55		1,4024	0,3617	0,8684	85,4772	
20	20	60		1,4009	0,3623	0,8692	85,5095	_
17,5	17,5	65		1,3993	0,3618	0,8684	85,6391	—
15	15	70		1,3995	0,3617	0,8685	85,7015	—
12,5	12,5	75		1,3975	0,3615	0,8673	85,6721	—
10	10	80		1,3964	0,3609	0,8671	85,6918	_
7,5	7,5	85		1,3945	0,3611	0,8666	85,7891	
5	5	90		1,3892	0,3602	0,8661	85,2303	
2,5	2,5	95		1,3928	0,3609	0,8654	85,8200	—
0	0	100		1,4379	0,3601	0,8650	88,3549	—
		Пе	реріз Y ₂ O ₃ —(90 мол. 9	$\% \text{ La}_2\text{O}_3$ -	–10 мол. %	$\sqrt{6} \operatorname{Eu}_2 O_3$		
90	0	10	$(a=0,6503,$					
			c = 0,3830)				—	
85,5	5	9,5	$(a=0,6492,$					_
			<i>c</i> = 0,3811)					
81	10	9	$(a=0,6484,$	—	—	—	_	—
			<i>c</i> = 0,3799)					
76,5	15	8,5	<A*> $(a = 0,6470,$	—	—	—	_	—
			$c = 0,3776) + \langle B \rangle$ сл.					

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2	3	4	5	6	7	8	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	72	20	8	<a*>(<i>a</i> = 0,6469,</a*>	1,4623	0,3632	0,8847	85,6509	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$c = 0,3754) + \langle B \rangle$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	67,5	25	7,5	$(a=0,6467,$	1,4626	0,3652	0,8799	82,2601	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$c = 0,3878) + \langle B \rangle$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	63	30	7	$(a = 0,6462,$	1,4626	0,3647	0,8771	82,3184	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				$c = 0,3873) + \langle B \rangle$,	,	, ,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	40	6	<А*>сл. + <В>	1,3517	0,5581	0,8753	86,9516	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49,5	45	5,5	 + R	1,3577	0,3660	0,8918	82,3225	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	45	50	5	<c> + R</c>					1,0728
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				(a = 0,5816,		—		—	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				b = 0,6131,					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				c = 0,8460)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	40,5	55	4,5	<c> + R</c>					1,0724
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				(a = 0,5813,	—	—	—	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				<i>b</i> = 0,6136,					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				c = 0,8442)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	36	60	4	$\langle C \rangle + R$					1,0719
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				(a = 0,5825,	—	—	—	—	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				b = 0,6085,					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				c = 0,8350)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	31,5	65	3,5	$\langle C \rangle + R$					1,0714
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				(a = 0,5843,	—	—		—	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				b = 0,6148,					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				c = 0,8406)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	27	70	3	$\langle C \rangle + R$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				(a = 0,5836,	—	—	—	—	1,0725
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				b = 0,6069,					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				c = 0,8613)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22,5	75	2,5	$\langle C \rangle + R$					1,0712
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				(a = 0,5836,	—	—		—	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				b = 0,6090,					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	00	2	c = 0.8361)					1.0711
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	80	2	$R + \langle C \rangle$					1,0711
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13,5	85	1 7	0					1.0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	00	1,5	< <u>C></u>					1,0696
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	90 90	1,5 1	<c> <c></c></c>					1,0696 1,0655
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 4,5	90 95	1,5 1 0,5	<c> <c> <c></c></c></c>		— — —			1,0696 1,0655 1,0627
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 4,5	90 95	1,5 1 0,5	< <u>C></u> < <u>C></u> < <u>C></u> < <u>C></u> < <u>C></u> < <u>C></u> < <u>Iзоконцентрати</u>	— — и 55 мол. ^с				1,0696 1,0655 1,0627
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 4,5 55	90 95 45	1,5 1 0,5 0	<С> <С> <С> Ізоконцентрати + R	<u>—</u> — и 55 мол. ⁶ 1,4174	— — % La ₂ O ₃ 0,3656	 0,8782	 85,4141	1,0696 1,0655 1,0627
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9 4,5 55	90 95 45	1,5 1 0,5 0	<c> <c> <c> Ізоконцентрати + R (<i>a</i> = 0,5839, <i>b</i> = 0,6114</c></c></c>	<u>—</u> — и 55 мол. ^с 1,4174	— — % La ₂ O ₃ 0,3656	 0,8782	 85,4141	1,0696 1,0655 1,0627
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9 4,5 55	90 95 45	1,5 1 0,5 0	< <u><</u> C> <c><c>Ізоконцентрати + R(a = 0,5839,b = 0,6114,a = 0,8401)</c></c>	<u>—</u> — и 55 мол. ⁶ 1,4174	— — % La ₂ O ₃ 0,3656	 0,8782	 85,4141	1,0696 1,0655 1,0627
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9 4,5 55	90 95 45	1,5 1 0,5 0	<c> <c> <c> Iзоконцентрати + R (a = 0,5839, b = 0,6114, c = 0,8491) B + < D></c></c></c>	<u>—</u> — и 55 мол. ⁶ 1,4174	- - % La ₂ O ₃ 0,3656	 0,8782	 85,4141	1,0696 1,0655 1,0627
$\begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	9 4,5 55 55	90 95 45 40	1,5 1 0,5 0 5	<c> <c> <c></c></c></c>	<u>—</u> <u>—</u> 1,4174 1,4172		 0,8782 0,8764		1,0696 1,0655 1,0627
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9 4,5 55 55	90 95 45 40	1,5 1 0,5 0 5 10	<c> <c> <c> I30K0HUEHTPATH<math> + R (a = 0,5839, b = 0,6114, c = 0,8491) R + </math></c></c></c>	<u>—</u> <u>—</u> а 55 мол. ⁶ 1,4174 1,4172		 0,8782 0,8764		1,0696 1,0655 1,0627
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 4,5 55 55 55 55	90 95 45 40 35	1,5 1 0,5 0 5 10	$ Iзоконцентрати + R (a = 0,5839, b = 0,6114, c = 0,8491) R + (a = 0,6529, c = 0,3918) + $	<u>—</u> <u>—</u> а 55 мол. ⁶ 1,4174 1,4172 1,4173		 0,8782 0,8764 0,8796		1,0696 1,0655 1,0627
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 4,5 55 55 55 55	90 90 95 45 40 35 30	1,5 1 0,5 0 5 10 15	$ IЗОКОНЦЕНТРАТИ + R (a = 0,5839, b = 0,6114, c = 0,8491) R + (a = 0,6529, c = 0,3918) + (a = 0,6503$	<u>—</u> <u>—</u> 1,4174 1,4172 1,4173				1,0696 1,0655 1,0627 —
$\begin{vmatrix} 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 $	9 4,5 55 55 55 55 55	90 90 95 45 40 35 30	1,5 1 0,5 0 5 10 15	$ \\ \\ \\ \\ \\ \\ \\ \\ +R \\ (a = 0,5839, \\ b = 0,6114, \\ c = 0,8491) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	<u>—</u> <u>—</u> 1,4174 1,4172 1,4173 1,4173				1,0696 1,0655 1,0627
	9 4,5 55 55 55 55 55	90 95 45 40 35 30 25	$ \begin{array}{c} 1,5 \\ 1 \\ 0,5 \\ \hline 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ \end{array} $	$ Iзоконцентрати + R (a = 0,5839, b = 0,6114, c = 0,8491) R + (a = 0,6529, c = 0,3918) + (a = 0,6593, c = 0,3866) + (a = 0,6514$	<u>—</u> <u>—</u> 4 55 мол. ⁶ 1,4174 1,4172 1,4173 1,4173				1,0696 1,0655 1,0627

1	2	3	4	5	6	7	8	9
55	20	25	$(a = 0.6583,$	1,4182	0,3670	0,8764	85,5213	
			$c = 0,3874) + \langle B \rangle$, ,	,	,	,	_
55	15	30	$(a=0,6603,$	1,4194	0,3678	0,8815	86,7555	
			<i>c</i> = 0,3863) + 					—
55	10	35	$(a = 0,6609,$	1,4195	0,3684	0,8830	86,6551	
			<i>c</i> = 0,3899) + 					
55	5	40	$(a = 0,6606,$	1,4177	0,3685	0,8809	86,4780	
			<i>c</i> = 0,3902) + 					
55	0	45	$(a = 0,6501,$					
			$c = 0,3857) + \langle B \rangle$ сл.		—	—	—	
			Ізоконцентрат	ти 50 мол.	% Y ₂ O ₃		•	
48	50	2	R ($a = 0,5824$,					
			b = 0,6189,			—		—
			<i>c</i> = 0,8496)					
47	50	3	R ($a = 0,5827$,					
			b = 0,6192,		—	—	_	—
			<i>c</i> = 0,8469)					
46	50	4	R ($a = 0,5819$,					
			b = 0,6188,			—		
		• •	$c = 0.8479) + \langle C \rangle$					
30	55	20	$\langle B \rangle + \langle C \rangle + R$	1 4010	0.0.01	0.0545	00.0470	1 0 5 0 0
			(a = 0,5775,	1,4012	0,3601	0,8747	89,9458	1,0738
			b = 0,6209,					
20	50	20	c = 0.84/8					
20	50	30	$\langle B \rangle + \langle C \rangle + R$	1 2020	0.2596	0.0770	00.0514	1.0720
			(a = 0.5631,	1,3939	0,3586	0,8779	90,0514	1,0728
			b = 0.0220, a = 0.8585)					
15	50	25	$\mathcal{C} = (0, \delta 3 \delta 3)$					
15	- 50	55	< D> + < C> + K (a = 0.5622	1 2022	0 2592	0 9701	00 0777	1 0742
			a = 0,3032, b = 0.6230	1,3932	0,3363	0,0701	90,0777	1,0743
			v = 0.0230, c = 0.8572)					
			(-0.0372)					

* При заданих умовах (T = 1500 °C, 50 год, у повітрі) гексагональна модифікація A– La₂O₃ в зазначених складах гідратує, замість неї спостерігали утворення гексагональної модифікації гідроксиду на основі A–La(OH)₃. Позначення фаз: <A> – тверді розчини на основі гексагональної модифікації La₂O₃; <C> – тверді розчини на основі кубічної модифікації Y₂O₃; – тверді розчини на основі моноклінної модифікації La₂O₃ і Eu₂O₃, R – упорядкована фаза типу перовскиту LaYO₃; сл. – сліди фази.

○ – однофазні, • – двофазні, • – трифазні зразки

Рисунок 4.24 – Ізотермічний переріз діаграми стану системи La₂O₃–Y₂O₃–Eu₂O₃ при 1500 °C

У системі La₂O₃--Y₂O₃--Eu₂O₃ при 1500 °C утворюється область твердих розчинів на основі упорядкованої фази LaYO₃(R). Межі області гомогенності R-фази проходять відповідно до її границь розчинності у обмежуючій подвійній системі La₂O₃--Y₂O₃ 48-52 мол. % Y₂O₃. Область гомогенності фази типу перовскиту становить ~4 мол. % Eu₂O₃ у перерізі Eu₂O₃--(50 мол. % La₂O₃--50 мол. % Y₂O₃). Параметри елементарної комірки змінюються від a = 0,5830 нм, b = 0,6174 нм, c = 0,8388 нм для однофазного зразка (R) складу 2 мол. % Eu₂O₃--49 мол. % La₂O₃--49 мол. % Y₂O₃ до a = 0,5829 нм, b = 0,6054 нм, c = 0,8755 нм для двофазного зразка (R + B) складу 5 мол. % Eu₂O₃-47,5 мол. % La₂O₃-47,5 мол. % Y₂O₃.

У системі $La_2O_3-Y_2O_3-Eu_2O_3$ при 1500 °C утворюється одна трифазна область B + C + R. Координати вершин конодного трикутника -<C>-R, наведено в таблиці 4.9.

Рисунок 4.25 – Концентраційна залежність параметра *a* елементарної комірки твердих розчинів на основі C-Y₂O₃ у перерізі Y₂O₃–(50 мол. % La₂O₃–50 мол. % Eu₂O₃) системи La₂O₃–Y₂O₃–Eu₂O₃ після випалу зразків при 1500 °C

Таблиця 4.9 – Координати вершин конодного трикутника в системі La₂O₃– Y₂O₃–Eu₂O₃ після випалу зразків при 1500 °C (за даними РФА)

Фаза	Ci	клад фаз, мол. %					
	Y ₂ O ₃	La ₂ O ₃	Eu ₂ O ₃				
	45 25 35						
<c></c>	72	9	19				
<r></r>	49	46	5				

У вказаній системі утворюється неперервний ряд твердих розчинів на основі моноклінної (В) модифікації оксидів РЗЕ. Межі області гомогенності В-фази проходять відповідно до її границь в обмежуючих подвійних системах $La_2O_3-Y_2O_3$ (30–35 мол. % Y_2O_3), $Eu_2O_3-Y_2O_3$ (0–32 мол.% Y_2O_3) і $La_2O_3-Eu_2O_3$ (82–100 мол. % Eu_2O_3).

Поле твердих розчинів на основі гексагональної (А) модифікації оксиду лантану має невелику протяжність. Межа області гомогенності A-La₂O₃ увігнута в напрямку зменшення вмісту оксиду ітрію і проходить відповідно

до її границь розчинності в обмежуючих подвійних системах $La_2O_3-Y_2O_3$ (0–21 мол. % Y_2O_3) і $La_2O_3-Eu_2O_3$ (0–28 мол.% Eu_2O_3). Поле твердих розчинів на основі A-La₂O₃ простягається від 0 до 14 мол. % Y_2O_3 у перерізі $Y_2O_3 - (90 \% La_2O_3-10 \% Eu_2O_3)$, (рис. 4.26).

Рисунок 4.26 – Концентраційна залежність параметра *a* елементарної комірки твердих розчинів на основі A-La(OH)₃ у перерізі Y₂O₃–(90 мол. % La₂O₃–10 мол. % Eu₂O₃) системи La₂O₃–Y₂O₃–Eu₂O₃ після випалу зразків при 1500 °C

Для визначення положення границь фазових полів разом з даними РФА про фазовий склад зразків використовували петрографічні дослідження. Доповнено дані РФА для двофазного (C + B) зразка складу 40 мол. % Y_2O_3 – 30 мол. % La₂O₃–30 мол. % Eu₂O₃. У цьому зразку чітко проявляються дві структурні складові: ізотропна напівпрозора фаза C-Y₂O₃, що становить основу, та анізотропна з яскравими кольорами інтерференції і високим рельєфом В-фаза, яка присутня у значно меншій кількості. Вміст анізотропної В-фази помітно зменшується зі збільшенням концентрації Y₂O₃. Для зразка складу 85 мол. % Y₂O₃–7,5 мол. % La₂O₃–7,5 мол. % Eu₂O₃ виявлена тільки одна ізотропна фаза – C-Y₂O₃.

Дифрактограми зразків системи La₂O₃-Y₂O₃-Eu₂O₃ після їх випалу при 1500 °С представлено на рис. 4.27.

a - 90 мол. % La₂O₃-0 мол. % Y₂O₃-10 мол. % Eu₂O₃, (A-La(OH)₃), $\delta - 67,5$ мол. % La₂O₃-25 мол. % Y₂O₃-7,5 мол. % Eu₂O₃, (A-La(OH)₃ + B-La₂O₃), e - 49,5 мол. % La₂O₃-45 мол. % Y₂O₃-5,5 мол. % Eu₂O₃, (B-La₂O₃), e - 22,5 мол. % La₂O₃-75 мол. % Y₂O₃-2,5 мол. % Eu₂O₃, (C-Y₂O₃ + R), $\partial - 4,5$ мол. % La₂O₃-95 мол. % Y₂O₃-0,5 мол. % Eu₂O₃, (C-Y₂O₃)

Рисунок 4.27 – Дифрактограми зразків системи La₂O₃–Y₂O₃–Eu₂O₃, випалених при 1500 °C

135

Мікроструктури зразків, що характеризують однофазні області C-Y₂O₃ та B-Eu₂O₃ при температурі дослідження, представлено на рис. 4.28, а–в. Мікроструктура двофазного зразка (B + A) складу 35 мол. % Y₂O₃–58,5 мол. % La₂O₃--6,5 мол. % Eu₂O₃ складається з рельєфних зерен (рис. 4.28, г). Крім того, спостерігається утворення інтеркристалітних тріщин, які йдуть по межі зерен, але ϵ і транскристалітні тріщини, які проходять по тілу зерна. А- і В-форми La₂O₃ слабо розрізняються за контрастом. Зміну мікроструктури двофазних зразків (C + R) залежно від концентрації оксиду ітрію можна чітко простежити на рис. 4.28, д-з. За даними мікрорентгеноспектрального аналізу темна область належить C-Y₂O₃, світла фаза – LaYO₃ (R), що підтверджено даними РФА і петрографії. Зі збільшенням вмісту оксиду ітрію кількість фази типу перовскиту зменшується, змінюється морфологія зразків, з'являються пори, характерні для більш крихкої C-фази. Мікроструктуру трифазного зразка (B + C + R) складу 50 мол. % Y₂O₃-25 мол. % La₂O₃-25 мол. % Eu₂O₃ представлено на рис. 4.28, и. Матрицю становить світла фаза – LaYO₃ (R), в якій присутні темні, дуже дрібнозернисті точкові включення кубічної модифікації C-Y₂O₃, сіра фаза належить моноклінній B-формі La₂O₃ і спостерігається у невеликій кількості.

a) 100 мол. % Y₂O₃–0 мол. % La₂O₃–0 мол. % Eu₂O₃, ×400; б) 0 мол. % Y₂O₃–0 мол. % La₂O₃–100 мол. % Eu₂O₃, ×2000; в) 0 мол. % Y₂O₃–0 мол. %La₂O₃–100 мол. % Eu₂O₃, ×400; г) 35 мол. % Y₂O₃–58.5 мол. % La₂O₃–6.5 мол. % Eu₂O₃, ×400; д) 60 мол. % Y₂O₃–36 мол. % La₂O₃–4 мол. % Eu₂O₃, ×400; е) 65 мол. %Y₂O₃–31,5 мол. %La₂O₃– 3,5 мол. %Eu₂O₃, ×400; ж) 70 мол. %Y₂O₃–27 мол. % La₂O₃–3 мол. % Eu₂O₃, ×400; з) 70 мол. % Y₂O₃–27 мол. % La₂O₃–3 мол. % Eu₂O₃, ×2000; и) 50 мол. % Y₂O₃–25 мол. % La₂O₃–25 мол. % Eu₂O₃, ×400

Рисунок 4.28 – Мікроструктури зразків системи La₂O₃–Y₂O₃–Eu₂O₃ після випалу при 1500 °C, BSE

Рисунок 4.28, аркуш 2

4.3.2 Ізотермічний переріз діаграми стану системи La₂O₃-Y₂O₃-Eu₂O₃ при 1600 °C

Для дослідження взято зразки, склади яких лежать на двох променях $Y_2O_3 -$ (50 мол. % La₂O₃-50 мол. % Eu₂O₃) і Y_2O_3 - (90 мол. % La₂O₃-10 мол. % Eu₂O₃).

Вихідний хімічний і фазовий склади зразків після випалу при 1600 °С, параметри елементарних комірок фаз, які знаходяться у рівновазі при даній температурі, наведено у табл. 4.10.

Встановлено, що при 1600 °С у системі La₂O₃–Y₂O₃–Eu₂O₃ утворюються поля твердих розчинів на основі кубічної (С) модифікації Y₂O₃, гексагональної (А) модифікації La₂O₃ і моноклінної (В) модифікації La₂O₃ та Eu₂O₃. Нові фази не виявлено. Характер фазових рівноваг у потрійній системі визначає будова обмежуючих подвійних систем.

За отриманими результатами побудовано ізотермічний переріз діаграми стану системи La₂O₃-Y₂O₃-Eu₂O₃ при 1600 °C (рис. 4.29).

Таблиця 4.10 – Вихідний хімічний і фазовий склади, параметри елементарних комірок фаз системи La₂O₃–Y₂O₃–Eu₂O₃ після випалу зразків при 1600 °C 10 год (за даними РФА та петрографії)

Хімічний склад, % мол.			Фазовий склад, параметри елементарних	Параметри елементарних комірок фаз, нм					
			комірок фаз, нм	<c></c>					
Y_2O_3	La_2O_3	Eu ₂ O ₃		а	а	b	С	β	
1	2	3	4	5	6	7	8	9	
]	Переріз У ₂ О ₃ —50 мол	1. % La ₂ O ₃	—50 мол. 9	6 Eu ₂ O3			
0	50	50	<a*>+</a*>					—	
5	47,5	47,5	<a*>+</a*>		1,4697	0,3690	0,8789	88,3664	
10	45	45		_	1,4675	0,3666	0,8757	88,1707	
15	42,5	42,5			1,4651	0,3656	0,8721	88,0465	
20	40	40			1,4616	0,3644	0,8947	88,3475	
25	37,5	37,5		_	1,4593	0,3630	0,8928	88,1901	
30	35	35		_	1,4580	0,3618	0,8906	88,3465	
35	32,5	32,5		_	1,4557	0,3612	0,8899	88,1796	
40	30	30			1,4549	0,3603	0,8873	88,3914	
45	27,5	27,5	+<c></c>	1,0643	1,4529	0,3588	0,8847	88,2573	
50	25	25	+<c></c>	1,0725	1,4485	0,3580	0,8826	88,2313	
55	22,5	22,5	+<c></c>	1,0703	1,4483	0,3580	0,8838	88,2944	
60	20	20	+<c></c>	1,0721	1,4510	0,3580	0,8864	88,5167	
65	17,5	17,5	<В>сл. + <С>	1,0727	_	_	_	_	
70	15	15	<c></c>	1,0717	_	_	_	_	
75	12,5	12,5	<c></c>	1,0702	_				
80	10	10	<c></c>	1,0681					
85	7,5	7,5	<c></c>	1,0661		_		—	
90	5	5	<c></c>	1,0637		_		—	
95	2,5	2,5	<c></c>	1,0617	_	_		—	
100	0	0	<c></c>	1,0604	—	—	—	—	
	I	П	ереріз У ₂ О ₃ —(90 мол	I. % La ₂ O ₃	—10 мол %	6. Eu ₂ O3)	I		
0	90	10	<a*></a*>						
			(<i>a</i> =0,6514, <i>c</i> =0,3819,						
			<i>c/a</i> =0,5863)						
5	85,5	9,5	< <u>A</u> *>	—	—	—	—	—	
			(a=0,6488, c=0,3808, c/a=0,5869)						
10	81	9	<a*></a*>					—	
			(a=0,6489, c=0,3792, c/a=0.5844)						
15	76.5	85	< <u>A</u> *>						
10	, 0,0	0,0	(<i>a</i> =0.6476. <i>c</i> =0.3777						
			c/a=0,5832) +						
			<В>сл.						

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	6	7	8	0
			-	0	
20 72 8 	—	1,4804	0,3698	0,8830	88,0534
25 67,5 7,5 	—	1,4799	0,3689	0,8808	88,1989
30 63 7 	—	1,4755	0,3667	0,8771	88,0345
35 58,5 6,5 	_	1,4747	0,3659	0,8749	88,0960
40 54 6 	—	1,4687	0,3638	0,8954	88,1733
45 49,5 5,5 	_	1,4661	0,3629	0,8937	88,3507
50 45 5 	—	1,4638	0,3619	0,8906	87,4742
55 40,5 4,5 $+$	1,0730	1,4605	0,3607	0,8891	88,4102
60 36 4 +<c></c>	1,0730	1,4603	0,3606	0,8885	88,3857
65 31,5 3,5 $+$	1,0726	1,4604	0,3608	0,8857	88,5309
70 27 3 $+$	1,0726	1,4621	0,3608	0,8854	88,1361
75 22,5 2,5 +<c></c>	1,0728	1,4608	0,3617	0,8843	88,20
80 18 2 <<	1,0719	—			
85 13,5 1,5 <c></c>	1,0699	—	_	_	_
90 9 1 <c></c>	1,0660				
95 4,5 0,5 <c></c>	1,0629				

Продовження таблиці 4.10

* При заданих умовах (T = 1600 °C, 10 год, у повітрі) гексагональна модифікація A–La₂O₃ в зазначених складах гідратує, замість неї спостерігали утворення гексагональної модифікації гідроксиду на основі A–La(OH)₃ Позначення фаз: <A> – тверді розчини на основі гексагональної модифікації La₂O₃; <C> – тверді розчини на основі кубічної модифікації Y₂O₃; – тверді розчини на основі моноклінної модифікації La₂O₃ і Eu₂O₃; сл. – сліди фази.

Межі області гомогенності утворених у системі фаз визначено відповідно до табл. 4.9 і концентраційних залежностей параметрів елементарної комірки твердих розчинів (рис. 4.30–4.33). Напрямок конод у двофазній області В + С визначено за параметрами елементарної комірки (*b*) В-фази. Для області В + С взято значення параметрів таких складів: 60 мол. % Y_2O_3 –50 мол. % La₂O₃–50 мол. % Eu₂O₃ (0,3580 нм) і 60 мол. % Y_2O_3 –36 мол. % La₂O₃–4 мол. % Eu₂O₃ (0,3606 нм).

Область гомогенності C-фази зображено відповідно до її границь у обмежуючих подвійних системах $La_2O_3-Y_2O_3$ (85–100 мол. % Y_2O_3) і $Y_2O_3-Eu_2O_3$ (47–100 мол. % Y_2O_3). Поле твердих розчинів на основі C- Y_2O_3 простягається від 69 до 100 мол. % Y_2O_3 у перерізі $Y_2O_3-(50 \text{ мол. % } La_2O_3-50 \text{ мол. % } Eu_2O_3)$ і 79–100 мол. % Y_2O_3 у перерізі $Y_2O_3-(90 \text{ мол. % } La_2O_3-10 \text{ мол. % } Eu_2O_3)$.

о — однофазні, ●— двофазні зразки

Рисунок 4.29 – Ізотермічний переріз діаграми стану системи La₂O₃–Y₂O₃–Eu₂O₃ при температурі 1600 °C

Рисунок 4.30 – Концентраційна залежність параметра *а* елементарної комірки твердих розчинів на основі C-Y₂O₃ у перерізі Y₂O₃–(50 мол. % La₂O₃–50 мол. % Eu₂O₃) системи La₂O₃–Y₂O₃–Eu₂O₃ після випалу зразків при 1600 °C

Рисунок 4.31 – Концентраційна залежність параметра *а* елементарної комірки твердих розчинів на основі C-Y₂O₃ у перерізі Y₂O₃– (90 мол. % La₂O₃–10 мол. % Eu₂O₃) системи La₂O₃–Y₂O₃–Eu₂O₃ після випалу зразків при 1600 °C

Рисунок 4.32 – Концентраційна залежність параметра *b* елементарної комірки твердих розчинів на основі В-типу оксидів РЗЕ у перерізі Y_2O_3 -(50 мол. % La₂O₃-50 мол.% Eu₂O₃) системи La₂O₃-Y₂O₃-Eu₂O₃ після випалу зразків при 1600 °C

Рисунок 4.33 – Концентраційні залежності параметрів a – (а) та b – (б) елементарної комірки твердих розчинів на основі В-типу оксидів РЗЕ у перерізі Y_2O_3 –(90 мол. % La₂O₃–10 мол.% Eu₂O₃) системи La₂O₃– Y_2O_3 –Eu₂O₃ після випалу зразків при 1600 °C

Область гомогенності твердих розчинів на основі $A-La_2O_3$ має невелику протяжність, увігнута в напрямку зменшення вмісту оксиду ітрію і проходить відповідно до її границь розчинності в обмежуючих подвійних системах $La_2O_3-Y_2O_3$ (0–27 мол. %. Y_2O_3) та $La_2O_3-Eu_2O_3$ (0–38 мол. % Eu_2O_3).

Розчинність оксиду ітрію у В-фазі становить 43 мол. % у перерізі Y_2O_3 -(50 мол. % La₂O₃-50 мол. % Eu₂O₃), (рис. 4.32) і 54 мол. % у перерізі Y_2O_3 -(90 мол. % La₂O₃-10 мол. % Eu₂O₃), (рис. 4.33).

Для визначення положення меж фазових полів разом з даними РФА про фазовий склад зразків використовували петрографічні дослідження. Підтверджено дані РФА для двофазного (A + B) зразка складу 20 мол. % Y_2O_3 –72 мол. % La_2O_3 –8 мол. % Eu_2O_3 та доповнено дані для зразків із 70 мол. % Y_2O_3 –15 мол. % La_2O_3 –15 мол. % Eu_2O_3 і 75 мол. % Y_2O_3 – 12,5 мол. % La_2O_3 –12,5 мол. % Eu_2O_3 (B + C). Якщо за даними РФА у зазначених складах спостерігали лише одну ізотропну C-фазу, то за даними петрографії виявлено сліди анізотропної В-фази.

Слід зазначити, що оксид лантану у повітрі гідратує і замість гексагональної модифікації La₂O₃ у зразках, які містять 100–80 мол. % La₂O₃

при 1600 °C, спостерігали утворення гексагональної модифікації гідроксиду на основі La(OH)₃. Параметри елементарної комірки змінюються від a = 0,6514 нм, c = 0,3819 нм, c/a = 0,5863 для твердого розчину La(OH)₃ складу 90 мол. % La₂O₃–0 мол. % Y₂O₃–10 мол. % Eu₂O₃ до a = 0,6476 нм, c = 0,3777 нм, c/a = 0,5832 для двофазного зразка (A + B) складу 76,5 мол. % La₂O₃–15 мол. % Y₂O₃–8,5 мол. % Eu₂O₃.

Дифрактограми зразків, які характеризують фазові поля присутні в системі La₂O₃-Y₂O₃-Eu₂O₃ при 1600 °C, представлено на рис. 4.34.

a – 85,5 мол. % La₂O₃–9,5 мол. % Eu₂O₃–5 мол. % Y₂O₃ (A*–A-La(OH)₃); *б* – 45 мол. % La₂O₃–5 мол.% Eu₂O₃–50 мол.% Y₂O₃ (B); *в* – 27 мол.% La₂O₃– 3 мол. % Eu₂O₃–70 мол. % Y₂O₃ (B + C); *г* – 4,5 мол. % La₂O₃– 0,5 мол. % Eu₂O₃–90 мол. % Y₂O₃ (C)

Рисунок 4.34 – Дифрактограми зразків системи La₂O₃–Y₂O₃–Eu₂O₃, випалених при 1600 °C

Рисунок 4.34, аркуш 2

3.4 Фазові рівноваги у системі La₂O₃-Y₂O₃-Gd₂O₃ при 1500, 1600 °C

4.4.1 Ізотермічний переріз діаграми стану системи La₂O₃-Y₂O₃-Gd₂O₃ при 1500 °C

Для дослідження фазових рівноваг приготовлено зразки, склади яких лежать на трьох променях: Y₂O₃-(50 мол. % La₂O₃-50 мол. % Gd₂O₃), Gd₂O₃-(50 мол. % La₂O₃-50 мол. % Y₂O₃), Y₂O₃-(90 мол. % La₂O₃-10 мол. % Gd₂O₃).

Вихідний хімічний і фазовий склади зразків, випалених при 1500 °С, параметри елементарної комірки фаз, що знаходяться у рівновазі при заданій температурі, наведено в таблиці 4.11.

Встановлено, що при 1500 °С у системі $La_2O_3-Y_2O_3-Gd_2O_3$ утворюються поля твердих розчинів на основі кубічної (С) модифікації Y_2O_3 , гексагональної (А) модифікації La_2O_3 та моноклінної (В) модифікації La_2O_3 і Gd_2O_3 , а також впорядкованої фази зі структурою типу перовскиту $LaYO_3$ (R). Нові фази не виявлено. Характер фазових рівноваг у потрійній системі відповідає будові обмежуючих подвійних систем.

На основі отриманих результатів побудовано ізотермічний переріз діаграми стану системи La₂O₃-Y₂O₃-Gd₂O₃ при 1500 °C (рис. 4.35).

В області з високим вмістом Y_2O_3 утворюються тверді розчини на основі кубічної модифікації оксиду ітрію. Область гомогенності C- Y_2O_3 проходить відповідно до її границь розчинності у подвійних системах La₂O₃– Y_2O_3 (85–100 мол. % Y_2O_3) і Y_2O_3 –Gd₂O₃ (23–100 мол. % Y_2O_3).

У системі La₂O₃-Y₂O₃-Gd₂O₃ при 1500 °C утворюється область твердих розчинів на основі упорядкованої фази LaYO₃. Межі області гомогенності фази типу перовскиту проходять відповідно до її границь розчинності у обмежуючій подвійній системі La₂O₃-Y₂O₃ (48-52 мол. % Y₂O₃). Розчинність Gd₂O₃ у R-фазі становить ~1,5 мол. % у перерізі Gd₂O₃- (50 мол. % La₂O₃-50 мол. % Y₂O₃).

Таблиця 4.11 – Вихідний хімічний і фазовий склади, параметри елементарних комірок фаз системи La₂O₃–Y₂O₃–Gd₂O₃, випалених зразків при 1500 °C (за даними РФА і петрографії)

Хім	ічний сн	клад,	Фазовий склад,	Параме	три елем	ентарнс	ї комірк	и фаз,
	мол. %		параметри			HM		
			елементарної	<c></c>		<b< td=""><td>></td><td></td></b<>	>	
Y_2O_3	La_2O_3	Gd_2O_3	комірки фаз, нм	а	а	b	С	β
1	2	3	4	5	6	7	8	9
	•	Пер	еріз Ү ₂ О ₃ —(50 мол. %	La ₂ O ₃	50 мол. %	$Gd_2O_3)$	•	•
0	50	50	<a>* (<i>a</i> = 0,6565,		1,6252	0,3677	0,8603	88,19
			<i>c</i> = 0,3865, <i>c/a</i> =					
			0,5887) + 					
5	47,5	47,5	<А>*сл.+ <В>		1,6714	0,3509	0,8787	86,26
10	45	45	<А>*сл. + <В>		1,6329	0,3700	0,9048	99,06
15	42,5	42,5		—	1,6428	0,3667	0,9015	95,86
20	40	40			1,6602	0,3655	0,8993	96,75
25	37,5	37,5			1,6488	0,3631	0,8952	96,55
30	35	35	<В>осн.		1,6519	0,3632	0,8940	96,50
35	32,5	32,5	<В>осн. + <С>сл.		1,6501	0,3623	0,8928	96,61
40	30	30	+<c></c>	1,0726	1,6665	0,3614	0,8921	97,24
45	27,5	27,5	+<c></c>	1,0734	1,6717	0,3618	0,8919	97,49
50	25	25	+<c></c>	1,0728	1,6524	0,3605	0,8916	96,82
55	22,5	22,5	+<c></c>	1,0633		_	—	
60	20	20	+<c></c>	1,0727	1,6827	0,3619	0,8929	97,69
65	17,5	17,5	+<c></c>	1,0727	1,3777	0,3594	0,8819	70,15
70	15	15	<В>сл. + <С>	1,0709		_	—	
75	12,5	12,5	<В>сл. + <С>	1,0686				
80	10	10	CJI. + <c></c>	1,0664				
85	7,5	7,5	<c></c>	1,0653	—	_	—	—
90	5	5	<c></c>	1,0630		_	—	
95	2,5	2,5	<c></c>	1,0599				
100	0	0	<c></c>	1,0604				
		Пер	еріз Gd ₂ O ₃ —(50 мол.%	La_2O_3 —	50 мол.%	Y_2O_3)		
50	50	0	R (<i>a</i> = 0,5866,			_		
			b = 0,6072,					
			<i>c</i> = 0,8491)					
49,5	49,5	1	R(a = 0,5868,	—	—	—	—	
			<i>b</i> = 0,6084,					
			<i>c</i> = 0,8474)					
49	49	2	R (<i>a</i> = 0,5715,	—	1,4669	0,3627	0,8946	88,37
			b = 0,6117,					
			c = 0,8563) +					
48,5	48,5	3	R ($a = 0,5715$,		1,4692	0,3627	0,8943	88,30
			<i>b</i> = 0,6141,					
			$c = 0,8582) + \langle B \rangle$					

Продовження таблиці 4.11

1	2	3	4	5	6	7	8	9
48	48	4	R ($a = 0,5703$,	_	1,4681	0,3623	0,8702	92,03
			b = 0,6137;					
			c=0,8573) +					
47,5	47,5	5	R + 		1,4653	0,3620	0,8684	91,84
45	45	10	R + < B > + < C >		1,4656	0,3619	0,8687	91,85
42,5	42,5	15	R + < B > + < C >	_	1,4651	0,3617	0,8691	91,97
40	40	20	+ <c></c>		1,4611	0,3609	0,8930	92,21
37,5	37,5	25	+ <c></c>		1,4663	0,3612	0,8930	92,42
35	35	30	+ <c></c>		1,4602	0,3612	0,8925	92,23
32,5	32,5	35		_	1,4579	0,3614	0,8938	92,17
30	30	40			1,4566	0,3605	0,8909	91,21
27,5	27,5	45			1,4523	0,3595	0,8894	91,22
25	25	50			1,4506	0,3594	0,8885	91,58
22,5	22,5	55			1,4474	0,3591	0,8872	91,54
20	20	60			1,4470	0,3588	0,8878	91,43
17,5	17,5	65						
15	15	70			1,4463	0,3592	0,8868	91,49
12,5	12,5	75						
10	10	80			1,4414	0,3581	0,8875	91,51
7,5	7,5	85			1,4433	0,3587	0,8836	91,44
5	5	90			1,4395	0,3578	0,8841	91,53
2,5	2,5	95			1,4378	0,3575	0,8827	91,66
0	0	100			1,4392	0,3450	0,8871	86,95
		Пере	еріз Ү ₂ О ₃ —(90 мол. %	La_2O_3 —	10 мол. %	$6 \text{ Gd}_2\text{O}_3$		
0	90	10	<a>*(<i>a</i> = 0,6490,	—			—	
			<i>c</i> = 0,3884, <i>c/a</i> =					
			0,5985)					
5	85,5	9,5	<a>*(<i>a</i> = 0,6482,	—			—	—
			c = 0,3878, c/a =					
			0,5983)					
10	81	9	<a>*(a=0,6473,	—			—	
			c = 0,3858, c/a =					
1.7		0 7	0,5960) + <В>сл.					
15	76,5	8,5	<a>*(a=0,6462,	—			—	
			c = 0,3859, c/a =					
20	70	0	0,59/2 + cл.		1 2007	0.0075	0.0071	01.00
20	12	8	<a>*(a=0,6440,	—	1,3997	0,3275	0,9071	81,28
			c = 0,3992, c/a =					
20	(2)	7	(0,39/2) +		1 2442	0.2000	0.000	79.04
30	63	/	A > (a = 0.0452, a = 0.2065, a/a)	_	1,5445	0,3229	0,9026	/8,04
			c = 0,3903, c/a = 0.6145) ± $< D >$					
25	50 5	65	0,014J) ⊤ \D> /D\		1 2472	0 2025	0.0020	70 76
33	51 51	0,J 6		—	1,34/3	0,3233	0,8900	10,10
40	34 40 5	0	<u>>D</u> > 		1,3421	0,3224	0,0930	10,02 70,52
45	49,3	5,5	$\langle \mathbf{P} \rangle + \mathbf{K}$		1,3348	0,3272	0,9163	19,52

I Іродовження таблиці 4. I I	Π	[родовження	таблиці	4.	11	
------------------------------	---	-------------	---------	----	----	--

149

1	2	3	4	5	6	7	8	9
55	40,5	4,5	<C $>$ + R (a = 0,5821,	1,0704	_	_		
			<i>b</i> = 0,6175; <i>c</i> =0,8484)					
			+ 					
60	36	4	<C $>$ + R (a = 0,5825,	1,0728				
			<i>b</i> = 0,6169; <i>c</i> =0,8500)					
			+ 					
65	31,5	3,5	<C $>$ + R (a = 0,5833,	1,0719	_	_		
			<i>b</i> = 0,6173; <i>c</i> =0,8461)					
70	27	3	<c> + R</c>					
75	22,5	2,5	<C $>$ + R (a = 0,5829,	1,0699				
			<i>b</i> = 0,6145; <i>c</i> =0,8489)					
80	18	2	<c> + R</c>			_	—	—
85	13,5	1,5	<c></c>	1,0646				
90	9	1	<c></c>					
95	4,5	0,5	<c></c>					

* При заданих умовах (T = 1500 °C, 50 год, у повітрі) гексагональна модифікація A-La₂O₃ в зазначених складах гідратує, замість неї спостерігали утворення гексагональної модифікації гідроксиду на основі A-La(OH)₃. Позначення фаз: <A> – тверді розчини на основі гексагональної модифікації La₂O₃; <C> – тверді розчини на основі кубічної модифікації Y₂O₃; – тверді розчини на основі моноклінної модифікації La₂O₃ і Gd₂O₃, R – упорядкована фаза типу перовскиту LaYO₃; cn. – сліди фази.

Параметри елементарної комірки змінюється від a = 0,5866 нм, b = 0,6072 нм, c = 0,8491 нм для однофазного зразка (R), який містить 0 мол. % Gd₂O₃-50 мол. % La₂O₃-50 мол. % Y₂O₃ до a = 0,5715 нм, b = 0,6117 нм, c = 0,8563 нм для двофазного зразка (R + B), який містить 2 мол. % Gd₂O₃-49 мол. % La₂O₃-49 мол. % Y₂O₃. При додаванні оксиду гадолінію до фази перовскиту відбувається заміщення іонів у вузлах A і B.

У системі La₂O₃–Y₂O₃–Gd₂O₃ при 1500 °C утворюється одна трифазна область (B + C + R). Координати вершин конодного трикутника $\langle B \rangle - \langle C \rangle - R$, наведено в таблиці 4.12.

Таблиця 4.12 – Координати вершин конодного трикутника в системі La₂O₃– Y₂O₃–Gd₂O₃ після випалу зразків при 1500 °C (за даними РФА)

Фаза		Склад фаз, мол. %	
	Y_2O_3	La_2O_3	Gd_2O_3
	39	43	18
<c></c>	82	10	8
<r></r>	49	49	2

○ – однофазні, • – двофазні, • – трифазні зразки

Рисунок 4.35 – Ізотермічний переріз діаграми стану системи $La_2O_3-Y_2O_3-Gd_2O_3$ при 1500 °C

У системі La₂O₃–Y₂O₃–Gd₂O₃ утворюється неперервний ряд твердих розчинів на основі моноклінної (В) модифікації оксидів РЗЕ. Межі області гомогенності В-фази проходять відповідно до її границь розчинності в обмежуючих подвійних системах La₂O₃–Y₂O₃ (30–35 мол. % Y₂O₃), Gd₂O₃–Y₂O₃ (16–23 мол. % Y₂O₃) та La₂O₃–Gd₂O₃ (68–100 мол. % Y₂O₃). Область гомогенності В-фази простягається від 12 до 31 мол. % Y₂O₃ у перерізі Y₂O₃–(50 мол. % La₂O₃–50 мол. % Gd₂O₃), (рис. 4.36).

Поле твердих розчинів на основі гексагональної (А) модифікації оксиду лантану має невелику протяжність. Межа області гомогенності твердих розчинів на основі A-La₂O₃ увігнута в напрямку зменшення вмісту оксиду ітрію і проходить відповідно до її границь розчинності в обмежуючих подвійних системах La₂O₃–Y₂O₃ (0–21 мол %. Y₂O₃) і La₂O₃–Gd₂O₃ (0–11 мол. % Gd₂O₃).

Рисунок 4.36 – Концентраційна залежність параметра *а* елементарної комірки твердих розчинів В-фази у перерізі Y_2O_3 -(50 мол. % $La_2O_3 - 50$ мол. % Gd_2O_3) у системі La_2O_3 - Y_2O_3 - Gd_2O_3 після випалу зразків при 1500 °C

Для визначення положення меж фазових полів разом з даними РФА про фазовий склад зразків використовували петрографічні дослідження. Доповнено дані РФА для двофазного (A + B) зразка складу 10 мол. % Y_2O_3 –81 мол. % La_2O_3 –9 мол. % Gd_2O_3 . У цьому зразку чітко проявляються дві структурні складові: A-La(OH)₃, що становить основу, та анізотропна фаза B-Gd₂O₃ у вигляді напівпрозорих частинок з високим рельєфом і показником заломлення, яка присутня у помітно меншій кількості. Петрографія дає можливість ідентифікувати фазу, навіть якщо присутні лише її сліди.

Дифрактограми зразків системи La₂O₃-Y₂O₃-Gd₂O₃, випалених при 1500 °C, показано на рис. 4.37. З рисунка видно, що зі збільшенням вмісту оксиду ітрію кількість C-фази зростає.

а – 30 мол. % La₂O₃–30 мол. % Gd₂O₃–40 мол. % Y₂O₃ (B + C); *б* – 27,5 мол. % La₂O₃–27,5 мол. % Gd₂O₃–45 мол. % Y₂O₃ (B + C); в – 25 мол. % La₂O₃–25 мол. % Gd₂O₃–50 мол. % Y₂O₃ (B + C); *г* – 20 мол. % La₂O₃–20 мол. % Gd₂O₃–60 мол. % Y₂O₃ (B + C)

Рисунок 4.39 – Дифрактограми зразків системи La₂O₃–Y₂O₃–Gd₂O₃ після випалу при 1500 °C

Рисунок 4.39, аркуш 2

4.4.2 Ізотермічний переріз діаграми стану системи La₂O₃-Y₂O₃-Gd₂O₃ при 1600 °C

Для дослідження взято зразки, склади яких лежать на двох променях Y₂O₃-(50 мол. % La₂O₃-50 мол. % Gd₂O₃) і Y₂O₃-(90 мол. % La₂O₃-10 мол. % Gd₂O₃).

Вихідний хімічний і фазовий склади зразків після випалу при 1600 °С, параметри елементарних комірок фаз, які знаходяться у рівновазі при даній температурі, наведено у табл. 4.13.

Встановлено, що при 1600 °С у системі $La_2O_3-Y_2O_3-Gd_2O_3$ утворюються поля твердих розчинів на основі кубічної (С) модифікації Y_2O_3 , гексагональної (А) модифікації La_2O_3 і моноклінної (В) модифікації La_2O_3 і Gd_2O_3 . Нові фази не виявлено.

За отриманими результатами побудовано ізотермічний переріз діаграми стану системи $La_2O_3-Y_2O_3-Gd_2O_3$ при 1600 °С (рис 4.40). Напрямок конод у двофазній області В + С визначено за параметрами елементарної комірки (*b*) В-фази. Для області В + С взято значення параметрів таких складів: 60 мол. % Y_2O_3 -50 мол. % La_2O_3 -50 мол. % Nd₂O₃ (0,359 нм) і 60 мол. % Y_2O_3 -36 мол. % La_2O_3 -4 мол. % Nd₂O₃ (0,361 нм).

Межі областей гомогенності утворених у системі фаз визначено відповідно до табл. 4.12 і концентраційних залежностей параметрів елементарної комірки твердих розчинів (рис. 4.41–4.43).

Межі області гомогенності С-фази проходять відповідно до її границь розчинності в обмежуючих подвійних системах $La_2O_3-Y_2O_3$ (85–100 мол. % Y_2O_3) і $Y_2O_3-Gd_2O_3$ (28–100 мол. % Y_2O_3). Область гомогенності С-фази простягається від 73 до 100 мол. % Y_2O_3 у перерізі $Y_2O_3-(50 \text{ мол.} % La_2O_3-50 \text{ мол.} % Gd_2O_3)$, рис. 4.41.

Таблиця 4.13 – Вихідний хімічний і фазовий склади, параметри елементарних комірок фаз системи La₂O₃–Y₂O₃–Gd₂O₃ після випалу зразків при 1600 °C 10 год (за даними РФА та петрографії)

Xin	лічний с	клад,	Фазовий склад,	Парам	етри елемен	тарних ко	мірок фаз	, HM
	мол. %	1	параметри					
			елементарних	<c></c>		<b< td=""><td>></td><td></td></b<>	>	
Y_2O_3	La_2O_3	Gd_2O_3	комірок фаз, нм	а	а	b	С	β
1	2	3	4	5	6	7	8	9
	1		Переріз У ₂ О ₃ — (50 мо	ол. % La ₂ O ₃ -	—50 мол. %	Gd ₂ O ₃)	L	
0	50	50	<a>+		1,4202	0,3684	0,8748	85,6290
5	47,5	47,5		_	1,4153	0,3670	0,8718	85,3769
10	45	45		_	1,4147	0,3662	0,8704	85,4817
15	42,5	42,5		—	1,4112	0,3649	0,8917	85,6617
20	40	40		_	1,4105	0,3641	0,8906	85,6669
25	37,5	37,5			1,4086	0,3632	0,8902	85,5368
30	35	35			1,4062	0,3622	0,8875	85,8573
35	32,5	32,5			1,4031	0,3612	0,8850	85,6555
40	30	30	<В> + <С>сл.	_	1,4025	0,3590	0,8846	85,6441
45	27,5	27,5	+ <c></c>	1,0680	1,3997	0,3594	0,8821	85,6378
50	25	25	+ <c></c>	1,0714	1,3998	0,3582	0,8822	85,5600
55	22,5	22,5	+ <c></c>	1,0721	1,4000	0,3588	0,8845	85,6874
60	20	20	+<c></c>		_			
65	17,5	17,5	<В>сл. + <С>	1,0731	_			
70	15	15	<В>сл. + <С>	10702	_			
75	12,5	12,5	<c></c>	1,0698	_			
80	10	10	<c></c>	1,0676		—	—	_
85	7,5	7,5	<c></c>	1,0654			_	
90	5	5	<c></c>	1,0630		—	—	_
95	2,5	2,5	<c></c>	1,0617	_			
100	0	0	<c></c>	1,0604				
			Переріз У ₂ О ₃ — (90 мо	ол. % La ₂ O ₃ -	—10 мол. %	Gd_2O_3)		
0	90	10	<a*>(a=0,6511,</a*>					_
			<i>c</i> =0,3808, <i>c/a</i> =					
			0,5849)					
5	85,5	9,5	<a*>(a=0,6475,</a*>	—	—	—	—	—
			<i>c</i> =0,3818, <i>c/a</i> =					
			0,5897)					
10	81	9	<a*>(a=0,6457,</a*>	—	—	—	—	—
			<i>c</i> =0,3846, <i>c/a</i> =					
			0,5956)					
15	76,5	8,5	<a*>(a=0,6454,</a*>		—	—	—	—
			<i>c</i> =0,3813, <i>c/a</i> =					
			0,5908) +		1 550 1	0.0000	0.0011	100.000
20	72	8	<a*>(a=0,6510,</a*>	—	1,5534	0,3882	0,9011	108,030
			c=0,3817, c/a=					
25	675	75	0,3803) + 		1 1750	0.2650	0.0740	00.0440
25	0/,5	/,S	< <u>B></u>		1,4/33	0,3638	0,8/48	88,0440
- 30	63	/		—	1,47/4	0,3672	0,8765	88,1340

1	2	3	4	5	6	7	8	9
40	54	6		_	1,4691	0,3641	0,8960	88,3429
45	49,5	5,5		_	1,4656	0,3623	0,8931	88,2953
55	40,5	4,5	+<c></c>	_	1,4617	0,3614	0,8906	88,1980
60	36	4	+<c></c>	1,0729	1,4620	0,3607	0,8879	88,3866
65	31,5	3,5	+<c></c>	1,0726	1,4618	0,3648	0,8830	88,8908
70	27	3	+<c></c>	1,0721	1,4624	0,3610	0,8840	88,1931
75	22,5	2,5	+<c></c>	1,0716	1,4594	0,3611	0,8837	88,2561
80	18	2	<В>сл. + <С>	1,0705		_	_	_
85	13,5	1,5	<c></c>	1,0650		_	_	
90	9	1	<c></c>	1,0683				_
95	4,5	0,5	<c></c>	1,0605				

Область гомогенності твердих розчинів на основі A-La₂O₃ має такий же вигляд, як і при 1500 °C, а її межу провелено відповідно до границь розчинності в обмежуючих подвійних системах La₂O₃–Y₂O₃ (0–27 мол. %. Y₂O₃) і La₂O₃–Gd₂O₃ (0–42 мол. % Gd₂O₃).

розчини на основі моноклінної модифікації La₂O₃ і Gd₂O₃; сл. – сліди фази.

Рисунок 4.41 — Концентраційна залежність параметра *a* елементарної комірки твердих розчинів на основі C–Y₂O₃ у перерізіY₂O₃–(50 мол. % La₂O₃–50 мол.% Gd₂O₃) у системі La₂O₃–Y₂O₃–Gd₂O₃ після випалу зразків при 1600 °C

Продовження таблиці 4.13

о – однофазні, • – двофазні зразки

Рисунок 4.40 – Ізотермічний переріз діаграми стану системи $La_2O_3-Y_2O_3-Gd_2O_3$ при 1600 °C

Межі області гомогенності В-фази проходять відповідно до її границь розчинності в обмежуючих подвійних системах $La_2O_3-Y_2O_3$ (33– 55 мол. % Y_2O_3), $Gd_2O_3-Y_2O_3$ (0–21 мол. % Y_2O_3) і $La_2O_3-Gd_2O_3$ (72– 100 мол. % Y_2O_3). Поле твердих розчинів на основі моноклінної модифікації оксидів РЗЕ простягається до 37 мол. % Y_2O_3 у перерізі Y_2O_3 -(50 мол. % La_2O_3 -50 мол. % Gd_2O_3), (рис. 4.42) і від 24 до 51 мол. % Y_2O_3 у перерізі Y_2O_3 – (90 мол. % La_2O_3 -10 мол. % Gd_2O_3) рис. 4.43.

У зразках, які містять 100–72 мол. % La₂O₃ при 1600 °C спостерігали утворення гексагональної модифікації на основі гідроксиду La(OH)₃. Параметри елементарної комірки змінюються від a = 0,6511 нм, c = 0,3808 нм, c/a = 0,5849 для твердого розчину La(OH)₃ з вмістом 90 мол. % La₂O₃–0 мол. % Y₂O₃–10 мол. % Gd₂O₃ до a = 0,6454 нм, c = 0,3813 нм, c/a = 0,5908 для двофазного зразка (A + B) складу 76,5 мол. % La₂O₃–15 мол. % Y₂O₃–8,5 мол. % Gd₂O₃.

Рисунок 4.42 – Концентраційна залежність параметра *a* елементарної комірки твердих розчинів на основі В-типу оксидів РЗЕ за перерізом Y_2O_3 -(50 мол. % La_2O_3 -50 мол. % Gd_2O_3) системи La_2O_3 - Y_2O_3 - Gd_2O_3 після випалу зразків при 1600 °C

Рисунок 4.43 – Концентраційна залежність параметра *b* елементарної комірки твердих розчинів на основі В-типу оксидів РЗЕ у перерізі Y_2O_3 -(90 мол. % La_2O_3 -10 мол. % Gd_2O_3) системи La_2O_3 - Y_2O_3 - Gd_2O_3 після випалу зразків при 1600 °C

Згідно даним петрографії для двофазного (A + B) зразка складу 0 мол. % Y_2O_3 -50 мол. % La_2O_3 -50 мол. % Gd_2O_3 спостерігали дві анізотропні фази. Тоді, як для зразка складу 5 мол. % Y_2O_3 -47,5 мол. % La_2O_3 -47,5 мол. % Gd_2O_3 характерна лише одна анізотропна B-фаза з високими кольорами інтерференції та показником заломлення.

Дифрактограми зразків, які характеризують фазові поля у системі La₂O₃-Y₂O₃-Gd₂O₃ при 1600 °C, представлено на рис. 4.44.

a – 81 мол. % La₂O₃–9 мол. % Gd₂O₃–10 мол. % Y₂O₃ (A*); *б* – 72 мол. % La₂O₃–8 мол. % Gd₂O₃–20 мол. % Y₂O₃ (A + B); *е* – 67,5 мол. % La₂O₃–7,5 мол. % Gd₂O₃–25 мол. % Y₂O₃ (B); *г* – 36 мол. % La₂O₃–4 мол. % Gd₂O₃–60 мол. % Y₂O₃ (B + C); *∂* – 31,5 мол. % La₂O₃–3,5 мол. % Gd₂O₃–65 мол. % Y₂O₃ (B + C); *е* – 22,5 мол. % La₂O₃–2,5 мол. % Gd₂O₃–75 мол. % Y₂O₃ (B+ C); *е* – 4,5 мол. % La₂O₃–0,5 мол. % Gd₂O₃–95 мол. % Y₂O₃ (C)

Рисунок 4.44 – Дифрактограми зразків системи La₂O₃–Y₂O₃–Gd₂O₃, випалених при 1600 °C

Рисунок 4.44, аркуш 2

Рисунок 4.44, аркуш 3

4.5 Фазові рівноваги у системі La₂O₃-Y₂O₃-Yb₂O₃ при 1500 °C

4.5.1 Ізотермічний переріз діаграми стану системи La₂O₃-Y₂O₃-Yb₂O₃ при 1500 °C

Вихідний хімічний і фазовий склади зразків після випалу при 1500 °С, параметри елементарних комірок фаз, які знаходяться у рівновазі при даній температурі, наведено у табл. 4.14.

На основі отриманих результатів побудовано ізотермічний переріз діаграми стану системи La₂O₃-Y₂O₃-Yb₂O₃ при 1500 °C (рис. 4.45).

Встановлено, що в системі $La_2O_3-Y_2O_3-Yb_2O_3$ при 1500 °C утворюються поля твердих розчинів на основі кубічної (C) модифікації Y_2O_3 і Yb_2O_3 , гексагональної (A) та моноклінної (B) модифікацій La_2O_3 та впорядкованих фаз типу перовскиту $LaYO_3$ і $LaYbO_3$ (R). Нові фази не виявлено. Характер фазових рівноваг визначає будова обмежуючих подвійних систем.

У системі La₂O₃-Y₂O₃-Yb₂O₃ утворюється неперервний ряд твердих розчинів на основі упорядкованих фаз типу перовскиту. Область гомогенності R-фази проходить відповідно до границь у обмежуючих подвійних системах La₂O₃-Y₂O₃ (48-52 мол. % Y₂O₃) і La₂O₃-Yb₂O₃ (48-56 мол. % Yb₂O₃). Дифрактограми зразків, які характеризують фазові поля присутні в системі $La_2O_3-Y_2O_3-Yb_2O_3$ при 1500 °С, представлено на рис. 4.45. 3 рисунка видно, що зі зменшенням вмісту оксиду ітербію у зразках цього перерізу кількість фази типу перовскиту зростає. Параметри елементарної комірки R-фази у зразках перерізу La₂O₃-YbYO₃ змінюються від a = 0,6029 нм, b = 0,5844 нм, c = 0.8399 нм для двофазного зразка (R + C) складу 40 мол. % La₂O₃-30 мол. % Y_2O_3 -30 мол. % Yb_2O_3 до a = 0,6061 нм, b = 0,5830 нм, c = 0,8411 нм для складу 50 мол. % La₂O₃-25 мол. % Y₂O₃-25 мол. % Yb₂O₃. Гранична розчинність оксиду ітербію в R-фазі становить ~5 мол. % у перерізі Yb₂O₃-LaYO₃ (рис. 4.47). Додавання іона ітербію Yb³⁺ (0,086 нм) приводить до заміщення ним іона ітрію Y³⁺ у вузлі В та підвищення стабільності R-фази (збільшення температури перетворення).

Таблиця 4.14 – Вихідний хімічний і фазовий склади, параметри елементарних комірок фаз системи La₂O₃–Y₂O₃–Yb₂O₃ після випалу зразків при 1500 °C 50 год (за даними РФА та петрографії)

Xi	мічний ск	слад,	Фазовий	Параметр	и елемент	арних комір	оок фаз,
	мол. %		склад і параметри		H	M	
Y ₂ O ₃	La2O3	Yh ₂ O ₃	елементарних		R		<c></c>
-203	20203	20203	комірок, нм	а	b	С	a
1	2	3	4	5	6	7	8
1	-	Переріз Y	2O2—(50 мол % La2	50 мол	%Yb ₂ O ₂)	1	0
0	50	50	R	0.6018	0.5821	0.8404	_
1	49.5	49.5	R	0.6026	0.5822	0.8412	
2	49	49	R	0.6027	0.5820	0.8365	_
3	48.5	48.5	R	0.6026	0.5825	0.8391	_
4	48	48	R	0,6018	0,5823	0,8396	
5	47,5	47,5	R	0,6003	0,5819	0,8431	
10	45	45	R + <c> сл.</c>	0,6020	0,5822	0,8403	_
15	42,5	42,5	R + <c></c>	0,6031	0,5825	0,8477	1,0607
20	40	40	R + <c></c>	0,6039	0,5834	0,8411	1,0601
25	37,5	37,5	R + <c></c>	0,6037	0,5861	0,8494	1,0591
30	35	35	R + <c></c>	0,6039	0,5839	0,8429	1,0559
35	32,5	32,5	R + <c></c>	0,6040	0,5838	0,8448	1,0604
40	30	30	R + <c></c>	0,6039	0,5837	0,8482	1,0549
50	25	25	R + <c></c>	_		_	1,0598
55	22,5	22,5	R + <c></c>	0,5997	0,5862	0,8423	1,0616
60	20	20	R + <c></c>	0,6012	0,5850	0,8443	1,0628
65	17,5	17,5	R + <c></c>	0,6012	0,5860	0,8433	1,0632
70	15	15	R + <c></c>	0,6042	0,5774	0,8415	1,0638
75	12,5	12,5	Rсл. + <c></c>	_		_	1,0655
80	10	10	Rсл. + <c></c>	_		_	1,0653
85	7,5	7,5	Rсл. + <c></c>				1,0620
90	5	5	<c></c>	_		_	1,0592
95	2,5	2,5	<c></c>	_	_	_	1,0601
100	0	0	<c></c>	_	_		1,0604
		Переріз Ү	b ₂ O ₃ —(50 % мол. La ₂	O ₃ —50 % I	мол. Y ₂ O ₃))	
50	50	0	R	0,5880	0,6093	0,8501	
49,5	49,5	1	R	0,5863	0,6075	0,8488	—
49	49	2	R	0,5856	0,6055	0,8427	_
48,5	48,5	3	R	0,5868	0,6070	0,8483	_
48	48	4	R	0,5877	0,6058	0,8462	—
47,5	47,5	5	R	0,5860	0,6074	0,8445	—
42,5	42,5	15	$R + \langle C \rangle$	0,6021	0,5831	0,8423	1,0628
37,5	37,5	25	$R + \langle C \rangle$	0,6039	0,5819	0,8389	1,0589
35	35	30	R + <c></c>	0,6030	0,5799	0,8391	1,0570
32,5	32,5	35	R + <c></c>	0,6017	0,5831	0,8585	1,0581
30	30	40	$R + \langle C \rangle$	0,6064	0,5815	0,8172	1,0555
27,5	27,5	45	$R + \overline{<\!C\!>}$	0,6015	0,5847	0,8386	1,0511

164

Продовження таблиці 4.14

1	2	3	4	5	6	7	8
25	25	50	R + <c></c>	0,6000	0,5824	0,8442	1,0398
22,5	22,5	55	$R + \langle C \rangle$	0,5942	0,5821	0,8428	1,0478
20	20	60	$R + \langle C \rangle$	0,5977	0,5823	0,8350	1,0509
17,5	17,5	65	$R + \langle C \rangle$	0,5762	0,5827	0,8428	1,0478
12,5	12,5	75	$R + \langle C \rangle$	0,5901	0,5767	0,8440	1,0494
10	10	80	$R + \langle C \rangle$	0,5824	0,5766	0,8359	1,0449
7,5	7,5	85	$R + \langle C \rangle$	0,5855	0,5768	0,8367	1,0469
5	5	90	$R + \langle C \rangle$	0,5866	0,5758	0,8354	1,0448
2,5	2,5	95	<c></c>				1,0449
0	0	100	<c></c>				1,0405
		ПерерізУ2	О ₃ —(70 мол. % La ₂ (О ₃ —30 мол.	% Yb ₂ O ₃)	
0	70	30	<a>* (<i>a</i> = 0,6514,	0,6019	0,5830	0,8409	—
			c = 0,3828) + R				
5	66,5	28,5	<a>* (<i>a</i> = 0,6519,	0,6040	0,5821	0,8412	—
			c = 0,3864) + R				
10	63	27	<a>* (a = 0,6519,	0,6042	0,5834	0,8408	—
			c = 0,3806) + R				
15	59,5	25,5	<a>* (a = 0,6732,	0,6048	0,5800	0,8438	—
• •			c = 0,3766) + R	0.0040	0.5005	0.044.7	
20	56	24	<a>* (a = 0,6560,	0,6049	0,5835	0,8415	—
25	50.5	22.5	c = 0,3819) + R	0.0010	0.5024	0.0410	
25	52,5	22,5	<u> </u>	0,6046	0,5834	0,8410	
30	49	21	K R	0,6042	0,5830	0,8410	1.0505
35	45,5	19,5	$R + \langle C \rangle$	0,6060	0,5842	0,8451	1,0585
40	42	18	$R + \langle C \rangle$	0,6046	0,5845	0,8438	1,0603
45	38,5	16,5	$R + \langle C \rangle$	0,6063	0,5861	0,8452	1,0637
50	35	15	$R + \langle C \rangle$	0,6056	0,5830	0,8445	1,0608
55	31,5	13,5	$R + \langle C \rangle$	0,6071	0,5862	0,8455	1,0650
60	28	12	$R + \langle C \rangle$	0,6054	0,5863	0,8481	1,0663
65	24,5	10,5	$R + \langle C \rangle$	0,6055	0,5850	0,8473	1,0659
/0	21	9	$R + \langle C \rangle$	0,6036	0,5811	0,8401	1,0675
75	17,5	7,5	$R + \langle C \rangle$	0,6043	0,5812	0,8365	1,0680
85	10,5	4,5	<u> Rсл.+ <c></c></u>	—			1,0597
90	~/	3	<c></c>	—			1,0633
95	3,5	1,5	$\langle C \rangle$	<u> </u>			1,0616
17 5	~	Tiepepis La	₂ O ₃ —(50 мол. % Y ₂ O	9 ₃ — 50 мол	. % Yb ₂ O3	3) 	1.0520
47,5	5	47,5	<c></c>	-			1,0538
42,5	15	42,5	$R + \langle C \rangle$	0,6027	0,5841	0,8400	1,0563
40	20	40	$R + \langle C \rangle$	0,6022	0,5842	0,8391	1,0545
37,5	25	37,5	$R + \langle C \rangle$	0,6026	0,5852	0,8400	1,0573
35	30	35	$K + \langle C \rangle$	0,6029	0,5851	0,8400	1,0571
32,5	35	32,5	$K + \langle C \rangle$	0,6031	0,5850	0,8405	1,0574
30	40	30	$K + \langle C \rangle$	0,6029	0,5844	0,8399	1,0571
27	46	27	K	0,6047	0,5832	0,8400	<u> </u>
26,5	41	26,5	K	0,6049	0,5831	0,8410	<u> </u>
26	48	26	K	0,6053	0,5839	0,8410	<u> </u>
25,5	49	25,5	R	0,6061	0,5899	0,8416	—
25	50	25	R	0,6061	0,5830	0,8411	—

Продовження таблиці 4.14

1	2	3	4	5	6	7	8	
22,5	55	22,5	<a>* (<i>a</i> = 0,6486,	0,6064	0,5837	0,8399	—	
			c = 0,3783) + R					
20	60	20	<a>* (<i>a</i> = 0,6486,	0,6063	0,5832	0,8396	—	
			c = 0,3784) + R					
17,5	65	17,5	<a>* (<i>a</i> = 0,6485,	0,6046	0,5846	0,8409	—	
			c = 0,3774) + R					
12,5	75	12,5	<a>*(a=0,6487,	0,6036	0,5826	0,8400	—	
			c = 0,3769) + R					
10	80	10	<a>*(a=0,6486,	0,6036	0,5843	0,8434	—	
			c = 0,3805) + R					
7,5	85	7,5	$(a=0,6485,$	0,6034	0,5826	0,8412	—	
			c = 0,3799) + R					
5	90	5	<a>*(a=0,6500,	—		—	—	
			c = 0,3820)					
2,5	95	2,5	<a>*(a=0,6502,	—		—	—	
			<i>c</i> = 0,3829)					
100	0	0	<a>*(a=0,6523,				—	
			<i>c</i> = 0,3855)					
Ізоконцентрата 35 мол. % У2О3								
35	64	1	<a>* (<i>a</i> = 0,6593,	0,5870	0,6056	0,8468		
			c = 0,3925) + R +					
			<B $>(a = 1,3683,$					
			<i>b</i> = 0,3633,					
			<i>c</i> = 0,876,					
			$\beta = 83,1191)$					
35	63	2	<a>*(a=0,6594,	0,5871	0,6066	0,8475	—	
			c = 0,3905) + R +					
			<B $>(a = 1,3728,$					
			b = 0,3644,					
			c = 0,877,					
			β=82,5914)					
35	62	3	<a>*(a=0,6598,	0,5876	0,6068	0,8492	—	
			c = 0,3919) + R +					
			<B $>(a = 1,3744,$					
			b = 0,3646,					
			$c = 0,8798,\beta = 83,2$					
			087)					
35	60	5	<a>*(a=0,6582,	0,5869	0,6070	0,8488	—	
			c = 0,3942) + R +					
								
35	55	10	<a>*(a=0,6578,	0,5867	0,6070	0,8468	—	
			c = 0,3942) + R					

* При заданих умовах (T = 1500 °C, 50 год, у повітрі) гексагональна модифікація A-La₂O₃ в зазначених складах гідратує, замість неї спостерігали утворення гексагональної модифікації гідроксиду на основі A-La(OH)₃. Позначення фаз: <A> — тверді розчини на основі гексагональної модифікації La₂O₃; <C> — тверді розчини на основі кубічної модифікації Y₂O₃ і Yb₂O₃; — тверді розчини на основі моноклінної модифікації La₂O₃, R — упорядкована фаза типу перовскиту LaYO₃ і LaYbO₃; сл. — сліди фази.

о — однофазні, ● — двофазні, ● — трифазнізразки

Рисунок 4.45 – Ізотермічний переріз діаграми стану системи La₂O₃-Y₂O₃-Yb₂O₃ при 1500 °C

Область гомогенності R-фази простягається від 44 до 51 мол. % La_2O_3 у перерізі La_2O_3 -YbYO₃ (рис. 4.48) і від 23 до 33 мол. % Y_2O_3 у перерізі Y_2O_3 -(Yb_{0,3}Y_{0,7})₂O₃ (рис. 4.49–4.50).

Внаслідок термодинамічної стабільності впорядкованої R-фази в системі La₂O₃-Y₂O₃-Yb₂O₃ утворюється одна трифазна область (B + C + R). Координати вершин конодного трикутника -<C>-R наведено в таблиці 4.15.

Таблиця 4.15 – Координати вершин конодного трикутника в системі La₂O₃– Y₂O₃–Yb₂O₃ після випалу зразків при 1500 °C (за даними РФА)

Фаза	Склад фаз, мол. %				
	Y ₂ O ₃	La ₂ O ₃	Yb ₂ O ₃		
	35	64	1		
<a>	14	83	3		
<r></r>	41	54	5		

a – 5 мол. %. La₂O₃–47,5 мол. % Y₂O₃–47,5 мол. % Yb₂O₃ (C); *б* – 15 мол. % La₂O₃–42,5 мол.% Y₂O₃–42,5 мол. % Yb₂O₃ (C + R); *е* – 20 мол. % La₂O₃–40 мол. % Y₂O₃–40 мол. % Yb₂O₃ (C + R); *е* – 25 мол. % La₂O₃–37,5 мол. % Y₂O₃–37,5 мол. % Yb₂O₃ (C + R)

Рисунок 4.46 – Дифрактограми зразків системи La₂O₃–Y₂O₃–Yb₂O₃ склади, яких лежать у перерізі LaYO₃–Yb₂O₃ після випалу при 1500 °C

167

Рисунок 4.46, аркуш 2

Рисунок 4.47 – Концентраційна залежність параметра *с* елементарної комірки твердих розчинів на основі R-фази у перерізі Yb₂O₃–(50 мол. % La₂O₃–50 мол. % Y₂O₃) системи La₂O₃–Y₂O₃–Yb₂O₃ після випалу зразків при 1500 °C

Рисунок 4.48 – Концентраційна залежність параметра *a* елементарної комірки твердих розчинів на основі R-фази у перерізі La₂O₃–YbYO₃ системи La₂O₃– Y₂O₃–Yb₂O₃ після випалу зразків при 1500 °C

Рисунок 4.49 – Концентраційна залежність параметра *а* елементарної комірки твердих розчинів на основі R-фази у перерізі Y₂O₃–(Yb_{0,3}Y_{0,7})₂O₃ системи La₂O₃–Y₂O₃–Yb₂O₃ після випалу зразків при 1500 °C

Рисунок 4.50 – Концентраційна залежність параметра *b* елементарної комірки твердих розчинів на основі R-фази у перерізі Y_2O_3 – $(Yb_{0,3}Y_{0,7})_2O_3$ системи La₂O₃– Y_2O_3 – Yb_2O_3 після випалу зразків при 1500 °C

Оксиди ітрію та ітербію утворюють неперервний ряд твердих розчинів на основі С-форми оксидів РЗЕ. Область гомогенності твердого розчину на основі кубічної модифікації оксидів ітрію та ітербію простягається вздовж сторони концентраційного трикутника Y_2O_3 – Yb_2O_3 . Границі області гомогенності C-фази проходять відповідно до координат у обмежуючих подвійних системах $La_2O_3-Y_2O_3$ (85–100 мол. % Y_2O_3), $La_2O_3-Yb_2O_3$ (98–100 мол. % Yb_2O_3) і $Y_2O_3-Yb_2O_3$ (0–100 мол. % Yb_2O_3). Такий напрямок області гомогенності C-фази свідчить проте, що переважає заміщення іонів Y^{3+} на Yb^{3+} , і навпаки. Використовуючи концентраційну залежність параметрів елементарної комірки встановлено, що область гомогенності твердих розчинів на основі C- Y_2O_3 простягається від 87 до 100 мол. % Y_2O_3 у перерізі $Y_2O_3-(50 \text{ мол. % } La_2O_3-50 \text{ мол. % } Yb_2O_3)$, (рис. 4.51).

Рисунок 4.51 – Концентраційна залежність параметра c елементарної комірки твердих розчинів на основі C-Y₂O₃ у перерізі Y₂O₃-(50 мол. % La₂O₃-50 мол. % Yb₂O₃) системи La₂O₃-Y₂O₃-Yb₂O₃ після випалу зразків при 1500 °C

Область гомогенності твердого розчину на основі гексагональної (A) модифікації оксиду лантану має невелику протяжність. Межа цієї області гомогенності увігнута в напрямку зменшення вмісту оксиду ітербію і проходить відповідно до границь в обмежуючих подвійних системах La_2O_3 – Y_2O_3 (0–21 мол %. Y_2O_3) і La_2O_3 – Yb_2O_3 (0–9 мол. % Yb_2O_3).

Для визначення положення меж фазових полів разом з даними рентгенофазового аналізу про фазовий склад зразків використовували петрографічні дослідження. Підтверджено дані РФА для двофазного (C + R) зразка складу 75 мол. % Y_2O_3 –17,5 мол. % La_2O_3 –7,5 мол. % Yb_2O_3 . У цьому зразку чітко проявляються дві структурні складові: напівпрозора ізотропна фаза C-Y₂O₃, що становить основу і анізотропна фаза LaYbO₃ з яскравими кольорами інтерференції, яка присутня у меншій кількості. Вміст анізотропної фази LaYbO₃ помітно зменшується зі збільшенням концентрації Y₂O₃. Для зразка складу 90 мол. % Y₂O₃–7 мол. % La₂O₃–3 мол. % Yb₂O₃ виявлено тільки одну ізотропну фазу – C-Y₂O₃.

Зміну мікроструктури двофазних зразків (C + R) в залежності від концентрації оксиду ітрію можна чітко простежити на рис. 4.52–4.53. На рисунку 4.52 представлено мікроструктури зразків, які лежать у перерізі Y_2O_3 –(50 мол. % La_2O_3 –50 мол. % Yb_2O_3). За даними якісного мікрорентгеноспектрального аналізу світла фаза належить R, темна фаза – C-Y₂O₃. Зі збільшенням вмісту оксиду ітрію кількість фази типу перовскиту зменшується, змінюється морфологія зразків, з'являються пори характерні для більш крихкої C-фази, відбувається формування зерен більш чіткої поліедричної форми R-фази розміром ~2–10 мкм.

На рисунку 4.53 представлено мікроструктури зразків, які лежать у перерізі Yb₂O₃–(50 мол. % La₂O₃–50 мол. % Y₂O₃). За даними якісного мікрорентгеноспектрального аналізу темна фаза належить R-фазі, світла – C-Yb₂O₃. Зі збільшенням вмісту оксиду ітербію кількість фази типу перовскиту зменшується, морфологія зразків особливо не змінюється, з'являються пори, характерні для більш крихкої C-фази, відбувається формування зерен поліедричної форми R-фази розміром ~1–7 мкм.

а) 35 мол. % Y₂O₃-32,5 мол. % La₂O₃-32,5 мол. % Yb₂O₃, ×2000 (R + C); б)
40 мол. % Y₂O₃-30 мол. % La₂O₃-30 мол. % Yb₂O₃, ×2000 (R + C);
в) 45 мол. % Y₂O₃-27,5 мол. % La₂O₃-27,5 мол. % Yb₂O₃, × 2000 (R + C);
г) 50 мол. % Y₂O₃-25 мол. % La₂O₃-25 мол. % Yb₂O₃, × 2000 (R + C);
д) 60 мол. % Y₂O₃-20 мол. % La₂O₃-20 мол. % Yb₂O₃, × 2000 (R + C);
е) 70 мол. %Y₂O₃-15 мол. % La₂O₃-15 мол. %Yb₂O₃, ×400 (R + C).

Рисунок 4.52 – Мікроструктури зразків системи La₂O₃–Y₂O₃–Yb₂O₃, випалених при 1500 °C, BSE

Г Д e

a) 17,5 мол. % Y₂O₃-17,5 мол. % La₂O₃-65 мол. % Yb₂O₃, ×2000 (R + C);
б) 12,5 мол. % Y₂O₃-12,5 мол. % La₂O₃-75 мол. % Yb₂O₃, ×2000 (R + C);
в) 10 мол. % Y₂O₃-10 мол. % La₂O₃-80 мол. % Yb₂O₃, × 2000 (R + C);
г) 7,5 мол. % Y₂O₃-7,5 мол. % La₂O₃-85 мол. % Yb₂O₃, × 2000 (R + C);
д) 5 мол. % Y₂O₃-5 мол. % La₂O₃-90 мол. % Yb₂O₃, × 2000 (R + C);
е) 2,5 мол. % Y₂O₃-2,5 мол. % La₂O₃-95 мол. % Yb₂O₃, ×400 (C).

Рисунок 4.53 – Мікроструктури зразків системи La₂O₃-Y₂O₃-Yb₂O₃, випалених при 1500 °C, BSE

4.10 Висновки до розділу 4

Експериментальні дані, представлені у цьому розділі, опубліковано у [119–120, 128–137].

1. Вивчено фазові рівноваги та побудовано ізотермічні перерізи діаграм стану систем $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 та 1600 °C.

Встановлено, що у досліджених системах La₂O₃-Y₂O₃-Ln₂O₃ (Ln 2. = Nd, Sm, Eu, Gd) утворюються тверді розчини на основі A, B i C модифікацій вихідних компонентів, а також упорядкованої фази типу протяжність перовскиту LaYO₃ (R). Найбільшу мають області гомогенності неперервних твердих розчинів на основі моноклінної (В) та гексагональної (А) модифікацій оксидів РЗЕ. Упорядкована R-фаза існує лише до 1585 °C, тому при 1600 °C її утворення не спостерігали. Ізотермічні перерізи систем $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 °C характеризується наявністю однієї трифазної (B + C + R), чотирьох однофазних (A-La₂O₃ (Ln₂O₃), B-La₂O₃ (Ln₂O₃), R, C-Y₂O₃) та двофазних (A + B, B + R, C + R, B + C) областей, а при 1600 °C – трьох однофазних (A-La₂O₃ (Ln₂O₃), B-La₂O₃ (Ln₂O₃), C-Y₂O₃) та двофазних (A + B, B + C) областей.

3. Встановлено, що у системі $La_2O_3-Y_2O_3-Yb_2O_3$ при 1500 °C утворюються тверді розчини на основі різних кристалічних модифікацій вихідних компонентів, а також упорядкованих фаз типу перовскиту LaYO₃ та LaYbO₃ (R). Упорядкована R-фаза в потрійній системі існує у більш широкому інтервалі концентрацій, ніж у подвійній системі, і утворює неперервний ряд твердих розчинів. Ізотермічний переріз системи La₂O₃– Y_2O_3 – Yb_2O_3 при 1500 °C характеризується наявністю однієї трифазної (B + C + R), чотирьох однофазних (A-La₂O₃, B-La₂O₃, R, C-Y₂O₃(Yb₂O₃)) та двофазних (A + B, B + R, C + R, B + C) областей.

5 ЗАКОНОМІРНОСТІ БУДОВИ ДІАГРАМ СТАНУ ПОДВІЙНИХ Y₂O₃-Ln₂O₃ I ПОТРІЙНИХ La₂O₃-Y₂O₃-Ln₂O₃ СИСТЕМ

5.1 Особливості будови діаграм стану подвійних систем Y₂O₃-Ln₂O₃

Встановлено, що в системах Y₂O₃-Ln₂O₃ (рис. 5.1) ітрій ізоморфно заміщає катіони РЗЕ в усіх низькотемпературних (А, В, С) модифікаціях оксидів РЗЕ.

Ширина областей твердих розчинів визначається співвідношенням іонних радіусів ітрію та РЗЕ. Область твердих розчинів С-типу тим ширше, чим ближчі розміри іонних радіусів Y^{3+} і Ln^{3+} . Відповідно, ширина полей твердих розчинів на основі інших кристалічних модифікацій звужується. Залежність граничної розчинності Ln_2O_3 у C-Y₂O₃ від іонного радіусу Ln^{3+} при 1500 та 1600 °C показано на рис. 5.2. З рисунка видно, що найбільшу розчинність має оксид гадолінію (найменше значення іонного радіуса, 0,097 нм).

Із зменшенням іонного радіуса лантаноїда спостерігається суттєве звуження областей твердих розчинів А-типу оксидів РЗЕ. Область гомогенності А-фази у системі $Nd_2O_3-Y_2O_3$ набагато менше (4 мол. % Y_2O_3 при 1600 °C) порівняно з системою $La_2O_3-Y_2O_3$ (27 мол. % Y_2O_3 при 1600 °C) (табл. 5.1, рис. 5.1).

Особливою відмінністю системи La₂O₃–Y₂O₃ серед інших систем є те, що для неї характерне утворення впорядкованої фази (LaYO₃) із структурою типу перовскиту, оскільки задовільняє умові стабільності Rфази – фактор толерантності *t* по Гольдшмідту для структури перовскиту знаходиться в межах $0,75 \le t \le 1$.

Рисунок 5.1 – Діаграми стану подвійних систем Ln_2O_3 – Y_2O_3 (Ln = La, Nd, Sm, Eu, Gd)

Gd₂O₃ 20

40 60 мол.%

д

80

 Y_2O_3

T,⁰C |

2300

2100

1900

1700

1500

х

La₂O₃

T, °C 2400

2200

2000

1800

1600

1400

1200

1000 _____ Eu₂O₃

00

Г

20

Рисунок 5.2 – Залежність граничної розчинності Ln_2O_3 у C-Y₂O₃ від відношення іонних радіусів Ln^{3+}/Y^{3+} при 1500 (1) та 1600 (2) °C у подвійних системах $Ln_2O_3-Y_2O_3$ (Ln = La, Nd, Sm, Eu, Gd)

Таблиця 5.1 – Залежність протяжності областей гомогенності фаз у системах Ln₂O₃–Y₂O₃ від температури

	Темпера	атура, °C
Система	1500	1600
	Протяжність області	гомогенності С-фази,
	мол. %	$6 Y_2 O_3$
$La_2O_3 - Y_2O_3$	85-100	85-100
Nd ₂ O ₃ -Y ₂ O ₃	72–100	70–100
Sm ₂ O ₃ -Y ₂ O ₃	46–100	51-100
Eu ₂ O ₃ -Y ₂ O ₃	41–100	47–100
Gd ₂ O ₃ -Y ₂ O ₃	23–100	28–100
	Протяжність області	гомогенності В-фази,
	мол. %	$6 Y_2 O_3$
$La_2O_3-Y_2O_3$	21–30	27–33
$Nd_2O_3 - Y_2O_3$	20–45	21–50
$Sm_2O_3-Y_2O_3$	0–36	0–41
$Eu_2O_3 - Y_2O_3$	0–32	0–33
$Gd_2O_3-Y_2O_3$	0–16	0–21
	Протяжність області	гомогенності А-фази,
	мол. %	6 Y ₂ O ₃
$La_2O_3-Y_2O_3$	0-21	0–27
$Nd_2O_3 - Y_2O_3$	0-4	0-4

5.2 Закономірності будови діаграм стану потрійних систем $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 та 1600 °C

У результаті вивчення фазових рівноваг у системах La₂O₃-Y₂O₃-Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 і 1600 °С встановлено, що у вказаних системах утворюються тверді розчини на основі різних кристалічних модифікацій вихідних компонентів та впорядкованих фаз типу перовскиту. Ізотермічні перерізи діаграм стану систем на основі оксидів церієвої підгрупи (Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺) мають подібну будову та характеризуються утворенням твердих розчинів на основі впорядкованої фази LaYO₃ з обмеженою розчинністю та чотирьох однофазних (A, B, C, R), двофазних (A + B, B + C, R + C, R + B) та однієї трифазної (R + B + C) областей при 1500 °С. На відміну, від вище вказаних систем ізотермічний переріз діаграми стану системи La₂O₃-Y₂O₃-Yb₂O₃ при 1500 °C характеризується утворенням неперервного ряду твердих розчинів на основі впорядкованих фаз типу перовскиту LaYO₃ i LaYbO₃ та чотирьох однофазних (A, B, C, R), двофазних (A + B, A + R, R + C, R + B) областей і однієї (R + B + A) трифазної області. Крім того, трифазна (R + B + C) область утворюється у куті з високим вмістом оксиду ітрію, а (R + B + A) – з високим вмістом оксиду лантану.

Стійкість фаз типу перовскиту LaLnO₃ (R) можна оцінити за допомогою фактора толерантності за Гольдшмідтом. На рис. 5.3 показано збільшення температури перетворення (Тпр) R-фази в залежності від зміни іонного радіуса у вузлі В і відповідної зміни фактора толерантності (t). З цієї залежності видно, що Тпр можна розглядати як верхню границю термодинамічної стійкості R-фази. У випадку легування іонних кристалів ізовалентними домішками зарядова компенсація не потрібна, тому розмірний фактор є головним при оцінці стабільності ґратки. Якщо R-фазу розглядати як LaYO₃ і легувати її оксидами P3E, то можна збільшувати або зменшувати стійкість фази в залежності від розміру іона добавки і вузла в решітці перовскиту. Температура зростає із збільшенням різниці розмірів іонів у вузлах A і B кристалічної ґратки (рис. 5.3).

Рисунок 5.3 – Температура перетворення (T_{np}) фази типу перовскиту LaLnO₃ (Ln = Y, Ho, Er, Tm, Yb) від фактора толерантності *t* за Гольдшмідтом за даними літератури, t = ($R_{La} + R_O$)/ $\sqrt{2}$ ($R_{Ln} + R_O$)

Добавки, що заміщують іон La³⁺ (вузел A), знижують температуру перетворення фази LaYO₃, тоді як заміщення іонів Y³⁺ у вузлі В може підвищувати, знижувати і майже не змінювати температуру перетворення, якщо розміри іонів менше, більше і рівні розміру іону Y³⁺, відповідно. Більш складним випадком є легування в обох вузлах одночасно. Всі ці випадки існують в системах, що розглядаються в даній роботі.

На рис. 5.4, а-е показано результати розрахунків зміни Тпр із збільшенням концентрації оксидів лантаноїдів, коли у впорядкованій фазі LaYO₃ заміщення іонів La³⁺ і Y³⁺ відбувається іонами Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Yb³⁺ у вузлах А та В окремо та одночасно. Введення іонів РЗЕ церієвої підгрупи приводити зменшення температури може до перетворення R-фази у всіх випадках заміщення, тоді як додавання іонів РЗЕ ітрієвої підгрупи може приводити як до збільшення, так і до зменшення стійкості R-фази в залежності від розміщення іона добавки. Зменшення Тпр із збільшенням концентрації добавки Ln³⁺ відбувається із різною швидкістю: великі за розміром іони повільніше змінюють Тпр, ніж
малі іони. Заміщення іону лантану іоном неодиму у вузлі А найменшим чином впливає на температурну стабільність R-фази в ряду з іншими лантаноїдами. На ізотермічному перерізі при 1500 °С видно, що область гомогенності R-фази в більшій мірі витягнута вздовж ізоконцентрати 50 мол. % У2О3, ніж ізоконцентрати 50 мол. % La2O3. Таким чином, заміщення іде більше у вузлі А, проте близько розташовані криві 1, 2, 3 (рис. 5.4, а) свідчать про можливу вірогідність і інших механізмів заміщення. При допуванні іони Sm^{3+} , Gd^{3+} , Eu^{3+} , на відміну від іону Nd^{3+} , домінує заміщення у вузлі В, а також великий вклад має спільне заміщення і в А, і в В вузлах (рис. 5.4, б-г). Розмірний фактор домінує тому, що різниця іонних радіусів $r_{La}-r_{Ln}$ (0,014, 0,016, 0,017 нм) менше за різницю r_{Ln}-r_Y (0,008, 0,006, 0,005 нм). Область гомогенності R-фази при додаванні іонів Sm³⁺, Gd³⁺, Eu³⁺ більш витягнута вздовж перерізу R-Ln₂O₃. Розчинення оксидів лантаноїдів ітрієвої підгрупи в R-фазі іде за механізмом заміщення у вузлі В (рис. 5.4, д, е). У порівнянні з розрахунками, з експерименту видно, що всі добавки РЗЕ церієвої підгрупи не стабілізують R-фазу при 1600 °C, тоді як додавання оксиду ітербію стабілізує R-фазу і при 1600 °С у випадку заміщення іонів Y³⁺ на іони Yb³⁺. Доказом справедливості останнього твердження є напрям області гомогенності R-фази від LaYO₃ до LaYbO₃ вздовж ізоконцентрати 50 мол. % La₂O₃. Наведені розрахунки виконано для перерізу LaYO₃-Ln₂O₃ (рис. 5.5).

Встановлено, що область твердих розчинів А-фази звужується зі зменшенням іонного радіуса Ln^{3+} . У системі $La_2O_3-Y_2O_3-Nd_2O_3$ спостерігається утворення неперервного ряду твердих розчинів на основі А-форми оксидів РЗЕ. Для систем $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Sm, Eu, Gd, Yb) утворюються обмежені області гомогенності А-фази, які по ряду від Sm до Yb звужуються від 41 до 9 мол. % Ln_2O_3 при 1500 °C (рис. 5.5) і по ряду від Sm до Gd від 62 до 42 мол. % Ln_2O_3 при 1600 °C (рис. 5.6).

Рисунок 5.4 – Залежність температури перетворення фази LaLnO₃ від концентрації добавки РЗЕ у вузлі A (1), у вузлах A і B (2), у вузлі B (3) у потрійних системах La₂O₃–Y₂O₃–Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Er, Yb)

Рисунок 5.5 – Ізотермічні перерізи діаграм стану систем $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Er, Yb) при 1500 °C за даними експерименту (а–г, е) та прогнозу (д)

Область твердих розчинів С-типу оксидів РЗЕ тим ширше, чим ближчі розміри іонних радіусів Y^{3+} і Ln^{3+} . Встановлено, що граничне значення ефективного іонного радіуса для всіх розчиненних оксидів лантаноїдів на рівні $R_{ef} \sim 0,0958 \pm 0,0004$ нм. Розрахунок проведено за формулою $R_{ef} = x \cdot R_{Ln3+} + (1-x) \cdot R_{Y3+}$, де x – мольна частка розчиненого компоненту (табл. 5.2).

Таблиця 5.2. Розрахунок граничної розчинності твердих розчинів на основі С-Y₂O₃ для ізотермічних переризів діаграм стану Y₂O₃–Ln₂O₃ 1500 і 1600 °C

	Радіус іону	R _{ef} , при	Границя	R _{ef} , при	Границя
Ln_2O_3	лантаноїду,	1500 °C	розчинності при	1600 °C	розчинності при
	НМ	HM	1500 °С, мол. %	НМ	1600 °С, мол. %
La ₂ O ₃	0,114	0,09552	16	0,09531	15
Nd ₂ O ₃	0,104	0,09548	28	0,09563	30
Sm ₂ O ₃	0,100	0,09624	53	0,09601	50
Eu ₂ O ₃	0,0985	0,09577	58	0,09551	54
Gd ₂ O ₃	0,0972	0,0959	75	0,09585	74

Наближення розмірів іонів Ln³⁺ церієвої підгрупи до розміру іону Y³⁺ обумовлює зниження внутрішних напружень в ґратці твердих розчинів, що внаслідок різниці розмірів іонів розчинника і добавки. виникають концентрації іонів Ln³⁺ відповідає збільшенню об'єму Збільшення елементарної комірки і зменшеню теоретичної густини розчину. Цей фактор є корисним для розуміння утворення трикомпонентних твердих розчинів і створення ізотропної лазерної кераміки на основі С-У2О3. Якщо в встановлено двокомпонентних системах критичне значення границі розчинності лантаноїда в С-У₂О₃ у заданому інтервалі температур, то можна припустити, що ця умова виконується і для потрійних систем. Розрахунок ефективних іонних радіусів твердих розчинів потрійних систем проведено за рівняннями:

$$x \cdot R_{La} + (1 - x) \cdot R_Y = R'$$
 розчинення оксиду лантану в C-Y₂O₃ (5.1)
 $y \cdot R_{Nd} + (1 - y) \cdot R' = R_{ef}$ розчинення оксиду неодиму в Y_{2-x}(La_x)O₃ (5.2)
 $x = [(R_{ef} - R_Y) - y \cdot (R_{Nd} - R_Y)]/[(R_{La} - R_Y) \cdot (1 - y)]$ (5.3),

де х – коцентрація іонів лантану, у – концентрація іонів неодиму.

Рівняння (5.3) описує саме граничну криву в координатах х, у – коцентрації іонів La^{3+} і Nd^{3+} , відповідно. Для іонів Sm^{3+} , Eu^{3+} і Gd^{3+} , схема розрахунку аналогічна. Розрахунки за формулою (5.3) представлено графічно на рис. 5.7. На основі пропорційно-вірогідного заміщення іонів ітрію на іони лантану і неодиму розраховано та побудовано граничні криві твердих розчинів С-типу для вивчених систем. Модель задовільно (в межах похибки експерименту і графічної побудови діаграм стану систем) визначає границю, що відокремлює область гомогенності С-У₂О₃ від двофазної області. Можна уявити модельну кристалічну ґратку з однаковими за розміром іонами замість реальної. Проте, якщо головна взаємодія між іонами описується кулонівськими силами, то для визнання координати потенційної ями довжини рівноважної відстані між іонами – достатньо деяких середніх іонів за умов однакового електричного заряду на них. Ця умова виконується у запропонованій моделі. Більш високе співпадіння експерименту і розрахунку спостерігається для оксиду самарію, а найбільшу розбіжність маємо у системі з оксидом гадолінію. Найкраще модель описує області гомогенності С-У₂О₃ поблизу подвійних систем. Всередині концентраційного трикутника розбіжностей більше, вони пов'язані з відхиленням від пропорційновірогідного принципу заміщення, що закладений у модель.

Рисунок 5.7 – Розчинність оксидів лантаноїдів (Nd₂O₃ (a), Sm₂O₃ (б), Gd₂O₃ (в)) у С-формі оксиду ітрію у потрійних системах La₂O₃–Y₂O₃–Ln₂O₃ (Ln = Nd, Sm, Gd) за даними експерименту та розрахунку

ВИСНОВКИ

1. Вивчено фазові рівноваги у подвійній системі $La_2O_3-Yb_2O_3$ при 1100, 1500 та 1600 °C у всьому інтервалі концентрацій. Встановлено, що для даної системи характерно утворення твердих розчинів на основі A і C кристалічних модифікацій вихідних компонентів та впорядкованої фази із структурою типу перовскиту (LaYbO₃, R). Визначено границі областей гомогенності, що становлять: для C-фази – 98–100 мол. % Yb₂O₃ (1100–1600 °C), R-фази – 48– 56 мол. % Yb₂O₃ (1100, 1500 °C), 48–54 мол. % Yb₂O₃ (1600 °C), A-фази – 4 мол. % Yb₂O₃ (1100 °C) та 9 мол. % Yb₂O₃ (1500, 1600 °C).

2. Уточнено границі фазових полів у подвійній системі $Nd_2O_3-Y_2O_3$ при 1500 та 1600 °С для твердих розчинів на основі гексагональної (А), моноклінної (В) модифікацій оксиду неодиму та кубічної (С) модифікації оксиду ітрію, що становлять: для A-Nd₂O₃ 0–4 мол. % Y₂O₃ при 1500 і 1600 °С, B-Nd₂O₃ — 20–45 мол. % Y₂O₃ при 1500 °С і 21–50 мол. % Y₂O₃ при 1600 °С та C-Y₂O₃ — 28 мол. % Y₂O₃ при 1500 °С і 30 мол. % Y₂O₃ при 1600 °С.

3. Вперше вивчені фазові рівноваги у потрійних системах La_2O_3 -Y₂O₃-Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 та 1600 °C у всьому інтервалі концентрацій і побудовано відповідні ізотермічні перерізи. Встановлено, що у вказаних системах утворюються тверді розчини на основі кубічної, гексагональної та моноклінної кристалічних модифікацій вихідних компонентів та впорядкованих фаз із структурою типу перовскиту (LaYO₃, LaYbO₃).

4. Встановлено закономірності утворення твердих розчинів С-типу оксидів РЗЕ у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd) при 1500 та 1600 °C: розчинність Ln_2O_3 у твердих розчинах на основі С- $Y_2O_3(Yb_2O_3)$ зі зменшенням іонного радіуса Ln^{3+} збільшується.

5. Вперше встановлено закономірності утворення твердих розчинів на основі упорядкованої фази типу перовскиту (R). Показано, що область гомогенності R-фази у потрійних системах La₂O₃-Y₂O₃-Ln₂O₃ по ряду від

Nd₂O₃ до Gd₂O₃ зменшується від 7 до 2 мол. % Ln₂O₃ тоді, як у системі з Yb₂O₃ утворюється неперервний ряд твердих розчинів на основі упорядкованої фази типу перовскиту, що обумовлено термодинамічною стабільністю фази LaYbO₃ у подвійній системі La₂O₃–Yb₂O₃ (2040 °C). З використанням фактора толерантності за Гольдшмідтом проведено оцінку термічної стійкості твердих розчинів на основі фази LaLnO₃ в широкому інтервалі температур і концентрацій для іонів різного розміру. Показано, що утворення твердих розчинів відбувається за механізмом ізовалентного заміщення, а стійкість упорядкованих фаз і твердих розчинів визначається геометричним фактором: великі іони Pr³⁺, Nd³⁺ заміщують La³⁺, менші іони P3E церієвого ряду Sm³⁺, Eu³⁺, Gd³⁺ заміщують Y³⁺ і La³⁺, тоді як іони P3E ітрієвого ряду заміщують виключно Y³⁺, що відповідає експериментальним даним.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

Wang S. F. Transparent ceramics: Processing, materials and applications / S. F. Wang, J. Zhang, D. W. Luo [et al.] // Progress in Solid State Chem. – 2013. – Vol. 41. – P. 20–54.

 Sanghera Jas. Transparent ceramics for high-energy laser systems / Jas Sanghera, Shyam Bayya, Guillermo Villalobos [et al.] // Optical Mater. – 2011. – Vol. 33. – P. 511–518.

3. Boniecki Marek. Fracture toughness, strength and creep of transparent ceramics at high temperature / Marek Boniecki, Zdzisław Librant, Anna Wajler [et al.] // Ceram. Internat. – 2012. – Vol. 38. – P. 4517–4524.

 Выдрик Г. А. Прозрачная керамика / Г. А. Выдрик, Т. В. Соловьева, Φ. Я. Харитонов. – М.: Энергия, 1980. – 96 с.

5. S. Prasad Narasimha. Development of ceramic solid-state laser host materials / Narasimha S. Prasad, Sudhir Trivedi, Susan Kutcher [et al.] [Електронний ресурс] // Режим доступу: Narasimha.s.prasad@nasa.gov.

Chen By Shi. New opportunities for transparent ceramics / By Shi Chen, Yiquan Wu // Amer. Ceram. Soc. Bull. – 2013. – No. 2. – P. 32–37.

7. Chen Y. Spectroscopic properties of Yb³⁺ ions in La₂(WO₄)₃ crystal / Y. Chen,
X. Lin, Y. Lin [et al.] // Solid State Comm. – 2004. – Vol. 132. – P. 533–538.

8. Gong X. Crystal growth and spectral properties of Pr^{3+} : La₂(WO₄)₃ / X. Gong, F. Xiong, Y. Lin // Mater. Res. Bull. – 2007. – Vol. 42. – P. 413–419.

9. Lakshminarasimhan N. Luminescent host lattices, $LaInO_3$ and $LaGaO_3$ reinvestigation of luminescence of metal ions / N. Lakshminarasimhan, U. V. Varadaraju // Ibid. – 2006. – Vol. 41. – P. 724–731.

10. McNaught S. J. 100 kW coherently combined slab MOPAs / S. J. McNaught, H. Komine, S. B. Weiss [et al.] // Proc. conf. on Lasers and Electro-Optics and Quantum Electronics and Laser Science conf. (CLEO/QELS 2009) (IEEE, 2009) paper CThA1.

11. Akiyama Jun. Laser ceramics with rare-earth-doped anisotropic materials / Jun Akiyama, Yoichi Sato, Takunori Taira // Optics Lett. – 2010. – Vol. 35, No. 21. – P. 3598–3600.

12. Taira T. Domain-controlled laser ceramics toward Giant Micro-photonics // Optical Mater. Express. – 2011. – Vol. 1, Iss. 5. – P. 1040–1050.

 Хироюки И. Материал для уплотнения между керамическими изделиями, керамикой и металлом / И. Хироюки, И. Набору, Т. Хироси [и др.] // Заявка № 58–41766 (Яп.). 1981.

14.Spectroscopic properties and structure refinement of $Nd^{3+}(Y_{0.9}La_{0.1})_2O_3$ transparent ceramics / Lu Qing, Yang Qiuhong, Jiang Cen, [et al.] // Optical Mater. Express. – 2014. – Vol. 5, Iss. 2. – P. 1035–1040.

15. Kumar G. A. Spectroscopic and stimulated emission characteristics of Nd^{3+} in transparent Y_2O_3 Ceramics / G. A. Kumar, Jianren Lu, Alexander A. Kaminskii [et al.] // Journal of Quantum Electronics. – 2006. – Vol. 42, No. 7. – P. 643–650.

16. Wang Nengli. Synthesis of La^{3+} and Nd^{3+} co-doped yttria nanopowder for transparent ceramics by oxalate precipitation method / Nengli Wang, Xiyan Zhang, Guanming Qiu [et al.] // Journal of Rare Earths. – 2010. – Vol. 28, No. 2. – P. 232–236.

17. Qiuhong Yang. Preparation and laser performance of Nd-doped yttrium lanthanum oxide transparent ceramic / Yang Qiuhong, Lu Shenzhou, Zhang Bin [et al.] // Optical Materials. – 2011. – Vol. 33. – P. 692–694.

18. Xiaoman Hu. Fabrication and spectral properties of Nd³⁺-doped yttrium lanthanum oxide transparent ceramics / Hu Xiaoman, Yang Qiuhong, Dou Chuanguo [et al.] // Optical Materials. – 2008. – Vol. 30. – P. 1583–1586.

19. Hongxu Zhou. Preparation and spectroscopic properties of 2 % $Nd:(Y_{0.9}La_{0.1})_2O_3$ transparent ceramics / Zhou Hongxu, Yang Qiuhong, Xu Jun [et. al.] // Journal of Alloys and Compounds. – 2009. – Vol. 471. – P. 474–476.

20. Kruk A. Synthesis and Physicochemical Properties of Yttrium Oxide Doped with Neodymium and Lanthanum / A. Kruk, M. Mrózek, J. Domagała [et al.] // Journal of Electronic Materials. – 2014. – Vol. 43, No. 9. – P. 3611–3617.

21.Su Wei–tao. Optical properties and thermal stability of LaYbO₃ ternary oxide for high–k / Wei–tao Su, Li Yang, Bin Li // Applied Surface Science. – 2011. – Vol. 257. – P. 2526–2530.

22. Шевченко А. В. Прозрачная кераміка на основе оксидов лантаноидов иттриевой подгруппы, иттрия и скандия / А. В. Шевченко, В. А. Дубок, Е. В. Дудник [и др.] // Порошковая металлургия. – 2010. – № 9/10. – С. 54–66.

23. Zhou Ding. Fine grained $Nd^{3+}:Lu_2O_3$ transparent ceramic with enhanced photoluminescence / Ding Zhou, Yuying Ren, Jiayue Xu[et al.] // Journal of the European Ceramic Society. – 2014. – Vol. 34. – P. 2035–2039.

24. Lu Qing. Fabrication and luminescence properties of Er3b doped yttrium lanthanum oxide transparent ceramics / Qing Lu, Qiuhong Yangn, Ye Yuan [et al.] // Ceramics International. – 2014. – Vol. 40. – P. 7367–7372.

25. Gorni G. Selective excitation in transparent oxyfluoride glass-ceramics doped with Nd³⁺ / G. Gorni, J. J. Velázquez, G. C. Mather [et al.] // Journal of the Europ Ceramic Society. – 2017. – Vol. 37, Iss. 4. – P. 1695–1706.

26. Zhang Le. Low temperature-sintering and microstructure of highly transparent yttria ceramics / Le Zhang, Yue Ben, Hao Chen [et al.] // Journal of Alloys and Compounds. – 2017. – Vol. 695, Iss. 25. – P. 2580–2586.

27. Gan Lin. Fabrication and properties of La_2O_3 -doped transparent yttria ceramics by hot-pressing sintering / Lin Gan, Young-Jo Park, Lin-Lin Zhu [et al.] // Journal of Alloys and Compounds. – 2017. – Vol. 695, Iss. 25. – P. 2142–2148.

28. Ivanov M. Highly transparent Yb-doped $(La_xY_{1-x})_2O_3$ ceramics prepared through colloidal methods of nanoparticles compaction / M. Ivanov, E. Kalinina,Yu Kopylov [et al.] // Journal of the European Ceramic Society. – 2016. – Vol. 36, Iss. 16. – P. 4251–4259.

29. Suyver J. F. Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion / J. F. Suyver, A. Aebischer, D. Biner [et al.] // Optical Materials. – 2005. – Vol. 27. – P. 1111–1130.

30. Serivalsatit K. Synthesis of Er-doped Lu_2O_3 nanoparticles and transparent ceramics / K. Serivalsatit, T. Wasanapiarnpong, C. Kucera, J. Ballato // Optical Materials. – 2013. – Vol. 35. – P. 1426–1430.

31. Lu Shenzhou. Upconversion and infrared luminescences in Er^{3+}/Yb^{3+} codoped Y_2O_3 and $(Y_{0.9}La_{0.1})_2O_3$ transparent ceramics / Shenzhou Lu, Qiuhong Yang, Bin Zhang, Haojia Zhang // Optical Materials. – 2011. – Vol. 33. – P. 746–749.

32. Brauer G. Structural and solid state chemistry of pure earth oxides and hydroxides. In:Eyiring L, editors. Progress in the science and technology of rare earths // Oxford: Pergamon Press. -1968. - Vol. 3. - P. 434–457.

33. Comparisons of binary oxides // K. A. Gschneider Jr, L.Eyring, G. R. Choppin [et al.] Handbook on the physics and chemistry of rare earths. Lanthanides/actinides: chemistry, Amsterdam: Elsevier Science. – 1994. – Vol. 18. – P 413–503.

34. Matvei Zinkevich. Thermodynamics of rare earth sesguioxides // Progress in Materials Science. – 2007. – Vol. 52. – P. 597–647.

35. Глушкова В. Б., Л. В. Сазонова. Влияние добавок редкоземельных окислов на полиморфизм двуокиси циркония [Текст] / В. Б. Глушкова, Л. В. Сазонова // Химия высокотемпературных материалов. – Л.: Наука, 1967. – С. 83–90 с.

36. Нигманов Б. С. Взаимодействие оксида иттрия с оксидами лантана, самария, гадолиния, диспрозия и эрбия [Текст]: дис. кандидата хим. наук: 02.00.04. / Нигманов Б. С. – К., 1985. – 149 с.

37. Редько В. П. Физико-химическое соединения М₄Zr(Hf)₃O₁₂ в системах ZrO₂(HfO₂) – оксиды РЗЭ [Текст]: дис. кандидата хим. наук: 02.00.04. / Редько Виктор Петрович. – К., 1990. – 168 с.

38. Traverse J. P. Etude du polymorphisme des sesquioxydes de terres rares: These.Grenoble. – 1971. – 150 p.

Степаненко О. М. Загальна та неорганічна хімія [Текст]: Підруч. для студ.
 вищ. навч. закл. / О. М. Степаненко, Л. Р. Рейтер, В. М. Ледовських, С. В.
 Іванов. – К.: Пед. преса, 2000. – 784 с.: іл. ISBN 966–7320–13–8.

40. Ahrens L. H. The use of ionization potential. Part 1. Ionic redii of the elements // Geochimica et Cosmochimica Acta. – 1952. – Vol. 2, Iss. 3. – P 155–169.

41. Краткая химическая энциклопедия / гл. ред. И. Л. Кнунянца. Т. 1. – М., 1961. – 67 с.

42. Маурах М. А., Митин Б. С. Жидкие тугоплавкие окислы [Текст] / М. А. Маурах, Б. С. Митин. – М: Металлургия, 1979. – С. 268–281.

43. Арсеньєв П. А. Соединения редкоземельных элементов. Цирконаты, гафнаты, ниобаты, танталаты, антимонаты. / П. А. Арсеньєв, В. Б. Глушкова, А. А. Евдокимов [и др.]. – М.: Наука, 1985. – 216 с.

44. Adachi Gin–ya. The binary rare earth oxides / Gin–ya Adachi, Nobuhito Imanaka // Chem. rev. – 1998. – Vol. 98. – P. 1479–1514.

45. Sato Satoshi. Basic properties of rare earth oxides / Satoshi Sato, Ryoji Takahashi, Mika Kobune [et al.] // Applied Catalysis A: General. – 2009. – Vol. 356. – P. 57–63.

46. Konings Rudy J. M. The thermodynamic properties of the f-elements and their compounds. Part 2. The lanthanide and actinide oxides / Rudy J. M. Konings, Ondrej Benes, Attila Kovacs [et al.] // J. Phys. Chem. – 2014. – Vol. 43, No 1. - P. 1–95.

47. Yumin Zhang. Thermodynamic Properties of Rare Earth Sesquioxides // McGill University, Montreal, QC, Canada. – 2016. – P. 151.

48. Свойства окислов европия [Текст] – М: Атомиздат, 1974. – 156 с.

49. Deutsch S. High pressure phasetransformation in polycrystalline yttrium oxide: abstract of the dissertation. – New Jersey, 2012. – P. 171.

50. Navrotsky Alexandra. Thermodynamics of solid electrolytes and related oxide ceramics based on the fluorite structure // J. Mater. Chem. -2010. - Vol. 20. - P. 10577–10587.

51. Vassen R. Conventional and new materials for thermal barrier coatings functional gradient materials and surface layers prepared by fine particles technology. / R. Vassen, D. Stoever, I. Baraton, I. Uvarova // NATO–ASI Series: Mathematics, Physics and Chemistry. Dordrecht: Kluwer Academic Publishers. – 2001. – Vol. 16. – P. 199–218.

52. Umesh B. Structural characterization, thermoluminescence and EPR studies of $Nd_2O_3:Co^{2+}$ nanophosphors / B. Umesh, B. Eraiah, H. Nagabhushana [et al.] // Original Research Article. – 2013. – Vol. 48. – P. 180–187.

53. Hiroyuki I., Naboru I., Hirosi T., Katsumori T., Syundzyu S., Yosio S. (1981) Materials for sealing between ceramic parts, and metal, Patent Application: 58– 41766 (Japan).

54. Yoshimura M. Various solid solutions in the systems Y_2O_3 – R_2O_3 (R – La, Nd, and Sm) at high temperature / M. Yoshimura, X. Z. Rong // J. of Mater Sci Lett.– 1997. – Vol. 16. – P. 1961–1963.

55. Andrievskaya E. R. Phase Equilibria in the Systems of Hafnia, Yttria with Rare– Earth Oxides. Scientific Book Project, Kiev: Naukova Dumka, 2010. – P. 471.

56. Andrievskaya E. R. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare–earth oxides // J. of the European Ceram. Soc. – 2008. – Vol. 28, No. 12. – P. 2363–2388.

57. Coutures J. Etude a Haute Temperature des Systems Formes par les sesquioxides de Lanthane Avec les Sesquioxydes de Lanthanides II. Influence de la Trempe sur la Nature des Phases Obtenues a la Temperature Ambiante / J. Coutures, F. Sibieude, M. Foex // J. Solid State Chem. – 1976. – Vol. 17, No. 4. – P. 377–384.

58. Coutures J. Etude a Haute Temperature des Systems Formes par le Sesquioxyde de Lanthane et les Sesquioxydes de Lanthanides. I. Diagrammes de Phases (1400 *C < T < T Liquide) / J. Coutures, A. Rouanet, R. Verges [et al.] // J. Solid State Chem. – 1976. – Vol. 17, No. 1–2. – P. 172–182.

59. Лопато Л. М. Взаимодействие оксида лантана с оксидом иттрия / Л. М. Лопато, Б. С. Нигманов, А. В. Шевченко, З. А. Зайцева // Изв. АН СССР. Неорган. материалы. – 1986. – Т. 22, № 5. – С. 771–774.

60. Berndt V. NewA B O₃ interlanthanide perovskite compounds / V. Berndt, D. Maier, C. Keller // J. Solid State Chem. – 1975. – Vol. 13, No. 1–2. – P. 131–135.

61. Mizuno M. Phase diagram of the system $La_2O_3-Y_2O_3$ at high temperatures / M. Mizuno, A. Rouanet, T. Yamada [et al.] // J. Ceram. Soc. Japan. – 1976. – Vol. 84, No. 7. – P. 342–347.

62. Coutures J. Etude a haute temperature du diagrama d' equilibrie du systeme forme par le sesquioxyde d'yttrium / J. Coutures, M. Foex // J. Solid State Chem. – 1974. – Vol. 11, No. 4. – P. 294–300.

63. Wei George C. Analytical microscopy study of phases and fracture in Y_2O_3 -La₂O₃ alloys / C. Wei George, T. Emma, H. Rhodes William // J. Am. Ceram. Soc. – 1988. – Vol. 71, No. 10. – P. 820–825.

64. Rhodes W. H. Controlled transient solid second phase sintering of yttria // J. Am. Ceram. Soc. – 1981. – Vol. 64, No. 1. – P. 13.

65. Fabrichnaya O. Calorimetric investigation of the La₂Zr₂O₇, Nd₂Zr₂O₇, Sm₂Zr₂O₇ and LaYO₃ compounds and CALPHAD assessment of the La₂O₃–Y₂O₃ system / O. Fabrichnayaa, M. J. Kriegela, J. Seidela [et al.] // Thermochimica Acta. – 2011. – Vol. 526. – P. 50–57.

66. Coutures J. Etude a haute temperature des systemes formes par le sesquioxyde de neodyme avec les sesquioxides d'yttrium et d'ytterbium / J. Coutures, R. Verges, M. Foex // Mater. Res. Bull. – 1974. – Vol. 9. – P. 1603–1612.

67. Adylov G. T. The system Nd₂O₃–Y₂O₃ / G. T. Adylov, G.V. Voronov, L. M. Sigalov // Inorg. Mater. – 1987. – Vol. 23. – P. 1146–1164.

68. Huang S. Experimental investigation and thermodynamic assessment of the $Nd_2O_3-Y_2O_3$ system / S. Huang, O. Van der Biest, J. Vleugels // J. Am. Ceram. Soc. -2006. - Vol. 89. - P. 2596-2601.

69. Chavan S. V. XRD investigations in the $Nd_2O_3-Y_2O_3$ system and structural studies of a stabilized monoclinic phase / S. V. Chavan, S. N. Achary, A. K. Tyagy // J. Comp. – 2007. – Vol. 441. – P. 332–336.

70. Salehi S. Nd₂O₃-Y₂O₃ double stabilized ZrO₂-TiCN nanocomposites /
S. Salehi, B. Yuksel, K. Vanmeensel // Materials Chem. Phys. – 2009. – Vol. 113. –
P. 596–601.

71. Soboleva L.V., Chirkin A. P. Nd₂O₃–Al₂O₃–Y₂O₃ phase diagram and the growth of (Y, Nd) Al₅O₁₂ single crystals / L.V. Soboleva, A. P. Chirkin // Crystallography reports. – 2003. – Vol. 48. – P. 945–949.

72. Fabrichnaya O. Phase relations in the $ZrO_2-Nd_2O_3-Y_2O_3-Al_2O_3$ system: Experimental study and thermodynamic modeling / O. Fabrichnaya, G. Savinykh, G. Schreiber [et al.] // J. Europ. Ceram. Soc. – 2012. – Vol. 32. – P. 3171–3185.

73. Торопов С. А. Диаграммы состояния систем тугоплавких оксидов. – Ленинград: Наука, 1987. – 822 с.

74. Шевченко А. В. Взаимодействие оксидов самария и гадолиния с оксидом иттрия / А. В. Шевченко, Б. С. Нигманов, З. А. Зайцева, Л. М. Лопато // Изв. АН СССР. Неорган. материалы. – 1986. – Т. 22, № 5. – С. 775–778.

75. Lopato L. M. The interection of europium oxide with hafnia, zirconia and yttria /
L. M. Lopato, E. R. Andrievskaya, A. V. Shevchenko [et al.] // Abstract
International Work shop on Chem. And Techn. Of High–Temp. Superconductors. 4.
– Moscow (Russia), 1995. – P. 91.

76. Андриевская Е. Р. Диаграма состояния системы Eu₂O₃-Y₂O₃ / Е. Р. Андриевская, З. А. Зайцева, А. В. Шевченко, Л. М. Лопато // Изв. АН СССР. Неорган. материалы. – 1997. – Т. 33, № 4. – С. 465–468.

77. Андриевская Е. Р. Взаимодействие оксида европия с оксидом иттрия / Е. Р. Андриевская, З. А. Зайцева, А. В. Шевченко, Л. М.Лопато // Современные достижения в области физического материаловедения. – К.: ИПМ НАН Украины, 1995. – С. 126–132.

78. Andrievskaya E. R. The systems ZrO₂(HfO₂)–Eu₂O₃ / E. R. Andrievskaya, L. M. Lopato // Proc International Conf. "Deformation and Fracture in Structural PM Materials with a Workshop on their Application". Stará Lesná (Slovakia), Košice: IMR–SAS – 1996. – Vol. 2. – P. 296–301.

79. Andrievskaya E. R. Characterization and properties phases in the $HfO_2-Y_2O_3-Eu_2O_3$ ternary system / E. R. Andrievskaya, L. M. Lopato, V. P. R ed'ko [et. al.] // Proc. International School "Phase Diagrams in Materials Science" (ISP DMS'1996). V. – Crimea (Ukraine). – 1996. – P. 14–15.

80. Andrievskaya E. R. Phase transformations in the ternary systems $HfO_2(ZrO_2)$ – Y_2O_3 – Eu_2O_3 / E. R. Andrievskaya, L. M Lopato // Key engineering materials – Switzerland: Trans Tech Publications. – 1997. – Vols. 132–136. – P. 1782–1785.

Андриевская Е. Р. Взаимодействие в системе HfO₂-Eu₂O₃ / Е. Р. Андриевская, Л. М. Лопато, А. В. Шевченко, В. П. Смирнов // Изв. РАН. Неорган. материалы. – 1997. – Т. 33, № 7. – С. 835–838.

82. Лопато Л. М. Фазовые соотношения в системе ZrO₂–Eu₂O₃ / Л. М. Лопато,
Е. Р. Андриевская, А. В. Шевченко, В. П. Редько // Журн. Неорган. химии. –
1997. – Т. 42, № 10. – С. 1736–1739.

83. Longo V. The system CeO₂-Y₂O₃ / V. Longo, L. Todda // J. Mater. Sci. – 1981.
– Vol. 16, No. 3. – P. 35–40.

84. Андриевская Е. Р. Фазовые равновесия в системах оксидов гафния, циркония и иттрия с оксидами редкоземельных элементов: Монография. – К.: Наук. думка, 2010. – 470 с.

85. Андриевская Е. Р. Фазовое соотнашение в системе La₂O₃–Sm₂O₃ при температуре 1500 °C / Е. Р. Андриевская, О. А. Корниенко, Ж. Д. Богатырева, [и др.] // Современные проблемы физического материаловедения, ИПМ НАН Украины. – 2016. – № 25. – С. 15–28.

86. Андриевская Е. Р. Взаимодействие и свойства фаз в системе La₂O₃-Eu₂O₃ при 1500 °C / Е .Р. Андриевская, О. А. Корниенко, А. В. Крючко, Ж. Д. Багатырева // Материалы и покрытия в экстремальных условиях: исследования, применение, экологически чистые технологии производства и утилизации изделий: IX Международноя конференція: тезисы докладов (15–19 августа, 2016 г.). Секция А. Принципы конструирования материалов и покрытий для работы в экстремальных условиях. – Киев, 2016. – С. 21.

87.Корнієноко О. А. Фазові рівноваги в подвійних системах La₂O₃– Eu₂O₃(Gd₂O₃) / О. А. Корнієноко, О. Р. Андрієвська, О. І. Биков // Хімічні проблеми сьогодення (ХПС–2017): збірник тез доповідей Десятої Української наукової конференції студентів, аспірантів і молодих учених з міжнародною участю (27–29 березня, 2017). – Вінниця. – С. 162.

Horyn R. Phase relations in La₂O₃–Gd₂O₃–CuO system at 950 °C / R. Horyn, E. Bukowska, A. Sikora // Journal of Alloys and Compounds. – 2006. – Vol. 416. – P. 209–213.

89. Schneider S. J. Phase equilibria in systems the rare-earth oxides. Part II. Solid state reaction in trivalent rare-earth oxide systems / S. J. Schneider, R. S. Roth // Physics and chemistry. – 1960. – Vol. 64A, No. 4. – P. 318–332.

90. Арсеньев П. А. Соединения редкоземельных элементов. Системы с оксидами элементов І–ІІІ групп / П. А. Арсеньев, Л. М. Ковба, Х. С. Багдасаров [и др.] // – М.: Наука, 1983. – 280 с.

91. Bharathy M. Crystal growth of inter–lanthanide LaLn'O₃ (Ln' =Y, Ho–Lu) perovskites from hydroxide fluxes / M. Bharathy, Adam H. Fox, S. J. Mugavero // Solid State Sciences. -2009. - Vol. 11. - P. 651-654.

92. Muller–Buschbaum Hk. Zur Kenntnis der Kristallstruktur von LaYbO₃ / Hk.
Muller–Buschbaum, Chr. L. Teske. // Z. Anorg. Allg. Chem. – 1969. – Vol. 369. –
P. 255–264.

93.Muller–Buschbaum Hk. Untersuchung am System La₂O₃–Yb₂O₃ / Hk. Muller– Buschbaum // Z. Anorg. Allg. Chem. Bd. – 1969. – Vol. 369. – P. 249–254.

94. Traverse J. P. Thermal analysis / J. P. Traverse, J. Coutures, M. Foex // Compt. rend. Acad. sci. – 1968. – P. 924–935.

95. Shannon R. D. Revised effective ionic radii systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. A. – 1976. – Vol. 32, No. 5. – P. 751–754.

96. Transparent ceramics for high–energy laser systems / Jas Sanghera, Shyam Bayya, Guillermo Villalobos [et al.] // Optical Materials. – 2011. – Vol. 33. – P. 511–518.

97. Boniecki Marek. Fracture toughness, strength and creep of transparent ceramicsat high temperature / Marek Boniecki, Zdzisław Librant, Anna Wajler [et al.] // Ceramics International. – 2012. – Vol. 38. – P. 4517–4524.

98. Зеленько М. А. Токопровідні оксидні матеріали на основі 3d–металів та рідкісноземельних елементів / М. А. Зеленько, С. А. Неділько, К. В Дегтярьова // Фізика і хімія твердого тіла. – 2013. – Т. 14, № 1. – С. 108–114.
99. Pena M. Chemical structures and performances of perovskite oxides / M. Pena,

J. L. Fierro // Chem. Rev. – 2001. – Vol. 101. – P. 1981–2017.

100. Magnone E. A Systematic Literature Review on BSCF–Based Cathodes for Solid Oxide Fuel Cell Applications // Journal of Fuel Cell Science and Technology. – 2010. – Vol. 7, No. 6. – P. 181–197.

101. Глушкова В. Б. Полиморфизм окислов редкоземельных элементов. – Л.: Наука, 1967. – 134 с.

102. Ahrens L. H. Use of ionization potentials I ionic radii of the elements / L.
H. Ahrens // Geochim. et Cosmochim. Acta. – 1952. – No. 2. – P. 155–158.

103. Andrievskaya E. R. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare–earth oxides / E. R. Andrievskaya // J. of the European Ceram. Soc. -2008. - Vol. 28, No. 12. - P. 2363–2388.

Berndt U. Phasengleichgewichte in Interlanthanidenoxid-Systemen / U.
Berndt, D. Maier, C. Keller // J. Solid State Chem. – 1976. – Vol. 16, Iss. 1–2. – P.
189–195.

105. Stability of interlanthanide perovskites ABO_3 (A=La-Pr; B=Y, Ho-Lu) / Cristina Artini, Marcella Pani, Andrea Lausi // Journal of Physics and Chemistry of Solids. – 2016. – Vol. 91. – P. 93–100.

106. Goldschmidt V. M. Die Gesetze der Krystallochemie / V. M. Goldschmidt
// Natur wissensch aften. – 1926. – Vol. 14. – P. 477–485.

107. Artini Cristina. Crystal chemistry, stability and properties of interlanthanide perovskites: A review / Cristina Artini // Journal of the European Ceramic Society – 2017. – Vol. 37, Iss. 2. – P. 427–440.

108. Antonio Feteira. Crystal Structure and Dielectric Properties of LaYbO₃ / Antonio Feteira, Lisa J. Gillie, Ralf Elsebrock // J. Am. Ceram. Soc. – 2007. – Vol. 90, Iss. 5. – P. 1475–1482.

109. Mayeshiba Tam T. Factors controlling oxygen migration barriers in perovskites / Tam T. Mayeshiba, Dane D. Morgan. // Solid State Ionics. – 2016. – Vol. 296. – P. 71–77.

110. Sua Wei–tao. Optical properties and thermal stability of LaYbO₃ ternary oxide for high–kdielectric application / Wei–tao Sua, Li Yang, Bin Li // Applied Surface Science. – 2011. – Vol. 257. – P. 2526–2530.

111. Ruiz–Trejo E. Atomistic simulation of defects and ion migration in LaYO₃ / E. Ruiz–Trejo, M. S. Islam, J. A. Kilner // Solid State Ionics. – 1999. – Vol. 123. – P. 121–129.

112. Michael Nazarov. Synthesis and luminescent performances of red emitted phosphors in systems $La_2O_3-Y_2O_3-Gd_2O_3$, $Y_2O_2S-La_2O_2S-Gd_2O_2S$ and $YVO_4-Gd_2O_3$ doped by Eu³⁺ / Michael Nazarov, Sergey Bukesov, Jong Hyuk Kang [et al.] // Moldavian Journal of the Physical Sciences. – 2003. – Vol. 2, No. 3–4. – P. 311–326.

113. Бокий Г. Б. Рентгеноструктурный анализ / Г. Б. Бокий, М. А. Порай– Кошиц. – М.: Московский университет, 1964. – 489 с.

114. Кривоглаз М. А. Дифракция рентгеновских лучей и нейтронов в неидеальных кристаллах / М. А. Кривоглаз. – К.: Наукова думка, 1983. – 407 с.
115. Сидоренко С. І. Сучасний рентгеноструктурний аналіз реальних кристалів / С. І. Сидоренко, Р. І. Барабаш. – К.: Наукова думка, 1997. – 368 с.

116. Чудінович О. В. Фазові співвідношення та перспективні матеріали в системі La₂O₃–Yb₂O₃ / О. В. Чудінович // Зварювання та споріднені технології доповідей: VIII міжнарод. конференція молодих вчених та спеціалістів, тези доповідей (20–22 травня, 2015 р.). – К., 2015. – С. 297.

117. Чудинович О. В. Взаимодействие оксидов лантана и иттербия при температуре 1500 °С / О. В. Чудинович, Е. Р. Андриевская, Ж. Д. Богатырева [и др.] // Современные проблемы физического материаловедения, ИПМ НАН Украины. – 2014. – № 23. – С. 12–23.

118. Андриевская Е. Р. Взаимодействие и свойства фаз в системе La₂O₃– Yb₂O₃ при 1500 °C / Е. Р. Андриевская, О. В. Чудинович, В. В. Ткач // Технология и применение огнеупоров и технической керамики в промышленности: междунар. научно-технич. конференция, тезисы докладов (28–29 апреля 2015 г.). – Харьков, изд-во "Каравелла", 2015. – С. 29–30.

119. Chudinovich O.V. Optically transparent ceramics based on rare-earth oxides / O. V. Chudinovich, E. R. Andrievskaya, A. V. Kryuchko [et al.] //

Nanotechnology and Nanomaterials. Nanocomposites and Nanomaterials: International research and practice conference (26–29 August 2015, Lviv). – P. 45.

120. Chudinovich O. V. Phase equilibria and properties of solid solutions in the La_2O_3 -Yb₂O₃ and La_2O_3 -Yb₂O₃-Yb₂O₃ systems at 1500 °C / O. V. Chudinovych, E. R. Andrievskaya // The Eleventh Students Meeting, SM–2015 Processing and Application of Ceramics, (21–24 October, 2015, Novi Sad, Serbia.). – P. 111–112.

121. Чудінович О. В. Фазові рівноваги у системі Nd₂O₃–Y₂O₃ при 1500 °C / О. В. Чудінович, О. Р. Андрієвська, А. О. Шендрик [та ін.] // VI Міжнародна конференція студентів, аспірантів та молодих вчених з хімії та хімічної технології, ХТФ КПІ (20–22 квітня 2016, Київ, Україна). – Київ. – С. 149.

122. Андриевская Е. Р. Взаимодействие и свойства фаз в системе Nd₂O₃–Y₂O₃ при 1500 °C / Е. Р. Андриевская, О. В. Чудинович, В. В. Ткач // Технология и применение огнеупоров и технической керамики в промышленности, международноя научно-техническоя конференція, тезисы докладов (11–12 мая, 2016 г). – Харьков, изд-во "Каравелла", 2016. – С. 42–43.
123. Чудінович О. В. Взаємодія оксидів ітрію та неодиму при температурі 1500 °C / О. В. Чудінович // Український хімічний журнал. – 2016. – Т. 82, № 8. – С. 92–97.

124. Chudinovych O.V. Phase relations the yttria–neodymia system at 1500 $^{\circ}$ C / O. V. Chudinovych, E. R. Andrievskaya, J. D. Bogatyryova, A. V. Shirokov // Processing and Application of Ceramics. – 2017. – Vol. 11, No 1. – P. 1–6.

125. Андриевская Е. Р. Взаимодействие оксидов иттрия и неодима при температуре 1600 °С / Е. Р. Андриевская, О. В. Чудинович, Ж. Д. Богатырева [и др.] // Современные проблемы физического материаловедения, ИПМ НАН Украины. – 2016. – № 25. – С. 3–14.

126. Чудінович О. В. Оптично прозора кераміка на основі оксидів рідкоземельних елементів / О. В. Чудінович, Б. О. Криштоп, Т. В. Козодой [та ін.] // V Міжнародна конференція студентів, аспірантів та молодих вчених з хімії та хімічної технології: тези доповідей. – К., 2014. – С. 146.

127. Андриевская Е.Р. Взаимодействие и свойства фаз в системе Nd_2O_3 -Y₂O₃ при 1600 °C / Е.Р. Андриевская, О.В. Чудинович, Е. И. Олифан, В.В Ткач // Технология и применение огнеупоров и технической керамики в промышленности, международноя научно-техническоя конференція: тезисы докладов (25–26 мая, 2017 г). – Харьков, изд-во "Каравелла", 2017. – С. 24–25. 128. Andrievskaya E. R. Phase relations and perspective materials in the ternary system La₂O₃–Y₂O₃–Nd₂O₃ / E. R. Andrievskaya, O. V. Chudinovich, O. A. Kornienko [et al.] // European Materials Research Society E-MRS 2014 Fall Meeting, Functional and Structural Ceramic and Ceramic Matrix Composites (CCMC) Symposium S: Composite materials and structures: from research and practical demands to application,(September 15–19, Warsaw, Poland). – Warsaw

University of Technology, 2014. – P. 02.

129. Chudinovych O. V. Interaction yttrium oxide with lanthana and neodima at 1500 °C / O. V. Chudinovych, E. R. Andrievskaya, O. A. Kornienko [et al.] // Materials and Coatings for Extreme Environments Performance: Investigations, Applications, Ecologically Safe Technologies for their Production and Utilization: VII International Conference, (20–24 September, Big Yalta, Zhukovka, Crimea, Ukraine), 2014. – P. 01.

130. Чудинович О. В. Взаимодействие оксидов лантана, иттрия и неодима при температуре 1500 °С / О. В. Чудинович, Е. Р. Андриевская, Ж. Д. Богатырева [и др.] // Современные проблемы физического материаловедения, ИПМ НАН Украины. – 2015. – № 24. – С 12–27.

131. Чудінович О. В. Взаємодія оксиду ітрію з оксидами лантану та неодиму при температурі 1600 °С / О. В. Чудінович, О. Р. Андрієвська, Ж. Д. Багатирьова, Л. М. Спасьонова // Хімічні проблеми сьогодення (ХПС-2017): збірник тез доповідей Десятої Української наукової конференції студентів, аспірантів і молодих учених з міжнародною участю (27–29 березня, Вінниця). – 2017. – С. 183.

132. Чудінович О. В. Взаємодія оксидів лантану, ітрію та неодиму при температурі 1600 °С / О. В. Чудінович, О. Р. Андрієвська, Ж. Д. Багатирьова, [та ін.] // Вісник ОНУ. Серія: Хімія. – 2017. – Т. 22, вип. 2 (62). – С. 82–94.

133. Andrievskaya E. R. Advanced ceramic and phase relations in the La_2O_3 - Y_2O_3 - Ln_2O_3 (Ln = Nd, Eu, Yb) systems / E. R. Andrievskaya, O. V. Chudinovich, A. Sayir // BIT's 2nd Annual World Congress of Smart Materials–2016. Symposium 4: Optical and Electronic Materials. Report 403. 4-6March, 2016, Singapore. – 01P.

134. Andrievskaya E. R. Phase equilibria and optically transparent ceramics in the $La_2O_3-Y_2O_3-Ln_2O_3$ systems / E. R. Andrievskaya, O. V. Chudinovich, A. V. Ragulya, A. Sayir // 5th International Workshop Directionally Solidified Eutectic Ceramics (DSEC V), (3–7 April, 2016). – Warsaw, Poland. – P. 81.

135. Chudinovich O.V. Optically transparent ceramics based on rare–earth oxides / O. V. Chudinovich, E. R. Andrievskaya, A. V. Kryuchko [et al.] // Nanotechnology and Nanomaterials. Nanocomposites and Nanomaterials: International research and practice conference (26–29 August 2015, Lviv). – P. 45.

136. Chudinovich O. V. Advanced materials and phase relations in the La₂O₃– Y_2O_3 – Yb_2O_3 system / O. V. Chudinovych, E. R. Andrievskaya, O. A. Kornienko, Yu. V. Yurchenko // European Materials Research Society E-MRS 2015 Fall Meeting, Materials and Devices for Energy and Environment Applications Symposium F: Materials and coatings for extreme environments (September 15-18, Warsaw, Poland). – Warsaw University of Technology. – 2015. – P. 05.

137. Андриевская Е. Р. Взаимодействие оксида иттрия с оксидами лантана и иттербия при 1500 °С / Е. Р. Андриевская, О. В. Чудинович, Ю. В. Юрченко, В. В Ткач // Материалы и покрытия в экстремальных условиях: исследования, применение, экологически чистые технологии производства и утилизации изделий: IX Международноя конференція, (15–19 августа, 2016 г.). – К. – С. 100.

138. Чудінович О. В. Взаємодія оксидів лантану, ітрію та ітербію при температурі 1500 °С / О. В. Чудінович, О. Р. Андрієвська // Вісник ОНУ. Серія: Хімія. – 2016. – Т. 21, вип. 2 (58). – С. 53–66.

Додаток А

Об'єми елементарних комірок фаз після випалу зразків системи La₂O₃-Yb₂O₃

Хімі скл мо.	чний 1ад, л, %	T	= 1100	°C	T ·	= 1500	°C	T	= 1600 °	С
La ₂ O ₃	Yb ₂ O ₃	V_A	V_C	V_R	V_A	V_C	V_R	V_A	V_C	V_R
100	0	0,2515	-	-	0,2515	-	-	0,2523	-	-
95	5	0,2507	-	0,2922	0,2493	-	-	0,2511	-	-
90	10	0,2510	-	0,2988	0,2498	-	0,2978	0,2493	-	0,2940
85	15	0,2510	-	0,2950	0,2510	-	0,3024	0,2483	-	0,2930
80	20	0,2510	-	0,2954	0,2531	-	0,2957	0,2469	-	0,2937
75	25	0,2503	-	0,2929	0,2500	-	0,2947	0,2485	-	0,2941
70	30	0,2505	-	0,2906	0,2523	-	0,2978	0,2486	-	0,2944
65	35	0,2509	-	0,2945	0,2533	-	0,3024	0,2496	-	0,2943
60	40	0,2487	-	0,2935	0,2522	-	0,2958	0,2503	-	0,2947
55	45	0,2481	-	0,2932	0,2534	-	0,2947	-	-	0,2952
50	50	-	-	0,2943	-	-	0,3079	-	-	0,2936
49	51	-	-	0,2941	-	-	0,2949	-	-	0,2935
48	52	-	-	0,2943	-	-	0,2948	-	-	0,2938
47	53	-	-	0,2946	-	-	0,2952	-	-	0,2948
46	54	-	-	0,2940	-	-	0,2946	-	-	0,2944
45	55	-	-	0,2946	-	-	0,2941	-	1,1281	0,2932
40	60	-	1,1402	0,2956	-	1,1448	0,2951	-	1,1507	0,2930
35	65	-	1,1382	0,2957	-	1,1418	0,2946	-	1,1481	0,2933
30	70	-	1,1363	0,2944	-	1,1428	0,2942	-	1,1402	0,2935
25	75	-	1,1366	0,2945	-	1,1448	0,2939	-	1,1425	0,2931
20	80	-	1,1340	0,2940	-	1,1448	0,2961	-	1,1451	0,2949
10	90	-	1,1340	0,2932	-	1,1418	0,2952	-	1,1438	0,2931
5	95	-	1,1333	0,2944	-	1,1428	0,2937	-	1,1431	-
3	97	-	1,1340	-	_	1,1448	0,2979	_	1,1408	-
2	98	-	1,1268	-	-	1,1438	0,2941	_	1,1416	-
1	99	-	1,1314	-	-	1,1421	0,2945	_	1,1382	-
0	100	-	1,1353	-	-	1,1424	0,2937	-	1,1365	_

Додаток Б

Хімі скл мол	чний 1ад, п, %		T = 1500 °	°C		T = 1600 °C	2
Nd ₂ O ₃	Y ₂ O ₃	V_A	V_C	V_B	V_A	V _C	V_B
100	0	0,2411	-	-	0,2756	-	-
99	1	0,2404	-	-	0,2755	-	-
98	2	0,2418	-	-	0,2757	-	-
97	3	0,2395	-	-	0,2756	-	-
96	4	0,2410	-	-	0,2757	-	-
95	5	0,2400	-	0,3057	-	-	0,1845
90	10	0,2404	-	0,1622	-	-	0,1838
85	15	0,2418	-	0,1744	-	-	0,1840
80	20	-	-	0,1900	-	-	0,1556
75	25	-	-	0,1900	-	-	0,1709
70	30	-	-	0,1903	-	-	0,1692
65	35	-	-	0,1848	-	-	0,1679
60	40	-	-	0,1882	-	-	0,1684
55	45	-	-	0,1867	-	-	0,1518
50	50	-	1,2213	0,1869	-	1,2319	0,1657
45	55	-	1,2357	0,1783	-	1,2392	0,1514
40	60	-	1,2305	0,1773	-	1,2336	0,1510
35	65	-	1,2288	-	-	1,2378	0,1504
30	70	-	1,2302	-	-	1,2312	-
25	75	-	1,2172	-	-	1,2264	-
20	80	-	1,2141	-	-	1,2178	-
15	85	-	1,2039	-	-	1,2117	-
10	90	-	1,1995	-	-	1,2052	-
5	95	-	1,1954	-	-	1,1978	-
0	100	-	1,1924	-	-	1,1924	-

Об'єми елементарних комірок фаз після випалу зразків системи Nd_2O_3 – Y_2O_3

Додаток В

Об'єми елементарних комірок фаз після виипалу зразків системи

Xin	мічний ск мол. %	лад	Г	T = 1500 °C	С		T = 1600 °	С
Y ₂ O ₃	La ₂ O ₃	Nd ₂ O ₃	V_{R}	V_{C}	V_R	V_{A}	V_{R}	Vc
1	2	3	4	5	6	7	8	9
		Пет	pepi3 Y ₂ C	а–(50 мол	$1 \% La_2O_2$	з — 50 мол %	Nd_2O_3	
15	42.5	42.5	0.4573	_	_	0.2454	0.4610	_
20	40	40	0.4199	_	_	0,2454	0,4563	_
25	37,5	37,5	0,4194		_		0,4537	_
30	35	35	0,4595	_	_	_	0,4394	_
35	32,5	32,5	0,4594	_	—	_	0,4470	_
40	30	30	0,4467	_	—	_	0,4433	_
45	27,5	27,5	0,4495	_	_	_	0,4378	_
50	25	25	0,4476	1,2090	_	_	0,4487	_
55	22,5	22,5	0,4599	1,2025	0,3011	_	0,4447	1,2361
60	20	20	0,4009	1,2391	0,3058	_	0,4451	1,2347
65	17,5	17,5	_	1,2361	0,3012	_	0,4439	1,2340
70	30	30	_	1,2402	0,3014	_	0,4332	1,2336
75	12,5	12,5	_	1,2086	_	_	_	1,2144
80	10	10	_	1,2086	_	_	_	1,2039
85	7,5	7,5	_	1,1988	_	_	_	1,1971
90	5	5	_	1,2097	_	_	_	1,2086
95	2,5	2,5	_	1,2032	_	_	_	1,1934
100	0	0	_	1,19236	_	_	—	1,1924
		Пер	pepi3 Nd ₂	О ₃ -(50 мс	л % La ₂ C	О ₃ −50 мол %	Y ₂ O ₃)	
50	50	0	—	_	0,3041	-	—	—
49,5	49,5	1	_	_	0,3025	—	—	—
49	49	2	_	_	0,3012	—	—	—
48,5	48,5	3	_	_	0,2998	_	—	_
48	48	4	_	_	0,2994	_	—	_
47,5	47,5	5	_		0,3066		—	—
45	45	10	0,4460		0,3041		—	—
42,5	42,5	15	0,4531	—	—	_	—	—
37,5	37,5	25	0,3876	—	_	_	_	—
35	35	30	0,4051	—	—	_	—	—
32,5	32,5	35	0,4536	—	—	_	—	—
30	30	40	0,4580	—	—	_	—	—
27,5	27,5	45	0,4595		_		_	—
25	25	50	0,4583	_	_		_	—
22,5	22,5	55	0,4527	_			_	_
20	20	60	0,4259	_	_	_	_	_
17,5	17,5	65	0,4330		_		_	
15	15	70	0,4408	_	_		_	_
12,5	12,5	75	0,4679	_		_	_	_
10	10	80	0,4447	_	_	_	_	—
7,5	7,5	85	0,4453	_	_	_	_	—

 $La_2O_3-Y_2O_3-Nd_2O_3$

Продовження таблиці В

1	2	3	4	5	6	7	8	9
5	5	90	0,4620					
		Пер	pepis Y ₂ C) ₃ (90 мол	$1 \% La_2O_2$	3 – 10 мол %	Nd_2O_3)	
40	54	6	_	_	0,3118	_	0,4667	_
45	49,5	5,5	_	_	0,3005	_	0,4762	—
55	40,5	4,5	_	1,2288	0,3047	_	0,4664	1,2281
60	36	4	_	1,2247	0,3037	—	0,4694	1,2343
65	31,5	3,5	_	1,2299	0,3119	—	0,4662	1,2336
70	27	3	_	1,2292	0,3114	—	0,4667	1,2316
75	22,5	2,5	_	1,2292	0,3036	—	0,4657	1,2302
80	18	2	_	1,1288	_	—	—	1,2326
85	13,5	1,5	_	1,2124	_	_	_	1,2117
90	9	1	_	1,2093	_	_	_	1,2206
95	4,5	0,5	—	1,2052	_	_	_	—
			Iso	оконцентр	ати 45 м	ол %Y ₂ O ₃		
45	55	0	0,3619	_	0,3071	_	—	_
45	50	5	_	_	0,3051	_	_	_
45	45	10	0,4015	_	0,3015	_	_	—
45	40	15	0,4331	_	0,3045	_	_	—
45	35	20	0,4258	1,2039	0,3039	_	_	—
45	30	25	0,4547	1,2062	_	_	_	—
45	25	30	0,4541	1,1941	_	_	_	—
45	20	35	0,4643	1,1902	_	_	_	_
45	15	40	0,3944	1,1995	_	_	_	_
45	10	45	0,4210	1,2022	_	_	_	_
45	5	50	0,4200	1,1920	_	_	_	_
45	0	55	0,4414	_	_	_	_	_
			Ізс	концентр	ати 50 м	ол % Ү2О3		
50	49	1	_	_	0,3033	_	_	_
50	48	2	_	_	0,3016	_	_	_
50	47	3	—	_	0,3049	_	—	_
50	46	4	—	_	0,3033	_	—	_
50	45	5	—	_	0,3046	_	—	_
50	40	10	—	1,1863	0,3069	_	—	_
50	35	15	—	1,1991	0,3042	_	—	_
50	30	20	_	1,2052	0,3047	_	_	—

Додаток Г

Об'єми елементарних комірок фаз після випалу зразків системи

Xin	мічний ск мол. %	лад		T = 15	00 °C			T = 1600 °C	2
Y ₂ O ₃	La_2O_3	Sm ₂ O ₃	V_A	V_B	V_R	V_C	V_A	V_B	V_C
1	2	3	4	5	6	7	8	9	10
		Пе	pepis Y ₂	О ₃ —(50 м	юл. % L	a_2O_3-50	мол. % Sm ₂ C	D ₃)	1
0	50	50		0,4312			0,2406		
5	47,5	47,5		0,4579				0,4374	
10	45	45		0,4560				0,4354	
15	42,5	42,5		0,4605				0,4324	
20	40	40		0,4549		—		0,4273	
25	37,5	37,5		0,4543		—		0,4252	
30	35	35		0,4508		—		0,4228	
35	32,5	32,5		04467				0,4194	
40	30	30		0,4414		—		0,4162	
45	27,5	27,5		0,4404				0,4128	
50	25	25		0,4370		1,1981		0,4101	
55	22,5	22,5		0,4110		1,1947		0,4127	1,2416
60	20	20		0,4197		1,1995		0,4127	1,2385
65	17,5	17,5	_	_	_	1,1951			1,2385
70	30	30				1,2330			1,2378
75	12,5	12,5				1,2295			1,2250
80	10	10				1,2175			1,2249
85	7,5	7,5				1,2103			1,2127
90	5	5		—	—	1,2035		—	1,2083
95	2,5	2,5		—	—	1,1974		—	1,2005
100	0	0				1,1924			1,1924
		Пер	pepis Sm	$_{2}O_{3}$ —(50 m	иол. %	$La_2O_3 - 50$) мол. % Ү2	O ₃)	
50	50	0			0,3024				
49,5	49,5	1	_	_	0,3027				_
49	49	2			0,3324		—		
48,5	48,5	3		0,4347	0,2998				
48	48	4		0,4300	0,2998		—		
47,5	47,5	5		0,4322	—		—		
45	45	10		0,4325	—				
42,5	42,5	15		0,4327	—				
37,5	37,5	25		0,4329	—				
35	35	30		0,4328	—				
32,5	32,5	35		0,4323	—		—		
30	30	40		0,4329	—				
27,5	27,5	45		0,4428			<u> </u>	—	
25	25	50		0,4330			<u> </u>		
22,5	22,5	55		0,4338				—	
20	20	60					<u> </u>		
17,5	17,5	65		0,4320					

 $La_2O_3-Y_2O_3-Sm_2O_3$

211

Продовження таблиці Г

							1			
1	2	3	4	5	6	7	8	9		10
15	15	70		0,4308						
12,5	12,5	75		0,4284		_				
10	10	80		0,4306		_	_			
7,5	7,5	85		0,4309			_			
5	5	90		0,4318		_				
		Пер	pepis Y ₂ C	О3—(90 ма	ол. % La	а2О3—10 м	юл. % Sm ₂ (D ₃)		
0	90	10	0,2499				0,2424			
5	85,5	9,5	0,2475	_			0,2436			
10	81	9	0,2469				0,2439			
15	76,5	8,5	0,2522				0,2381	0,486	3	—
20	72	8	0,2553	0,4488			_	0,463	7	
25	67,5	7,5	0,2544	0,4446			_	0,459	6	
30	63	7		0,4398			_	0,455	3	
35	58,5	6,5		0,4355			_	0,450	1	
40	54	6		0,4298			_	0,457	7	
45	49,5	5,5		0,4467	_		_	0,453	1	
55	40,5	4,5				1,2254		0,451	8	1,2333
60	36	4		_		1,2285	_	0,439	9	1,2340
65	31,5	3,5		_			_	0,454	9	1,2326
70	27	3		_		1,2350	_			1,2340
75	22,5	2,5		_		1,2336	_			1,2319
80	18	2		_		1,2295	_			1,2206
85	13,5	1,5		_		1,2292	_			1,2114
90	9	1				1,2202				1,2029
95	4,5	0,5				1,2114				
			Переріз	$Y_2O_3-(1$	0 мол. %	La_2O_3-9	90 мол. % S	$m_2O_3)$		
0	10	90		_	0,4713					_
5	9,5	85,5			0,4697					
10	9	81			0,4675					
15	8,5	76,5			0,4643					
20	8	72			0,4592					
25	7,5	67,5			0,4689					
30	7	63			0,4558					
35	6,5	58,5			0,4548					
40	6	54			0,4548					
50	5	45		—						
55	4,5	40,5		_		1,2368				_
60	4	36		_		1,2357				_
65	3,5	31,5		_		1,2264				_
70	3	27				1,2172				
75	2,5	22,5								
80	2	18				1,2029				
85	1,5	13,5				1,2001				

Додаток Д

Об'єми елементарних комірок фаз після випалу зразків системи

Xin	мічний ск мол %	лад		T = 15	00 °C			T = 1600 °C	
Y ₂ O ₃		Sm ₂ O ₃	V_{4}	V _R	Vp	V_{C}	V_{4}	V_{R}	V_C
1	2	3	4	5	6	7	8	9	10
	_	Пе	pepis Y_2	О ₃ —(50 м	ол. % La	а ₂ О ₃ —50 м	иол. % Eu ₂ C) ₃)	
0	50	50	0.2517	0.4949		_			
5	47,5	47,5	0,2505	0,4724		_		0,4765	_
10	45	45	0,2535	0,4096	_	_	_	0,4709	
15	42,5	42,5	0,2532	0,4680	_	_	_	0,4671	
20	40	40	0,2532	0,4813				0,4763	
25	37,5	37,5		0,4769		_		0,4727	
30	35	35		0,4765		_		0,4696	
35	32,5	32,5		0,4728				0,4647	
40	30	30	_	0,4706		_		0,4649	
45	27,5	27,5	_	0,4174		1,2368		0,4610	1,2056
50	25	25	_	0,4228	0,3084	1,2357		0,4575	1,2336
55	22,5	22,5	_	0,4278	0,3030	1,2430		0,4580	1,2261
60	20	20		0,4232	0,3120	1,2416		0,4603	1,2323
65	17,5	17,5			0,3023	1,2416			1,2343
70	30	30			_	1,2350			1,2309
75	12,5	12,5			_	1,2278	—		1,2257
80	10	10				1,2192			1,2185
85	7,5	7,5				1,2137			1,2117
90	5	5			_	1,2029	—		1,2035
95	2,5	2,5				1,1988			1,1968
100	0	0				1,1924			1,1924
		Пе	pepis Eu	2O ₃ —(50 M	мол. % L	a_2O_3-50	мол. % Ү2С	D ₃)	
50	50	0	_		0,3032		—		—
49,5	49,5	1	—	_	0,3033		—	—	—
49	49	2	—	_	0,3019		—	—	—
48,5	48,5	3	_		0,3053		—		—
48	48	4	_	_	0,3019	_		_	—
47,5	47,5	5	_		0,3090				_
45	45	10	_		0,3088		—		_
42,5	42,5	15	—	_	0,3098	_		_	
37,5	37,5	25	—	0,4432	—	_		_	
35	35	30		0,4437	—				
32,5	32,5	35	_	0,4421	—	_			
30	30	40		0,4427				_	
27,5	27,5	45		0,4414		_	_	_	
25	25	50		0,4406					
22,5	22,5	55		0,4409		_	_	_	
20	20	60		0,4391				_	
17,5	17,5	65		0,4398		_	_	_	
15	15	70		0,4384	_	_			

 $La_2O_3-Y_2O_3-Eu_2O_3$

Продовження таблиці Д

1	2	3	4	5	6	7	8	9	10
12,5	12,5	75	—	0,4384	—			—	—
10	10	80		0,4369					—
7,5	7,5	85		0,4357					—
5	5	90		0,4352					_
		Пе	epepis Y ₂	О ₃ —(90 м	ол. % La	а2О3—10 м	юл. % Eu ₂ C	D ₃)	
0	90	10	0,2474	_	—		0,2488	—	—
5	85,5	9,5	0,2463	_	—		0,2471	—	—
10	81	9	0,2443				0,2461	—	—
15	76,5	8,5	0,2428	0,4685			0,2446	—	—
20	72	8	0,2508	0,4657	_	_		0,4831	—
25	67,5	7,5	0,2503	0,4636	—			0,4806	—
30	63	7	0,2507	0,4604	—			0,4743	—
35	58,5	6,5	—	0,6594	—			0,4718	—
40	54	6	—	0,4392	—			0,4782	—
45	49,5	5,5			0,3017	1,2347		0,4753	—
55	40,5	4,5	_		0,3011	1,2333		0,4713	—
60	36	4		-	0,2960	1,2316	_	0,4682	1,2354
65	31,5	3,5	—	_	0,3020	1,2299		0,4677	1,2354
70	27	3			0,3051	1,2336		0,4665	1,2340
75	22,5	2,5			0,2972	1,2292		0,4668	1,2340
80	18	2				1,2288		0,4670	1,2347
85	13,5	1,5		_	—	1,2237	_	—	1,2316
90	9	1	—	_		1,2097	_		1,2247
95	4,5	0,5		_	—	1,2001	_	—	1,2114
				Ізок	онцентра	ти 55% La	1_2O_3		
55	45	0	—	_	0,3031			—	—
55	40	5	0,2549	0,4536	—			—	—
55	35	10	0,2558	0,4537	_			—	—
55	30	15	0,2549	0,4572	_			—	—
55	25	20	0,2552	0,4559					
55	20	25	0,255	0,4568	—				
55	15	30	0,2551	0,4547			_	—	—
55	10	35	0,2577	0,4595			_	—	—
55	5	40	0,2578	0,4610				_	—
55	0	45	0,2507	0,4593					

Додаток Е

Об'єми елементарних комірок фаз після випалу зразків системи

Xin	мічний ск мол. %	лад		T = 15	00 °C			T = 1600 °C	2
Y ₂ O ₃	La_2O_3	Sm ₂ O ₃	V_A	V_B	V_R	V_C	V_A	V_B	V_C
1	2	3	4	5	6	7	8	9	10
		Пе	epepis Y ₂	О ₃ —(50 м	юл. % La	а ₂ О ₃ —50 м	иол. % Gd ₂ C	D ₃)	
0	50	50	0,2538	0,4190				0,4562	
5	47,5	47,5		0,4527				0,4514	
10	45	45		0,5398	_			0,4495	
15	42,5	42,5		0,5402	_	_		0,4579	
20	40	40		0,5420	_	_		0,4561	
25	37,5	37,5		0,5324	_	_		0,4540	
30	35	35	_	0,5329	_	_	_	0,4508	—
35	32,5	32,5		0,5302	_		_	0,4472	
40	30	30		0,5330	_	1,2336		0,4448	
45	27,5	27,5		0,5348	_	1,2368		0,4425	1,2182
50	25	25		0,5274	_	1,2354		0,4410	1,2299
55	22,5	22,5		_	_	_			
60	20	20	_	0,5389	_	1,2343	_	0,4431	1,2323
65	17,5	17,5	_	0,4107		1,2343	_		1,2357
70	30	30			_	1,2281			1,2257
75	12,5	12,5	_		_	1,2102	_		1,2244
80	10	10				1,2027	_		1,2168
85	7,5	7,5	_			1,2090	_	_	1,2093
90	5	5				1,1912			1,2012
95	2,5	2,5				1,1907			1,1968
100	0	0		_		1,1924			1,1924
		Пе	pepi3 Gd ₂	оз—(50 м	10л. % I	$a_2O_3 - 50$	мол. % Ү2С	D ₃)	
50	50	0			0,3024		—		
49,5	49,5	1			0,3025		—		
49	49	2			0,2994		—		
48,5	48,5	3			0,3012		—		
48	48	4			0,3000		—		
47,5	47,5	5		0,4604			—		
45	45	10		0,4605			—		
42,5	42,5	15		0,4606			—		
37,5	37,5	25		0,4705			—		
35	35	30		0,4726			—		
32,5	32,5	35		0,4704	_				
30	30	40		0,4710					—
27,5	27,5	45		0,4677					
25	25	50		0,4630					
22,5	22,5	55		0,4610					
20	20	60		0,4608					
17,5	17,5	65							

 $La_2O_3-Y_2O_3-Gd_2O_3$

215

Продовження таблиці Е

							1		
1	2	3	4	5	6	7	8	9	10
15	15	70		0,4605					
12,5	12,5	75							
10	10	80		0,4579		_			_
7,5	7,5	85		0,4573					
5	5	90		0,4592					
		Пе	pepis Y ₂	О ₃ —(90 м	ол. % Ца	а ₂ О ₃ —10 м	иол. % Gd ₂ G	D ₃)	
0	90	10	0,2521	_		_	0,2479		
5	85,5	9,5	0,2514	_		_	0,2472		
10	81	9	0,2497	_		_	0,2483		
15	76,5	8,5	0,2494				0,2461		
20	72	8	0,2571	0,4079			0,2485	0,5167	
25	67,5	7,5					_	0,4718	
30	63	7	0,2558	0,3838			_	0,4753	
35	58,5	6,5	0,2521	0,3829			_	0,4718	
40	54	6	0,2504	0,3799		_		0,4791	
45	49,5	5,5		0,4136		_		0,4740	
55	40,5	4,5				1,2278	_	0,4702	
60	36	4		_		1,2264		0,4680	1,2350
65	31,5	3,5		_		1,2347		0,4708	1,2340
70	27	3		_	0,3047	1,2316		0,4667	1,2323
75	22,5	2,5						0,4657	1,2305
80	18	2			0,3055	1,2246			1,2268
85	13,5	1,5	—		—		—		1,2079
90	9	1				1,2066			1,2192
95	4,5	0,5							1,1927