НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ ІНСТИТУТ ПРОБЛЕМ МАТЕРІАЛОЗНАВСТВА ім. І. М. ФРАНЦЕВИЧА

Кваліфікаційна наукова праця на правах рукопису

ЮРЧЕНКО ЮРІЙ ВАСИЛЬОВИЧ

УДК 541.1+546.65:669.017.4

ДИСЕРТАЦІЯ ФАЗОВІ ВЗАЄМОДІЇ В СИСТЕМАХ ОКСИДІВ ZrO₂–HfO₂–Ln₂O₃,

де Ln = La, Nd, Sm, Eu, Gd

Спеціальність 02.00.04 – фізична хімія

Подається на здобуття наукового ступеня кандидата хімічних наук

Дисертація містить результати власних досліджень. При використанні ідей, результатів чи текстів інших авторів містить посилання на відповідне джерело.

// Ю. В. Юрченко

(підпис, ініціали та прізвище здобувача)

Науковий керівник: Андрієвська Олена Ростиславівна – доктор хімічних наук, старший науковий співробітник

АНОТАЦІЯ

Юрченко Ю. В. Фазові взаємодії в системах оксидів ZrO₂–HfO₂–Ln₂O₃, де Ln = La, Nd, Sm, Eu, Gd. – Кваліфікаційна робота на правах рукопису.

Дисертація на здобуття наукового ступеня кандидата хімічних наук за спеціальністю 02.00.04 – Фізична хімія. – Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, Київ, 2025 р.

Дисертаційна робота висвітлює дослідження фазових рівноваг в потрійних системах ZrO_2 –HfO₂– Ln_2O_3 (де Ln = La, Nd, Sm, Eu, Gd), закономірності фізикохімічної взаємодії у вказаних системах та побудову відповідних ізотермічних перерізів. Дослідження проведено з використанням фізико-хімічних методів – сканувальної електронної мікроскопії (СЕМ), рентгенофазового аналізу (РФА) та локального рентгеноспектрального аналізу (ЛРСА).

Зміст дисертаційної роботи викладений у 8 розділах, в яких представлено основні результати дисертації.

У вступі обґрунтовано актуальність, визначено мету та завдання, а також описано предмет, об'єкт та методику дослідження, встановлено наукову новизну та практичне значення одержаних результатів дисертаційної роботи.

У першому розділі подано огляд літератури, що містить аналіз граничних подвійних систем для проведення дослідження фазових взаємодій в системах оксидів ZrO_2 –HfO₂– Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd). Відомості щодо фазових взаємодій в досліджуваних потрійних системах в огляді літератури практично відсутні. Встановлено, що дослідження фазових взаємодій в системі ZrO_2 –HfO₂– Gd_2O_3 потребує уточнення меж фазових полів у граничній системі HfO₂– Gd_2O_3 .

У другому розділі представлено методику проведення експерименту, яка поєднує характеристику вихідних речовин, процеси приготування та термічної обробки зразків, а також методи ідентифікації фазового складу та дослідження структури цих зразків.

В розділах з третього по сьомий представлено результати дослідження

фазових взаємодій в системах оксидів ZrO₂–HfO₂– Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) – фазовий та хімічний склад зразків, параметри елементарних комірок фаз та їх залежності за концентрацією визначеного компоненту, мікроструктури та дифрактограми. На основі цих даних встановлено, що в зазначених системах утворюються тверді розчини на основі кристалічних модифікацій вихідних компонентів та фази з упорядкованою структурою типу пірохлору (Ру). Зазначені тверді розчини утворюються за механізмами ізовалентного та гетеровалентного заміщення, а їх структурна стабільність зумовлена координаційними чинниками. Отримані дані свідчать про утворення неперервного ряду твердих розчинів на основі впорядкованої структури типу пірохлору для всіх перелічених систем, за винятком ізотермічного перерізу системи ZrO₂–HfO₂–Gd₂O₃ при 1600 °C, в якому утворюється відповідний граничний твердий розчин. На основі отриманих даних побудовано ізотермічні перерізи діаграм стану систем ZrO₂–HfO₂– Ln_2O_3 (Ln =La, Nd, Sm, Eu, Gd) при температурах 1100, 1250, 1500, 1600 та 1700 °C.

У восьмому розділі описано закономірності будови потрійних систем ряду ZrO_2 – HfO_2 – Ln_2O_3 (Ln = La - Yb). Представлено прогноз ізотермічних перерізів діаграм стану систем ZrO_2 – HfO_2 – RE_2O_3 (RE = Dy, Yb, Y) при 1500 °C, ізотермічних перерізів діаграм стану систем ZrO_2 – HfO_2 – Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) при 1900 та 2100 °C, а також проекцій поверхонь ліквідусу діаграм стану систем ZrO_2 – HfO_2 – Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd).

Представлені результати дослідження фазових взаємодій в системах оксидів ZrO_2 – HfO_2 – Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) є довідниковим матеріалом, котрий можна використовувати при розробці новітніх матеріалів конструкційного та функціонального призначення. Вибраний в дослідженні температурний інтервал відповідає режиму виготовлення та експлуатації кераміки на основі діоксидів цирконію, гафнію та оксидів лантаноїдів.

Ключові слова: оксиди РЗЕ, оксиди лантаноїдів, діоксид гафнію, діоксид цирконію, твердий розчин, упорядкована структура типу пірохлору, ізотермічний переріз, діаграма стану.

SUMMARY

Yurchenko Yu. V. Phase interactions in ZrO_2 –HfO₂– Ln_2O_3 ternary oxide systems, where Ln = La, Nd, Sm, Eu, and Gd. – Qualification work in manuscript form.

Thesis for a Candidate of Chemical Sciences degree in the specialty of Physical Chemistry (02.00.04). – I. M. Frantsevich Institute for Problems of Materials Science of the National Academy of Sciences of Ukraine, Kyiv, 2025.

The dissertation highlights research into phase equilibria in ternary systems ZrO_2 – HfO_2 – Ln_2O_3 (where Ln = La, Nd, Sm, Eu, and Gd), patterns of physicochemical interaction in these oxide systems, and the construction of corresponding isothermal sections. The research was conducted using the following methods: scanning electron microscopy (SEM), phase analysis by X-ray diffraction (XRD), and energy-dispersive spectroscopy (EDS).

The content of the thesis is presented in eight chapters, which present the main results of the dissertation work.

The **introduction** justifies the relevance, defines the purpose and objectives, and describes the subject, object, and methodology of the research, establishing the scientific novelty and practical significance of the results obtained in the dissertation.

The **first** chapter provides a literature review containing an analysis of boundary binary systems for studying phase interactions in ZrO_2 –HfO₂– Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) ternary oxide systems. The literature lacks information about phase interactions in the studied ternary oxide systems. It has been determined that clarifying the boundaries of phase fields in the binary HfO₂–Gd₂O₃ system is necessary for studying phase interactions in the ternary ZrO_2 –HfO₂–Gd₂O₃ system.

The **second** chapter describes an experimental approach that combines the qualities of the initial materials, preparation, and heat treatment processes, as well as methods for identifying the phase composition and studying the structure of samples.

Chapters **three through seven** present the results of the research on phase interactions in ZrO_2 –HfO₂– Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) ternary oxide systems. The

dataset provides information on the phase and chemical composition of the samples, the unit cell parameters of the formed phases, the dependencies of these parameters on composition, micro-imaging, and XRD (EDS) patterns. Based on these data, it has been determined that solid solutions form in these systems from polymorphic crystal forms of the initial components, and an ordered phase with a pyrochlore-type cubic structure. Derived solid solutions form via isovalent and heterovalent substitution mechanisms, and their structural stability depends on the ionic-coordination factors. The obtained data indicate the formation of a continuous series of solid solutions with an ordered phase with a pyrochlore-type structure for all of the examined systems except for the isothermal section of the ZrO_2 -HfO₂-Gd₂O₃ phase diagram at 1600 °C in which a boundary solid solution forms instead. Isothermal sections of the phase diagrams for the ZrO_2 -HfO₂- Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) ternary systems were constructed at temperatures of 1100, 1250, 1500, 1600, and 1700 °C.

The **eighth** chapter describes the structure patterns of the ZrO_2 –HfO₂– Ln_2O_3 (Ln = La - Yb) ternary systems, particularly the prediction for the isothermal sections of the ZrO_2 –HfO₂– RE_2O_3 (RE = Dy, Yb, Y) ternary phase diagrams at 1500 °C. It also provides prediction for the isothermal sections at 1900 and 2100 °C, as well as the projections of the liquidus surface contours of the ZrO_2 –HfO₂– Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) ternary phase diagrams.

The results of the study of phase interactions in ZrO_2 –HfO₂– Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) ternary oxide systems, which are presented here, can be used as a reference for developing novel structural and functional materials. The selected temperature range corresponds to the production and operational conditions of ceramics based on hafnium dioxide, zirconium dioxide, and lanthanide oxides.

Keywords: rare earth oxides, lanthanide oxides, zirconia, hafnia, solid solution, pyrochlore-type structure, isothermal section, phase diagram.

СПИСОК НАУКОВИХ ПРАЦЬ

в яких опубліковані основні наукові результати дисертації:

1. Юрченко, Ю. В., Корнієнко, О. А., Биков, О. І., Самелюк, А. В. (2022). Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂–Sm₂O₃ при 1600 °C. *Journal of Chemistry and Technologies* (Q4), 30(1), 34–43. DOI:10.15421/jchemtech. V30i1.245246 (Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка рукопису статті).

2. Yurchenko, Yu. V., Kornienko, O. A., Bykov, O. I., Samelyuk, A. V., Bataiev, Yu. M., Yushkevych, S. V., Zamula, M. V. (2022). Phase equilibrium in the ZrO₂–HfO₂– Sm₂O₃ system at 1500 °C. *Chem. Thermodyn. Therm. Anal.*, 8, 100093. DOI:10.1016/ j.ctta.2022.100093 (Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка рукопису статті).

3. Юрченко, Ю. В., Корнієнко, О. А., Корічев, С. Ф., Юшкевич, С. В. (2023). Ізотермічний переріз потрійної діаграми стану системи ZrO₂–HfO₂–Eu₂O₃ за температури 1100 °С. Вісник ОНУ. Хімія, 28, 2(85), 72–82. DOI:10.18524/2304-0947.2023.2(85).286605 (Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка рукопису статті).

4. Korniienko, O. A., **Yurchenko, Yu. V.**, Olifan, O. I., Samelyuk, A. V., Zamula, M. V. (2023). Isothermal section of the ZrO₂–HfO₂–Nd₂O₃ ternary phase diagram at 1100 °C. *Hybrid Adv.*, 4, 100085. DOI:10.1016/j.hybadv.2023.100085 (Особистий внесок здобувача – приготування зразків, обробка результатів).

5. Yurchenko, Yu. V., Korniienko, O. A., Bykov, O. I., Samelyuk, A. V., Yushkevych, S. V., Zamula, M. V. (2023). Phase equilibria in the ZrO₂–HfO₂–Nd₂O₃ system at 1500 °C and 1700 °C. *Open Ceram.* (Q2), 15, 100421. DOI:10.1016/j. осегат.2023.100421 (Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка рукопису статті).

6. **Yurchenko, Yu. V.**, Kornienko, O. A., Olifan, O. I., Sameliuk, A. V., Yushkevych, S. V., Zamula, M. V. (2024). Experimental study of isothermal sections of the ZrO₂–HfO₂–Eu₂O₃ ternary diagram at 1500 °C and 1700 °C. *CALPHAD: Comput.*

Coupling Ph. Diagr. Thermochem. **(Q2)**, 86, 102721. DOI:10.1016/j.calphad.2024. 102721 (Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка рукопису статті).

7. Kornienko, O., **Yurchenko, Yu.**, Olifan, O., Samelyuk, A., Zamula, M., Pavlenko, O. (2024). Phase relations in the La₂O₃–ZrO₂–HfO₂ system at 1250 °C and 1500 °C. *Chem. Thermodyn. Therm. Anal.* (**Q3**), 100144. DOI:10.1016/j.ctta.2024. 100144 (Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка рукопису статті).

8. Юрченко, Ю. В., Корічев, С. Ф., Барщевська, Г. К., Забіяка, К. І. (2024).
Ізотермічний переріз потрійної діаграми стану системи La₂O₃–ZrO₂–HfO₂ при 1100 °C. Вісник ОНУ. Хімія, 29, 2(88), 85–93. DOI:10.18524/2304-0947.2024.2(88).
322133 (Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка рукопису статті).

які засвідчують апробацію дисертації на наукових конференціях:

9. Юрченко, Ю. В., Корнієнко, О. А. (2019). Фазові взаємодії в системі ZrO₂– HfO₂–La₂O₃ при 1600 °C. *XI Всеукраїнська наукова конференція студентів та аспірантів «Хімічні Каразінські читання – 2019» (22–24 квітня 2019 р., м. Харків)*, 45–46. (Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка тез).

10. Юрченко, Ю. В., Барщевська, Г. К., Биков, О. І., Корнієнко, О. А., Самелюк, А. В. (2021). Фазові рівноваги в системі ZrO₂–HfO₂–Sm₂O₃ при температурі 1500 °C. *V Всеукраїнська наукова конференція «Актуальні задачі хімії: дослідження та перспективи» (15 квітня 2021 р., м. Житомир), 199–200.* (Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка тез).

11. Юрченко, Ю. В., Биков, О. І., Самелюк, А. В., Корнієнко, О. А. (2021). Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂–Sm₂O₃ при 1600 °C. VII Всеукраїнська науково-практична конференція «Актуальні проблеми науковопромислового комплексу регіонів – 2021» (17–21 травня 2021 р., м. Рубіжне), 54– 55. (Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка тез).

12. Kornienko, O. A., **Yurchenko, Yu. V.**, Bykov, O. I., Samelyuk, A. V., Zamula, M. V. (2022). Phase relation studies in the ZrO₂–HfO₂–Nd₂O₃ system at 1500 °C. *VIIIth International Samsonov Conference «Materials Science of Refractory Compounds»* (*MSRC–2022, May 24–27, 2022, Kyiv, Ukraine*), *14*. (Особистий внесок здобувача: приготування зразків, обробка результатів).

13. Sholom, A. A, Spasonova, L. M., **Yurchenko, Yu. V.**, Olifan, O. I., Kornienko, O. A. (2023). Phase equilibria in ternary ZrO_2 –HfO₂– Ln_2O_3 (*Ln* = Nd, Sm) systems at 1500 °C. *4th International Congress on Materials & Structural Stability (P1–407, March 8–10, 2023, Rabat, Morocco), 167.* (Особистий внесок здобувача – приготування зразків, обробка результатів).

14. Юрченко, Ю. В., Корнієнко, О. А., Биков, О. І., Самелюк, А. В., Замула, М. В. (2023). Фазові рівноваги в потрійній системі ZrO₂–HfO₂–Nd₂O₃ при 1700 °C в атмосфері повітря. *VI Міжнародна (XVI Українська) наукова конференція студентів, аспірантів і молодих учених «Хімічні проблеми сьогодення» (ХПС–2023, 21–23 березня 2023 р., м. Вінниця), 81.* Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка тез.

15. Юрченко, Ю. В., Корнієнко О. А., Замула М. В., Самелюк А. В., Оліфан О. І., Суббота І. С. (2023). Ізотермічний переріз діаграми стану трикомпонентної системи ZrO₂–HfO₂–Nd₂O₃ за температури 1100 °C. *XIV Всеукраїнська наукова конференція студентів та аспірантів «Хімічні Каразінські читання – 2023» (24–26 квітня 2023 р., м. Харків)*, 60–61. Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка тез.

16. Юрченко, Ю. В., Корнієнко, О. А., Корічев, С. Ф., Замула, М. В., Самелюк, А. В., Спасьонова, Л. М. (2023). Ізотермічний переріз діаграми стану системи на основі діоксидів цирконію, гафнію та оксиду європію при 1500 °С. *VII Всеукраїнська наукова конференція «Актуальні задачі хімії: дослідження та перспективи» (АЗХ 2023, 19 квітня 2023 р., м. Житомир), 153–154*. Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка тез.

17. Yurchenko, Yu. V., Korniienko, O. A., Korichev, S. F., Samelyuk, A. V., Zamula, M. V., Spasonova, L. N. (2023). Phase equilibria in the ZrO₂–HfO₂–Eu₂O₃ system at 1700 °C. *8th International Materials Science Conference HighMatTech–* 2023 (October 2–6, 2023, Kyiv, Ukraine), 52. Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка тез.

18. Юрченко, Ю. В., Корнієнко, О. А., Корічев, С. Ф., Замула, М. В., Самелюк, А. В., Барщевська, Г. К. (2024). Фазові рівноваги в системі ZrO₂–HfO₂–La₂O₃ за температури 1500 °C. *VII Міжнародна (XVII Українська) наукова конференція студентів, аспірантів і молодих учених «Хімічні проблеми сьогодення» (19–21 березня 2024 р., м. Вінниця), 119.* Особистий внесок здобувача – приготування зразків, обробка результатів, підготовка тез.

19. Korniienko, O., **Yurchenko, Yu.**, Korichev, S., Sameljuk, A., Barchevska, H., Subota I. (2024). Phase relation of the ZrO₂–HfO₂–La₂O₃ system at 1500–1100 °C. *IXth International Samsonov Conference «Materials Science of Refractory Compounds» (MSRC–2024, May 27–30, 2024, Kyiv, Ukraine), 17*. Особистий внесок здобувача – приготування зразків, обробка результатів.

3MICT

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ, СКОРОЧЕНЬ, ТА ТЕРМІНІВ	13
ВСТУП	14
1. ЛІТЕРАТУРНИЙ ОГЛЯД	21
1.1. Властивості оксидів рідкісноземельних елементів	21
1.2. Властивості діоксидів цирконію та гафнію	30
1.3. Фазові рівноваги в системі ZrO ₂ -HfO ₂	37
1.4. Фазові рівноваги в системах ZrO ₂ (HfO ₂)– <i>Ln</i> ₂ O ₃	40
1.4.1. Діаграми стану систем ZrO ₂ -La ₂ O ₃ та HfO ₂ -La ₂ O ₃	42
1.4.2. Діаграми стану систем ZrO ₂ -Nd ₂ O ₃ та HfO ₂ -Nd ₂ O ₃	45
1.4.3. Діаграми стану систем ZrO ₂ -Sm ₂ O ₃ та HfO ₂ -Sm ₂ O ₃	49
1.4.4. Діаграми стану систем ZrO ₂ -Eu ₂ O ₃ та HfO ₂ -Eu ₂ O ₃	52
1.4.5. Діаграми стану систем ZrO ₂ Gd ₂ O ₃ та HfO ₂ Gd ₂ O ₃	54
1.5. Проміжні фази з упорядкованою структурою типу пірохлору в	
системах ZrO_2 – Ln_2O_3 та HfO_2 – Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd)	57
1.6. Потрійні системи ZrO ₂ -HfO ₂ -Ln ₂ O ₃ (Ln = La, Nd, Sm, Eu, Gd)	59
1.7. Висновки до першого розділу	60
2. МЕТОДИКА ДОСЛІДЖЕННЯ	61
2.1. Характеристика вихідних речовин та метод приготування зразків	62
2.2. Метод термічної обробки	63
2.3. Метод ідентифікації фазового складу	64
2.4. Методи дослідження структури	65
3. ФАЗОВІ РІВНОВАГИ В СИСТЕМІ ZrO ₂ -HfO ₂ -La ₂ O ₃	66
3.1. Ізотермічний переріз діаграми стану системи ZrO ₂ -HfO ₂ -La ₂ O ₃ при	
1500 °C	66
3.2. Ізотермічний переріз діаграми стану системи ZrO ₂ -HfO ₂ -La ₂ O ₃ при	
1250 °C	73
3.3. Ізотермічний переріз діаграми стану системи ZrO ₂ -HfO ₂ -La ₂ O ₃ при	
1100 °C	81
3.3. Висновки до третього розділу	86

4. ФАЗОВІ РІВНОВАГИ В СИСТЕМІ ZrO ₂ -HfO ₂ -Nd ₂ O ₃	87
4.1. Ізотермічний переріз діаграми стану системи ZrO2-HfO2-Nd2O3	
при 1700 °С	87
4.2. Ізотермічний переріз діаграми стану системи ZrO2-HfO2-Nd2O3	
при 1500 °С	93
4.3. Ізотермічний переріз діаграми стану системи ZrO ₂ -HfO ₂ -Nd ₂ O ₃	
при 1100 °С	102
4.4. Висновки до четвертого розділу	110
5. ФАЗОВІ РІВНОВАГИ В СИСТЕМІ ZrO ₂ –HfO ₂ –Sm ₂ O ₃	111
5.1. Ізотермічний переріз діаграми стану системи ZrO2-HfO2-Sm2O3	
при 1600 °С	111
5.2. Ізотермічний переріз діаграми стану системи ZrO2-HfO2-Sm2O3	
при 1500 °С	119
5.3. Висновки до п'ятого розділу	.130
6. ФАЗОВІ РІВНОВАГИ В СИСТЕМІ ZrO ₂ -HfO ₂ -Eu ₂ O ₃	131
6.1. Ізотермічний переріз діаграми стану системи ZrO2-HfO2-Eu2O3	
при 1700 °С	131
6.2. Ізотермічний переріз діаграми стану системи ZrO2-HfO2-Eu2O3	
при 1500 °С	141
6.3. Ізотермічний переріз діаграми стану системи ZrO ₂ -HfO ₂ -Eu ₂ O ₃	
при 1100 °С	152
6.3. Висновки до шостого розділу	158
7. ФАЗОВІ РІВНОВАГИ В СИСТЕМІ ZrO ₂ –HfO ₂ –Gd ₂ O ₃	159
7.1. Ізотермічний переріз діаграми стану системи ZrO2-HfO2-Gd2O3	
при 1600 °С	160
7.2. Ізотермічний переріз діаграми стану системи ZrO ₂ -HfO ₂ -Gd ₂ O ₃	
при 1500 °С	165
7.3. Ізотермічний переріз діаграми стану системи ZrO ₂ -HfO ₂ -Gd ₂ O ₃	
при 1100 °С	173
7.4. Висновки до сьомого розділу	. 178

8. ЗАКОНОМІРНОСТІ БУДОВИ ПОТРІЙНИХ СИСТЕМ ZrO ₂ -HfO ₂ -Ln ₂ O ₃	
(Ln = La - Yb)	. 179
8.1. Висновки до восьмого розділу	.187
ЗАГАЛЬНІ ВИСНОВКИ	.188
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ	. 189
ДОДАТКИ	.229
Додаток А – Опубліковані статті за темою дисертації	.229
Додаток Б – Апробація результатів дисертації	.231

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ, СКОРОЧЕНЬ, ТА ТЕРМІНІВ

- РФА, XRD рентгенофазовий аналіз
- HRNPD високороздільна порошкова нейтронографія
- СЕМ, SEM сканувальна електронна мікроскопія
- ЛРСА, ED(X)S локальний рентгеноспектральний аналіз
- ОП оптична пірометрія
- ТО термодинамічна оптимізація
- ПЕК параметр(и) елементарних комірок
- РЗО, REO рідкісноземельні оксиди (RE_2O_3)
- *RE*₂O₃ (*Ln*₂O₃) сесквіоксиди (надалі оксиди) РЗЕ (лантаноїдів)
- MO_2 діоксиди елементів-металів IV (4) групи (M = Ti, Zr, Hf)
- А гексагональна модифікація RE_2O_3 (Ln_2O_3)
- В моноклінна модифікація RE₂O₃ (Ln₂O₃)
- C кубічна модифікація $RE_2O_3(Ln_2O_3)$
- F кубічна модифікація зі структурою типу флюориту ZrO₂ (HfO₂)
- М моноклінна модифікація ZrO₂ (HfO₂)
- Ру впорядкована кубічна структура типу пірохлору (*Ln*₂*M*₂O₇)
- Т тетрагональна модифікація ZrO₂ (HfO₂)
- хК молярна частка (концентрація) компонента К, %

Геометричні місця точок на концентраційному трикутнику Ґіббса: $x K_1-x K_2 - хімічний склад (зразка) в граничній (подвійній) системі (%)$ $<math>K_3(x K_1-x K_2) - відрізок з вершини K_3 до точки x K_1-x K_2$ $K_3(K_1-K_2) - відрізок з K_3 до середини сторони K_1-K_2 (бісектриса <math>\ K_1K_2$) $x K_3 -$ ізоконцентрата (ізолінія сталої концентрації) K_3 (%) $K_1-K_2-K_3 -$ точка хімічного складу (зразка) в потрійній системі (x, %) $\Phi_{\dots}+\Phi_n (K_1-K_2-K_3) - n$ -фазний склад (зразка) потрійної системи

ВСТУП

З моменту відкриття (*puc. 1*) рідкісноземельні оксиди (РЗО), самі рідкісноземельні елементи (РЗЕ), а також їх інші сполуки привертали увагу науковців та інженерів, однак протягом тривалого часу не мали спеціального застосування чи призначення [1–5].

Рисунок 1 – Хронологія відкриття РЗЕ в підгрупах ітрію (*a*) та церію (б) [6]

Початком промислового використання оксидів РЗЕ та цирконію [6–9] стало створення калильних сіток для гасових та газових освітлювальних приладів (1887). Текстиль для "мантій Вельсбаха" просочували розчином суміші нітратів цирконію та лантану [10–12]. Світильний стрижень в електролампах Нернста (1897) виготовляли з кераміки на основі діоксиду цирконію та оксидів ітрію, лантану, неодиму, ербію тощо [13]. Використання діоксиду цирконію для потреб відмінних від штучного освітлення почалося лише з 1920-х [7,8,14,15]. Гафній був одним з останніх стабільних елементів, знайдених у природі (1923) [16,17]. Його специфічне застосування розпочалося при будівництві ядерного реактора для підводного човна USS Nautilus (1953) [18].

Матеріали з РЗЕ використовуються в багатьох галузях промисловості та викликають значний інтерес наукової спільноти. Ще в 2011 році департамент

енергетики США визначив ітрій, лантан, церій, неодим, європій, диспрозій та тербій критично важливими хімічними елементами [19]. Металічні РЗЕ та їх сплав (мішметал) широко застосовуються для легування сталі, чавуну та інших сплавів [7,17], а також в якості матеріалу виготовлення катодів акумуляторів для електромобілів [20], в органічному синтезі [21] тощо. Інтерметаліди РЗЕ, які є найсильнішими з відомих постійних магнітів, уособлюють індустрію потужних електричних машин – зокрема двигунів вищезгаданих електромобілів [22–24]. Оксиди та деякі інші сполуки РЗЕ використовуються як пігменти для кераміки, декоративного скловаріння та оптики [8,25–29], контрастні агенти для реєстрації зображень в біології та медицині [30], люмінофори [9,19,31–35], сцинтиляційні детектори [31,35,36], лазери [36–38], сенсори [39,40] та напівпровідники [40,41]. Полікристалічні текстуровані матриці на основі оксидів РЗЕ зі структурою типу перовськіту є перспективними оптично-анізотропними матеріалами [42,43]. РЗО є основою матеріалів сучасних "високотемпературних" надпровідників [44,45]. Високий питомий перетин захоплення теплових нейтронів у природних ізотопів самарію, європію та гадолінію [46,47] дозволяє використовувати їх як вигоряючі присадки тепловидільних елементів, а їх оксиди – як конструкційні матеріали регулювальних стрижнів активної зони реактора, а також у складі спеціальних фарб, емалей та захисних протирадіаційних покриттів [48-50]. Крім цього, РЗО широко застосовуються для виготовлення абразивних та полірувальних [51–53], теплоізоляційних [54], каталітичних [9,19,55–62], зокрема фотокаталітичних [57, 60,62] матеріалів тощо.

Цирконій та гафній – природні супутники. Варто зазначити, що економіка України забезпечує ~6 % від світового видобутку цирконієвих руд і є четвертою за обсягами виробництва гафнію [15]. Спорідненість цирконію і гафнію визначає схожість їх властивостей, за винятком високого питомого перетину захоплення нейтронів у гафнію, що робить його чудовим матеріалом для регулювальних стрижнів ядерних реакторів [18]. Проте ця властивість шкодить при створенні нейтронно-прозорих сплавів цирконію, конструкційної кераміки та "ядерного палива в інертній матриці" (ЯПІМ, ІМҒ) [63,64] на основі діоксиду цирконію. Діоксид цирконію широко застосовують як абразив та виготовлення ріжучих інструментів [15], матеріал для стоматології та протезування [65,66]. Також він є універсальним матеріалом конструкційної кераміки [67,68] – зокрема в основі термобар'єрних покриттів (ТБП, ТВС) для авіаційної та космічної галузей [69–71]. Використання для вищезазначених цілей діоксиду гафнію замість діоксиду цирконію активно вивчається та впроваджується [71–75]. Є приклади успішного використання діоксидів цирконію та гафнію в електроніці [76–82] та оптиці [15, 83–85], для фотовольтаїки [86–88] та каталізу [89–91] тощо.

Актуальність теми. Матеріали на основі діоксидів цирконію та гафнію, легованих оксидами РЗЕ, становлять практичний інтерес для численних сфер застосування. В потрійних системах ZrO_2 -HfO₂-Ln₂O₃ (Ln = La, Nd, Sm, Eu, Gd) утворюються тверді розчини заміщення зі структурою типу флюориту, а також упорядкованою структурою типу пірохлору. Матеріали на даній основі успішно застосовують як тверді електроліти з температурно-залежною іонно-кисневою провідністю твердооксидних паливних елементів (ТОПЕ, SOFC) та λ-сенсорів [92–98]. Цирконати та гафнати лантаноїдів з упорядкованою структурою типу пірохлору, а також їх спільні сполуки $Py-Ln_2Zr_xHf_{2-x}O_7$ (Ln = La - Gd) є перспективною основою для ТБП (ТВС) [99–110]. Нижча теплопровідність ніж у стабілізованого діоксиду цирконію (YSZ) підвищує енергоефективність, а здатність утворення твердих розчинів зі стабільним фазовим складом дозволяє варіювати хімічний склад контактних та поверхневих шарів ТБП газотурбінних двигунів, тим самим збільшуючи їх ресурс [74]. З урахуванням низки унікальних властивостей, виникає інтерес з використання зазначених твердих розчинів для створення матеріалів напівпровідників [111,112], оптично-прозорої кераміки та лазерів [38,113], люмінофорів [34,35,114–117], каталізаторів [118], матеріалів для іммобілізації радіоактивних відходів [119–121] тощо.

Розробка нових матеріалів спеціального призначення потребує вичерпних даних про взаємодію компонентів і розуміння закономірностей фазоутворення, відображених в будові діаграм стану. Зокрема, важливо дослідити особливості утворення проміжних фаз у досліджуваних потрійних системах порівняно з характером їх утворення в граничних подвійних системах. На основі отриманих даних з використанням літератури можна прогнозувати будову діаграм стану чотирикомпонентних, а також більш складних систем. Необхідно зазначити, що зростаючий інтерес до термодинамічного моделювання спричиняє потребу в надійних експериментальних даних про фазові рівноваги для параметризації феноменологічних розрахунків CALPHAD [122]. Експериментальні параметри елементарних комірок можуть бути використаними для корекції та верифікації розрахунків теорії функціоналу густини (DFT), зменшуючи простір апріорних припущень та наближуючи модель до реалістичних розв'язків [123].

Зазначені критерії **актуальності** спільно з методичною рекомендацією про дослідження фазових взаємодій при розробці нових матеріалів [124] слугували основою для проведення даного наукового дослідження.

Зв'язок з науковими програмами, темами та планами. Роботу виконано у відділі функціональної кераміки на основі рідкісних земель Інституту проблем матеріалознавства ім. І. М. Францевича НАН України в межах наступних відомчих тем: «Фазові рівноваги в системах оксидів РЗЕ, ZrO₂ та розробка багатофункціональних керамічних матеріалів іонних провідників і оптично прозорої кераміки нового покоління» (2012–2014 рр., держ. № 0112U002087), «Фазові рівноваги оксидів P3E. ZrO_2 В системах та розробка багатофункціональних керамічних матеріалів іонних провідників і оптично прозорої кераміки нового покоління» (2014–2016 рр., держ. № 0114U002431), «Фазові рівноваги та діаграми стану систем на основі рідкісних земель як фізикохімічна основа для створення текстурованої кераміки багатофункціонального призначення» (2017–2019 рр., держ. № 0117U000254), «Фазові рівноваги в системах на основі оксидів РЗЕ та розробка багатофункціональних керамічних матеріалів на їх основі» (2020–2022 рр., держ. № 0120U100220), «Фазові системах на основі HfO₂, ZrO₂ та Ln₂O₃ та розробка рівноваги в багатофункціональних керамічних матеріалів на їх основі» (2023–2025 рр., держ. № 0123U100970); проекту МОН України «Нові керамічні матеріали для теплозахисних покриттів» (2015–2017 рр., держ. № 0115U006618, 0116U005508). Мета та завдання дослідження. Метою дослідження є вивчення фазових рівноваг в потрійних ZrO_2 – HfO_2 – Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) системах в інтервалі температур 1100~1700 °C та повному інтервалі концентрацій для розробки фізико-хімічних основ зі створення нових перспективних матеріалів конструкційного та функціонального призначення.

Задля досягнення мети визначено наступні завдання:

Вивчення фазових рівноваг потрійних систем ZrO₂–HfO₂–Ln₂O₃ (Ln = La, Nd, Sm, Eu, Gd) в повному інтервалі концентрацій при 1100, 1250, 1500, 1600, 1700 °C та побудова відповідних ізотермічних перерізів діаграм стану.

2. Уточнення фазового складу граничної подвійної системи HfO₂–Gd₂O₃ при 1100 та 1500 °C.

3. Встановлення основних закономірностей будови діаграм стану потрійних систем ZrO_2 – HfO_2 – Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd), прогноз будови ізотермічних перерізів при 1900 та 2100 °C, а також проекцій поверхонь ліквідусу діаграм стану зазначених систем.

4. Прогноз будови ізотермічних перерізів діаграм стану потрійних систем ZrO_2 -HfO₂-*RE*₂O₃ (*RE* = Dy, Yb, Y) при 1500 °C.

Об'єкт дослідження. Фазові рівноваги в потрійних системах з оксидів цирконію, гафнію та лантаноїдів.

Предмет дослідження. Фазові рівноваги в потрійних системах ZrO_2 –HfO₂– Ln₂O₃ (Ln = La, Nd, Sm, Eu, Gd) після термічної обробки при температурах 1100 °C, 1250 °C, 1500 °C, 1600 °C та 1700 °C.

Методи дослідження. Локальний рентгеноспектральний (ЛРСА) аналіз, сканувальна електронна мікроскопія (СЕМ) та рентгенофазовий аналіз (РФА).

Наукова новизна одержаних результатів. Вперше за допомогою методів РФА, електронної мікроскопії та ЛРСА досліджено фазові рівноваги в потрійних системах ZrO_2 –HfO₂– Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd). Побудовано елементи діаграм стану п'яти потрійних систем у вигляді ізотермічних перерізів, а також проекцій поверхонь ліквідусу. Показано загальні закономірності взаємодії фаз в твердому стані в залежності від іонного радіуса лантаноїду (РЗЕ). На основі встановлених закономірностей будови потрійних систем ZrO_2 – HfO₂– Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) з використанням літературних даних щодо будови граничних систем, зроблено прогноз будови ізотермічних перерізів при 1900 та 2100 °C, а також побудовано проекції поверхонь ліквідусу діаграм стану досліджених систем. Наведено прогноз ізотермічних перерізів потрійних систем ZrO₂–HfO₂– RE_2O_3 (RE = Dy, Yb, Y) при 1500 °C.

Практичне значення одержаних результатів. Представлені результати дослідження фазових рівноваг у потрійних ZrO_2 –HfO₂–Ln₂O₃ (де Ln = La, Nd, Sm, Eu, Gd) системах є довідниковим матеріалом, котрий може бути корисним при створенні нових керамічних матеріалів конструкційного та функціонального призначення, перш за все термобар'єрних покриттів (ТБП) та іонних провідників, оптично-прозорої кераміки – зокрема лазерів, люмінофорів, каталізаторів, матеріалів для іммобілізації радіоактивних відходів тощо. Підібраний для дослідження температурний інтервал відповідає режимам виготовлення та експлуатації вищезгаданих потенційних матеріалів, що збільшує достовірність інформації відносно стабільності проміжних фаз та твердих розчинів на їх основі.

Особистий внесок здобувача. У представленій дисертації узагальнено результати досліджень, що отримано за безпосередньої участі автора. Автором самостійно проведено літературно-патентний пошук за обраною тематикою, аналіз будови діаграм стану подвійних систем, експериментальні дослідження, обробку та аналіз отриманих результатів. Побудовано елементи діаграм стану систем ZrO_2 – HfO_2 – Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) у вигляді ізотермічних перерізів при температурах 1100 °C, 1250 °C, 1500 °C, 1600 °C та 1700 °C та проекцій поверхонь ліквідусу. В наукових працях, де представлено результати дослідження, автором самостійно здійснено вибір та обґрунтування методики експерименту, а також проведено експериментальну частину, аналіз отриманих даних, формулювання висновків і підготовку рукопису дисертаційної роботи до публікації. Рентгенофазовий аналіз виконано спільно з к.т.н. Биковим О. І. та н.с. Оліфан О. І. (ПІМ НАН України), мікроструктурні дослідження – спільно з н.с.

Самелюком А. В. (ІПМ НАН України) та Скориком М. А. (ІМФ НАН України). Постановку задач, вирішення організаційних питань та обговорення результатів проведено спільно з д.х.н. Корнієнко О. А.

Апробація роботи. Матеріали дисертаційної роботи представлені на 11 міжнародних та всеукраїнських наукових конференціях: VII, VI Всеукраїнська наукова конференція «Актуальні задачі хімії: дослідження та перспективи» (м. Житомир – 2023, 2021 pp.); IXth, VIIIth International Samsonov Conference «Materials Science of Refractory Compounds» (MSRC, Kyiv, Ukraine – 2024, 2022 pp.); VII, VI Міжнародна (XVII, XVI Українська) наукова конференція студентів, аспірантів і молодих учених «Хімічні проблеми сьогодення» (м. Вінниця – 2024, 2023, 2017 pp.); 8th International Materials Science Conference HighMatTech (Kyiv, Ukraine, 2023); XI, XIV Всеукраїнська наукова конференція студентів та аспірантів «Хімічні Каразінські читання» (м. Харків – 2023, 2019 pp.); 4th International Congress on Materials & Structural Stability (Rabat, Morocco – 2023); VII Всеукраїнська науково-практична конференція «Актуальні проблеми науковопромислового комплексу регіонів – 2021» (м. Рубіжне – 2021 р.).

Публікації. За матеріалами дисертації опубліковано 19 друкованих праць: 7 статей у фахових виданнях, з яких 2 у журналі 2-го квартилю, 1 стаття у журналі 3-го квартилю, 1 стаття у журналі 4-го квартилю, а також 11 тез у збірниках конференцій.

Структура та об'єм дисертації. Дисертаційна робота складається зі вступу, 8 розділів, висновків, переліку посилань та додатків, в тому числі 78 рисунків та 40 таблиць. Обсяг роботи становить 220 сторінок. Список використаних джерел вміщує 400 посилань. Додатки А та Б.

1. ЛІТЕРАТУРНИЙ ОГЛЯД

1.1. Властивості оксидів рідкісноземельних елементів

«В періодичній системі хімічних елементів до головних груп відносять елементи з відсутніми або заповненими електронними d- та f-оболонками, до проміжних груп відносять елементи, в котрих ще відбувається заповнення цих оболонок ... процес заповнення 4f-оболонки в ряду лантаноїдів відбувається в не зовсім закономірний спосіб та характеризується суперництвом між станами 4f, 5d ma 6s» [125] – так Ландау та Ліфшиць (1948) згідно принципів квантової механіки визначили ряд лантаноїдів від лантану ($4f^0d^1$) до ітербію ($4f^{14}$). Дискусія щодо розташування лантану та лютецію (4f¹⁴d¹) в періодичній системі хімічних елементів триває від самого моменту відкриття останнього аж дотепер [6,126-131]. IUPAC офіційно заперечує [132] існування стандарту періодичної системи хімічних елементів, проте рекомендує ряди елементів лантаноїдів та актиноїдів визначати відповідно як La-Yb та Ac-No, а елементи Sc, Y, Lu і Lr відносити до "скандієвої" (3) групи [131,133]. Рідкісноземельні елементи – тривіальна назва групи хімічних елементів, до якої в найбільш широкому сенсі відносять Sc, Y, ряд лантаноїдів La-Yb, а також Lu. В геохімії скандій частіше відокремлюють від РЗЕ - на противагу ітрію, що зустрічається в мінералах з лантаноїдами ітрієвої підгрупи (puc. 1 a). В англомовній термінології lanthanides, lanthanoids та rare earth elements (REE) часто використовуються як взаємозамінні позначення ряду з 15 елементів La-Lu (за винятком Sc та Y) [4,9,125,130].

Серед особливостей систематики лантаноїдів передусім варто відзначити явища лантаноїдного стиснення [134,135] та флуктуації валентних станів (Ce⁴⁺, Eu²⁺, Yb²⁺ тощо – *табл. 1.1, рис. 1.1 а*), котрі спричиняють аномалії фізичних властивостей (*рис. 1.1 б*). Розрахунки від перших принципів пов'язують згадані особливості з гібридизацією 4f-орбіталі [136–143], через що формування більш стабільних зовнішніх валентних оболонок із потенційно нижчим енергетичним рівнем зростає для порожньої f⁰, напівповної f⁷, повної f¹⁴ та наближених до таких конфігурацій (*табл. 1.1, рис. 1.1 а*). Розподіл констант комплексоутворення для

іонів Ln^{3+} ("тетрадний ефект"), а також валентних станів в металоорганічних або інтерметалічних сполуках демонструють додаткову варіативність властивостей, що пов'язана із заповненням 4f-оболонки на чверть (f³, f⁴) та три чверті (f¹⁰, f¹¹) [137,139]. Ці періодичні залежності є узгодженими та можуть бути обґрунтовані за допомогою теорії Слейтера про багатоелектронні атоми [144–146].

Лантаноїдне стиснення призводить до менших, ніж передбачалося, розмірів іонів перехідних елементів 6-го періоду, а відтак їхні значення наближаються до значень d-елементів 5-го періоду (*табл. 1.2*).

		A	YC 1	гурація Конфі		рігурація f-оболонки іонів [137]			
Z	Атом	Атомний терм [139]	Конфігурація атома [137]	M ²⁺	М ³⁺	M ⁴⁺	M ⁵⁺		
21	Sc	${}^{2}D_{3/2}$	$[Ar] 3d^1 4s^2$	_	_	_	_		
39	Y	${}^{2}D_{3/2}$	$[Kr] 4d^1 5s^2$	_	_	_	_		
40	Zr	³ F ₂	$[Kr] 4d^2 5s^2$	_	_	_	_		
57	La	$^{2}D_{3/2}$	$[Xe] 5d^1 6s^2$		f ⁰				
58	Ce	$^{l}G_{4}$	$[Xe] 4f^1 5d^1 6s^2$		f^i	f^0			
59	Pr	${}^{4}I_{9/2}$	$[Xe] 4f^3 6s^2$		f^2	f^1	f ⁰		
60	Nd	⁵ I4	$[Xe] 4f^4 6s^2$	f ⁴	f³	f^2			
61	Pm	⁶ H _{5/2}	$[Xe] 4f^5 6s^2$	(f ⁵)	f ⁴				
62	Sm	$^{7}F_{0}$	$[Xe] 4f^6 6s^2$	f ⁶	f				
63	Eu	⁸ S _{7/2}	$[Xe] 4f^7 6s^2$	f ⁷	f ⁶				
64	Gd	⁹ D ₂	$[Xe] 4f^7 5d^1 6s^2$		f7				
65	Tb	⁶ H _{15/2}	$[Xe] 4f^9 6s^2$		f ⁸	f ⁷			
66	Dy	⁵ I ₃	$[Xe] 4f^{10} 6s^2$	f^{10}	f ⁹	f ⁸			
67	Но	${}^{4}I_{15/2}$	$[Xe] 4f^{11} 6s^2$		f ¹⁰				
68	Er	${}^{3}H_{6}$	$[Xe] 4f^{12} 6s^2$		f^{11}				
69	Tm	${}^{2}F_{7/2}$	$[Xe] 4f^{13} 6s^2$	f ¹³	f ¹²	f^{11}			
70	Yb	$^{I}S_{0}$	$[Xe] 4f^{14} 6s^2$	f^{14}	f ¹³				
71	Lu	$^{2}D_{3/2}$	$[Xe] 4f^{14} 5d^1 6s^2$		f ¹⁴				
72	Hf	³ F ₂	$[Xe] 4f^{14} 5d^2 6s^2$			f ¹⁴			

Таблиця 1.1 – Електронні конфігурації атомів та f-оболонки іонів Zr, Hf, P3E

Рисунок 1.1 – *(а)* різниця енергетичних конфігурацій 4fⁿ⁻¹5d¹6s² та 4fⁿ6s² [137], *(б)* аномалії густини та температури плавлення в ряді La–Lu [138]

			Іонний радіус, нм						
	Атомний		п :	A	за Шеннон	ом та Прюїтом	ı [161–163]		
Атом	радіус, нм [148]	Іон	за Полнгом [152–154]	за Аренсом [156]	КЧ=6, ефект.	КЧ=6, крист.	КЧ=8, ефект.		
0	0,060	O ²⁻	0,140	0,140	0,140	0,126	0,142		
Y	0,180	Y ³⁺	0,093	0,092	0,09	0,104	0,1019		
Zr	0,155	Zr ⁴⁺	0,080	0,079	0,072	0,086	0,084		
La	0,195	La ³⁺	0,115	0,114	0,1032	0,1172	0,116		
Ce	0,185	Ce ³⁺	_	0,107	0,101	0,115	0,1143		
Nd	0,185	Nd ³⁺	_	0,104	0,0983	0,1123	0,1109		
Sm	0,185	Sm ³⁺	_	0,100	0,0958	0,1098	0,1079		
Eu	0,185	Eu ³⁺	_	0,098	0,0947	0,1087	0,1066		
Gd	0,180	Gd^{3+}	_	0,097	0,0935	0,1075	0,1053		
Yb	0,175	Yb ³⁺	_	0,086	0,0868	0,1008	0,0985		
Lu	0,175	Lu ³⁺	_	0,085	0,0861	0,1001	0,0977		
Hf	0,155	Hf^{4+}	_	0,078	0,071	0,085	0,083		

Таблиця 1.2 – Атомний та іонний радіуси О, Zr, Hf та РЗЕ [147–163]

Методика розрахунку радіусів іонів зводиться до поділу міжатомної відстані на відрізки з розміром, який обернено пропорційний електростатичній взаємодії ефективного заряду ядер вимірюваного іона та зовнішньої валентної оболонки іншого іона [149–157,161–163]. Ефективний іонний радіус залежить від значення координації іона. Збільшення різниці атомних розмірів катіона і аніона спричиняє поляризацію, яка призводить до деформації зовнішньої валентної оболонки, що в свою чергу сприяє утворенню ковалентного полярного зв'язку [157]. Врахування перенесення електронної густини від аніона до катіона [158–163] важливі лише для параметризації першопринципних розрахунків теорії функціоналу густини заряду (DFT) [164,165], тоді як для решти задач достатньо електронегативності [159,166]. Варто відзначити, що від координації [164], електронегативності [166] та поляризації [167] залежать не лише розміри, але і ступінь дисоціації атомів у кристалічній гратці – "іонність" (ionicity). Встановлено, що іонність (*табл. 1.3*) пов'язана зі співвідношенням ефективних іонних радіусів (*табл. 1.2*) та значною мірою впливає на фізичні властивості рідкісноземельних оксидів [168].

Таблиця 1.3 – Частка іонного зв'язку (іонність) в оксидах MO_2 (M = Zr, Hf) та Ln_2O_3 (Ln = La, Nd, Sm, Eu та Gd) [167]

		M^4	+/ <i>M</i>			
La_2O_3	Nd_2O_3	Sm_2O_3	Eu_2O_3	Gd_2O_3	ZrO ₂	HfO ₂
0,917	0,901	0,893	0,889	0,887	0,834	0,830

Поліморфізм RE_2O_3 досліджували неодноразово [169–186], але він досі ще залишається предметом дискусій, особливо для ряду $Pm_2O_3-Yb_2O_3$. Достеменно відомо про існування RE_2O_3 в гексагональній (A), моноклінній (B), кубічній (C) [169], а також двох високотемпературних модифікаціях – гексагональній (H) та кубічній (X) [170]. На основі власних експериментальних результатів [187–189] підтверджено існування стабільної кубічної С-модифікації Ln_2O_3 для Ln = Pm-Gd(*табл. 1.4*). Окремо представлено похідні термодинамічні функції та параметри утворення A, B та C модифікацій Ln_2O_3 (де Ln = La, Nd, Sm, Eu, Gd) (*табл. 1.5*). Потенціали вільної енергії Ґіббса для утворення оксидів Eu₂O₃ та Yb₂O₃ наочно демонструють прояв вищезгаданих лантаноїдних аномалій (*puc. 1.3*).

Рисунок 1.2 – Інтервали стабільності модифікацій РЗО *RE*₂O₃ [189]

Таблиця 1.4 – Температури поліморфних перетворень оксидів Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd), °C

Ln_2O_3	$t(C \leftrightarrow B)$	$t(\mathbf{B} \leftrightarrow \mathbf{A})$	$t(\mathbf{A} \leftrightarrow \mathbf{H})$	$t(H \leftrightarrow X)$	$t(X \leftrightarrow L)$	Джерела
La_2O_3	_	_	$\begin{array}{c} 2030 \\ 2040 \pm 20 \\ 2040 \pm 30 \end{array}$	$2100 \\ 2100 \pm 30 \\ 2110 \pm 30$	$\begin{array}{c} 2310 \\ 2305 \pm 15 \\ 2304 \pm 15 \end{array}$	[178,181] [187] [189]
Nd_2O_3	_	_	$2060 \\ 2100 \pm 30 \\ 2106 \pm 30$	2180 2200 ± 10 2204 ± 30	$2300 \\ 2320 \pm 20 \\ 2304 \pm 15$	[178,181] [187] [189]
		1870	2070	2225	2310	[179,181]
Sm ₂ O ₃	$\begin{array}{c} 403\pm20\\ 880 \end{array}$	1900 ± 30	2130 ± 30	2250 ± 30	2335 ± 15	[187] [188]
	~ 627	1917 ± 20	2122 ± 20	2260 ± 30	2340 ± 15	[189]
					2325	[185]
Eu ₂ O ₃	$\begin{array}{c} 621\pm20\\ 1075 \end{array}$	2050 ± 20	2140 ± 20	2270 ± 20	2350 ± 20	[187] [188]
	1077 ± 15	2054 ± 30	2154 ± 30	2254 ± 30	2349 ± 20	[189]
		2170	2200	2370	2410	[178,181]
Gd_2O_3	$\begin{array}{c} 1152\pm20\\ 1288 \end{array}$	2170 ± 10	2208 ± 10	2360 ± 20	2420 ± 20	[187] [188]
	1200	2157 ± 30	2197 ± 30	2265 ± 20	2420 ± 15	[189]

Таблиця 1.5 – Термодинамічні функції (ΔH° , кДж·моль⁻¹) та параметри (S° , Дж·моль⁻¹·K⁻¹) утворення при температурі 25 °С (298К) модифікацій (С, В, А)- $Ln_2O_3(Ln = La, Nd, Sm, Eu, Gd)$

Ln_2O_3	$\Delta H^{\circ}_{298\mathrm{K}}(\mathrm{C})$	$S^{\circ}_{298\mathrm{K}}(\mathrm{C})$	$-\Delta H^{\circ}_{298\mathrm{K}}(\mathrm{B})$	$S^{\circ}_{298\mathrm{K}}(\mathrm{B})$	$-\Delta H^{\circ}_{298\mathrm{K}}(\mathrm{A})$	$S^{\circ}_{298\mathrm{K}}(\mathrm{A})$	Джерело
La ₂ O ₃	1782,71	127,24	1786,93	127,19	$1791,78 \\ 1791,6 \pm 2,0$	$127,24 \\ 127,32 \pm 0,84$	[187] [189]
Nd_2O_3	1809,64	158,78	1808,26	158,73	$1808,81 \\ 1806,9 \pm 3,0$	158,78 $158,7 \pm 1,0$	[187] [189]
Sm ₂ O ₃	$1827,19\\1826,8 \pm 4,8$	145,95	$1822,60 \\ 1823,0 \pm 4,0$	$150,38 \\ 150,6 \pm 0,3$	1820,12	151,52	[187] [189]
Eu ₂ O ₃	$1657,95 \\ 1662,5 \pm 6,0$	$138,95 \\ 135,4 \pm 2,0$	1653,45	144,25	1650,05	145,72	[187] [189]
Gd ₂ O ₃	$1830,93 \\1819,7 \pm 3,6$	$150,62 \\ 150,6 \pm 0,2$	1825,19	155,50	1819,92	157,71	[187] [189]

Рисунок 1.3 – Залежність потенціалів вільної енергії утворення Ґіббса оксидів РЗЕ *RE*₂O₃ від атомного номера РЗЕ [143]

Гексагональна А-модифікація Ln_2O_3 кристалізується в просторовій групі $P\overline{3}m1$ [190,191]. Інформація [192] про належність до просторової групи $P6_3/mmc$ невірна – оскільки це мало б означати подвоєння елементарної комірки $P\overline{3}m1$ в напрямку *z*, проте наведені авторами структурні параметри не відповідають заданій умові. Розрахунки від перших принципів підтвердили припущення щодо відповідності А-модифікації Ln_2O_3 саме тригональній просторовій групі $P\overline{3}m1$ [193,194]. Елементарна комірка А- Ln_2O_3 вміщує одну формульну одиницю, в якій кожен катіон Ln^{3+} скоординований нарощеному октаедрі OCF-7 LnO_7 [195,196]. Нееквівалентні координаційні позиції аніонів O²⁻ всього дві – у вузлах тетраедрів ⁽¹⁾ OLn₄ та октаедрів ⁽²⁾ OLn₆ (*puc. 1.4 a*).

Моноклінна В-модифікація Ln_2O_3 кристалізується в просторовій групі C2/m [194,197]. Її елементарна комірка складається із шести формульних одиниць, де катіони Ln^{3+} займають три нееквівалентних положення — в двох видах нарощених трикутних призм TPRS-7 LnO₇ та октаедрах OC-6 LnO_6 [195] (*puc. 1.4 б*). Аніони O^{2-} перебувають в п'яти нееквівалентних координаційних позиціях: в трикутних OLn_4 та квадратних OLn_5 деформованих пірамідах, двох видах тетраедрів OLn_4 , а також в октаедрах OLn_6 [198].

Рисунок 1.4 – Поліедричні моделі елементарних комірок гексагональної *(а)* та моноклінної *(б)* кристалічних модифікацій *Ln*₂O₃ [196,198]

Кубічна С-модифікація $Ln_2O_3 \in$ похідною від структури типу флюориту (F) і кристалізується в просторовій групі $Ia\overline{3}$ [199]. Елементарна комірка складається з шістнадцяти формульних одиниць, де катіони Ln^{3+} розташовані у вузлах двох різних типах деформованих фігур LnO_6 – три чверті Ln^{3+} в тригональних призмах

ТРR-6 симетрії C₂ та чверть в октаедрах ОС-6 симетрії S₆ (*puc. 1.5*). На вершинах кожної з типів фігур розташовані шість аніонів O²⁻ та дві вакансії [200].

Параметри елементарних комірок модифікацій A, B та C оксидів лантаноїдів Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) представлені в *табл. 1.6*.

Рисунок 1.5 – (*a*) модель елементарної комірки С-*Ln*₂O₃ [199], (*б*) поліедрична модель вузлів *S*₆ та *C*₂ симетрій [180]

Високотемпературні модифікації *RE*₂O₃ не можуть бути стабілізовані для низьких температур [178,179].

Високотемпературна гексагональна модифікація (Н) характерна для всіх РЗО крім Sc₂O₃ і Lu₂O₃ [170]. Належить до просторової групи *P*6₃/*mmc* [192] та утворюється вище 2000 °C (*puc. 1.2*).

Високотемпературна кубічна модифікація (Х) характерна для ряду La₂O₃– Gd₂O₃(Dy₂O₃) та існує починаючи від 2100~2300 °C до температур плавлення (*puc. 1.2*) [170]. Положення аніонів O²⁻ в ґратці достовірно не визначені через високу температуру існування, що унеможливлює проведення розрахунків від перших принципів [189]. Найвірогідніше, Х-модифікація кристалізується в просторовій групі $Im\overline{3}m$ з об'ємноцентрованою кубічною ґраткою (ОЦК).

	Параметри елементарних комірок, нм								
Ln_2O_3	ŀ	A]	В	С	Джерело		
	а	С	а	b	С	β,°	а		
La ₂ O ₃	0,39381 0,3936 0,39379 0,39373 0,3937	0,61361 0,6166 0,61729 0,61299 0,6129	1,47541	0,38026	0,92223	100,123	1,11392 1,142 1,136	[192] [193]* [194]* [199] [201] [203]	
Nd ₂ O ₃	0,38316 0,3859 0,38591 0,3829 0,383	0,60028 0,6072 0,60899 0,5997 0,601	1,45369	0,37097	0,90535	100,097	1,1176 1,1072 1,1077	[192] [193]* [194]* [199] [202] [203]	
Sm ₂ O ₃	0,37941	0,60114	1,4177 1,43812 1,41975	0,3633 0,36352 0,36273	0,8847 0,89114 0,88561	99,96 100,152 99,986	1,0934 1,0995 1,0915 1,0932	[185] [193]* [194]* [199] [202] [204]	
Eu ₂ O ₃			1,4092 1,41105	0,3604 0,36021	0,8778 0,8808	100,0 100,037	1,0869 1,086831	[185] [205] [206]	
Gd ₂ O ₃	0,37305	0,59386	1,4061 1,41948	0,3566 0,35658	0,8760 0,87702	100,1 100,182	1,0812 1,0812 1,0813 1,08175	[185] [193]* [194]* [201] [207]	

Таблиця 1.6 – Структурні параметри гексагональної (А), моноклінної (В) та кубічної (С) модифікацій оксидів лантаноїдів *Ln*₂O₃ (*Ln* = La, Nd, Sm, Eu, Gd)

Умовне позначення:

* – параметри елементарних комірок обчислені від перших принципів за допомогою прикладного програмного забезпечення *Vienna Ab initio Simulation Package* (VASP)

1.2. Властивості діоксидів цирконію та гафнію

В періодичній системі хімічних елементів цирконій та гафній розміщені в "титановій" (4) групі [131]. Будова зовнішніх валентних оболонок елементів в групі однакова (*табл. 1.1*) – але на відміну від титану, цирконій та гафній в переважній більшості сполук перебувають в чотиривалентному стані, а їхні сполуки в дво- та тривалентному станах – термодинамічно-нестабільні [208]. Наприклад, монооксид ZrO диспропорціонує з утворенням надструктури Zr₃O (просторова група $R\overline{3}c$) та діоксиду ZrO₂ [209]. Утворення киснево-дефіцитних структур Hf₆O, Hf₃O, Hf₂O є ключовим критерієм створення діелектричних та сегнетоелектричних підкладок для напівпровідників на основі HfO₂ [76,77,210– 212]. Водночас саме стехіометрична стабільність діоксидів цирконію і гафнію визначає їхні каталітичні властивості та кисневу провідність [89,90,93].

Внаслідок лантаноїдного стиснення розміри атомів та іонів цирконію та гафнію є близькими за значенням (*табл. 1.2*). Діоксиди цирконію та гафнію є повними кристалографічними аналогами, що є одними з найбільш тугоплавких оксидів з температурами плавлення 2710 ± 15 °C [213] та $2800 \sim 2820$ °C [214] відповідно. Оскільки частка іонного зв'язку в діоксидах гафнію та цирконію є нижчою, ніж в Ln_2O_3 (*табл. 1.3*) – вони більш схильні до амфотерності [167]. В підсумку, гідроксиди Zr(OH)₄ і Hf(OH)₄ – це координаційно-гідратовані оксиди ZrO₂·*n*H₂O, HfO₂·*n*H₂O (*n*<2), водночас координаційні стабільні аніони ZrO₃²⁻ (HfO₃²⁻) та катіони ZrO²⁺, Zr₂O₃²⁺ (HfO²⁺, Hf₂O₃²⁺) утворені саме за донорно-акцепторним механізмом [208].

Моноклінна модифікація М- MO_2 (M = Zr, Hf) кристалізується в просторовій групі $P2_1/c$ [215–220]. М- ZrO_2 з домішкою діоксиду гафнію зустрічається в природі у вигляді мінералу бадделеїту [216,220]. В структурі М- MO_2 катіони M^{4+} скоординовані з аніонами O²⁻ в деформованих нарощених трикутних призмах (TPRS-7) MO_7 [195]. Нееквівалентні координаційні позиції для аніонів O²⁻ всього дві – в квазі-планарній конфігурації O M_3 та у вузлах деформованих тетраедрів O M_4 (*рис. 1.6 а*) [219].

Тетрагональна Т-модифікація MO_2 (де M = Zr, Hf) належить до просторової групи $P4_2/nmc$, де катіони M^{4+} скоординовані у викривлені об'ємно-центровані куби (CU-8) MO_8 [195], а координаційні позиції O²⁻ розташовуються у вузлах спотворених тетраедрів O M_4 (*puc. 1.6 б*) [222].

Кубічна флюоритоподібна F-модифікація MO_2 (M = Zr, Hf) кристалізується в просторовій групі $Fm\overline{3}m$, де катіони M^{4+} скоординовані в об'ємно-центровані куби (CU-8) MO_8 [195], а координаційні позиції O²⁻ розташовуються у вузлах тетраедрів OM₄ (*puc. 1.6 в*) [223]. Як моноклінна ($P2_1/c$), так і тетрагональна ($P4_2/nmc$) модифікації є спотвореннями кубічної флюоритоподібної структури (*puc. 1.6*) [66,67].

Рисунок 1.6 – Поліедричні моделі елементарних комірок модифікацій ZrO₂ та HfO₂: *a*) моноклінної (М) [221], *б*) тетрагональної (Т) [222], *в*) кубічної типу флюориту (F) [223]

Схема поліморфізму діоксидів цирконію та гафнію продовжує бути темою для дискусії. Автори робіт [224,225] відзначають додаткові фазові перетворення за допомогою структурно-чутливих методів дилатометрії та кондуктометрії, а також спираючись на теоретико-груповий аналіз [226–228], що забороняє прямий перехід між просторовими групами $P2_1/c$ (М) та $P4_2/nmc$ (Т) (*рис. 1.7*).

Варіанти діаграм стану з кількома тетрагональними модифікаціями (T₁ + T₂) ZrO₂ були опубліковані щонайменше для систем ZrO₂–SrO [229] та ZrO₂–Y₂O₃ [230,231]. Загальновідомо про існування орторомбічних метастабільних тонких плівок ZrO₂ та HfO₂ [232,233]. Орторомбічні фази діоксиду гафнію, одержані під впливом високого тиску залишаються метастабільними навіть за нормальних умов та застосовуються в мікроелектроніці [234,235]. Нещодавні дослідження [218,219,236] з використанням розрахунків від перших принципів засвідчують можливість утворення стабільних орторомбічних модифікацій із просторових груп *Pbca*, *Pca2*₁ та *Pmn2*₁ за стандартних умов при атмосферному тиску. Дослідження чистого HfO₂ за методом спектрометрії збурених кутових γ - γ кореляцій (PAC) виявило присутність стабільних орторомбічних модифікацій з просторових груп *Pbca* та *Pca2*₁ в кількості ~10 % та ~6 % відповідно [237] – автори дослідження вважають, що розбіжності з результатами РФА можуть бути пов'язані з тим, що рефлекси орторомбічних структур перекриваються зі значно інтенсивнішими рефлексами моноклінної структури *P2*₁/*c*.

В цілому вищеперелічені дискусійні відомості видаються дуже цікавими з наукової точки зору. Проте з огляду на неповноту, неузгодженість та, зокрема, інструментальну складність виконання експерименту – не будуть враховані при проведенні даного дослідження.

Рисунок 1.7 – Топологія просторових груп $Fm\overline{3}m$, $P4_2/nmc$ та $P2_1/c$ [228]

Тетрагонально-моноклінне перетворення Т \leftrightarrow М необхідно розглядати як оборотний бездифузійний атермальний мартенситний перехід із виразним температурним гістерезисом. Прямий напрямок перетворення проходить при охолодженні в інтервалі 1000~800 °C, при зростанні температури в інтервалі 1050~1170 °C проходить його зворотний напрямок – M-ZrO₂ \rightarrow T-ZrO₂. Слід відзначити, що гартований T-ZrO₂ може перебувати в метастабільному стані навіть при кімнатній температурі [208].

Тетрагонально-моноклінний перехід T-ZrO₂ \rightarrow M-ZrO₂ супроводжується суттєвою об'ємною зміною ($\Delta V = 4 \sim 9\%$) при деформації зсуву до 16 % [15]. Іноді він перебігає настільки стрімко, що завдає критичної шкоди матеріалам. Втім за дотримання певних умов, даний процес може бути використаним для "трансформаційного зміцнення" кераміки [238–241].

Структурні зміни в процесі перетворення T-ZrO₂ \rightarrow M-ZrO₂ відбуваються з численним двійникуваннями та утворенням доменів – подібно до того, як це відбувається в сегнетоелектриках або сталях (*puc. 1.8*). Ця аналогія призвела до появи терміну *феропружність* та нового класу матеріалів *сегнетоеластиків*. Подробиці механізму перетворення T \leftrightarrow M ґрунтовно висвітлені в [226,227,239– 247]. Дослідження механізму T \leftrightarrow M сприяло створенню теоретичної основи з опору руйнуванню в матеріалах, і як наслідок, визначенню практичних підходів до створення та розвитку методів зміцнення матеріалів [245,246].

Рисунок 1.8 – Структурна візуалізація мартенситного переходу Т → M [239]

З урахуванням відносно вищих температур поліморфних перетворень діоксиду гафнію – не дивно, що відомостей стосовно переходу M-HfO₂ \leftrightarrow T-HfO₂ в літературі помітно менше, ніж для діоксиду цирконію [248–254]. За даними ДТА [255] встановлено температурний гістерезис ~ 20 °C. Зазначені трансформаційно-зміцнені матеріали на основі діоксиду цирконію мають суттєвий недолік, пов'язаний зі стабілізацією тетрагональної модифікації при типових температурах експлуатації. Міцність таких матеріалів поступово та неодмінно знижуватиметься з плином часу. З перспективи ізоструктурної спорідненості – від трансформаційно-зміцненої кераміки на основі діоксиду гафнію можна очікувати вищих робочих температур [256]. Варто зазначити, що перехід T-HfO₂ \rightarrow M-HfO₂ супроводжується меншою деформацією зсуву та зміною об'єму в межах всього лише 2,5 ~ 3,4 % [257].

Поліморфне перетворення F ↔ T [251,258,259] характеризується майже повною відсутністю гістерезису як для діоксиду цирконію, так і гафнію [255]. Через складність визначення об'ємного ефекту при переході між зазначеними модифікаціями – дотепер немає певності щодо типу фазового перетворення [226,260]. Водночас за стрімкого зниження температури нижче рівноважної, наприклад – при охолодженні під час гартування, відбувається бездифузійне перетворення F \rightarrow T' [92,261–263]. Утворена метастабільна фаза T' тотожна до Т-модифікації, однак має характерні морфологічні відмінності, пов'язані з механізмом перетворення – як двійники, домени, антифазні границі тощо. Через зближення параметрів комірки, фаза Т' стійкіша до пошкоджень при перебігу тетрагонально-моноклінного перетворення порівняно зі стабільною тетрагональною Т-модифікацією. В дослідженні [264] спостережено лінійне сходження параметрів в інтервалі існування Т-модифікації до c/a(T) = 1 на межі переходу Т → F. В роботі [92] крім "низькотетрагональної" фази з $c/a(T') = \sim 1,005$ описано ізоструктурну фазу c(T'') = a(T'') – проте параметри cв обидвох перевершують параметр а кубічної структури типу флюориту – c(T', T'')/a(F) > 1. Причиною неортогональності кристалічної ґратки є зсуви в аніонній підгратці, завдяки чому метастабільні тетрагональні фази краще утворюються при гартуванні киснево-дефіцитних твердих розчинів з кубічною структурою типу флюориту. Даний метод використовується при створенні частково-стабілізованої кераміки на основі діоксиду цирконію (PSZ) для термобар'єрних покриттів (TBC) [92,265].

Параметри елементарних комірок стабільних модифікацій діоксидів гафнію та цирконію представлені в *табл. 1.7*, температури їх поліморфних перетворень – в *табл. 1.8*. Термодинамічні функції та параметри утворення даних стабільних модифікацій при температурі 25 °C наведено в *табл. 1.9*.

	Параметри елементарних комірок, нм								
MO_2		Μ	[-	Γ	F	Примітки	Джерело
	a	b	С	β,°	а	С	а		
	0,51454	0,52075	0,53107	99°14'					[217]
							0,5256	2330 °C	[251]
	0,5159 0,514	0,5204 0,520	0,5324 0,531	99°03' 99°24'				25 °C 1000 °C	[252]
ZrO_2	0,5153	0,5185	0,5293	99°20'					[255]
							0,5272		[258]
	0,5147	0,5203	0,5315	99,28°	0,512	0,525			[266]
	0,51505	0,52116	0,53173	99°23'				HRNPD	[267]
					0,5094	0,5177	0,5124		[268]
	0,51156	0,51722	0,52948	99°11'					[217]
	0,5068	0,5135	0,5292	_	0,5062	0,522	0,5062	DFT	[218]
	0,511 0,521	0,514 0,515	0,528 0,543	99°44' 98°48'	0,514	0,525		25 °C, 1640 °C 1920 °C	[248]
					0,518	0,534	0,53	2100 °C 2750 °C	[251]
HfO ₂	0,5119 0,5128	0,5169 0,5167	0,5290 0,5294	99°25' 99°18'				25 °C 1000 °C	[252]
	0,5123	0,5171	0,5273	98°					[253]
	0,511	0,517	0,528	99°36'	0,5155	0,5285		25 °C 1800 °C	[269]

Таблиця 1.7 – Структурні параметри модифікацій ZrO2 та HfO2

Реакція	ZrO ₂				HfO ₂			Метод
	A _s *	T ₀ **	M _s *	A _s *	T ₀ **	M _s *		
	1150			1950	1925	1900	[251]	ОП+РФА
$T \leftrightarrow M$	1150	1080	1010	1830	1820	1810	[255]	ДТА
	1173	1092	1011				[270]	ДТА
	1157 ± 5	1094 ± 5	1032 ± 5	1793 ± 5	1779 ± 5	1765 ± 5	[271,272]	ДТА+ТО
		2350			2520		[214]	ОП
F↔T	2300				2700		[251]	ОП+РФА
	2330 ± 30			2520 ± 30			[255]	ОП
				2490 ± 25			[273]	ДТА
	2350						[274]	ДТА
				2530			[275]	ДТА
		2311			2530		[271,272]	ТО
		2710 ± 35					[213]	екстраполяція
		2710			2820			ОП
		2700			2800		[255]	ОП
$L \leftrightarrow F$					2801 ± 25		[273]	ДТА
		2700						ДТА
					2800			ДТА
		2710			2800		[271,272]	ТО

Таблиця 1.8 – Температури поліморфних перетворень ZrO2 та HfO2, °C

Умовні позначення:

* – A_s, M_s – початкові точки прямого та зворотного напрямків поліморфного перетворення M ↔ T ** – T₀ – серединна температура поліморфного перетворення M ↔ T: T₀ = (A_s+M_s)/2

Таблиця 1.9 – Термодинамічні функції (∆*H*°, кДж·моль⁻¹) та параметри (*S*°, Дж·моль⁻¹·K⁻¹) утворення при температурі 25 °С (298К) стабільних модифікацій (M, T, F) діоксидів цирконію та гафнію [271,272]

MO_2	$\Delta H^{\circ}_{ m 298K}({ m M})$	$S^{\circ}_{298\mathrm{K}}(\mathrm{M})$	$\Delta H^{\circ}_{298\mathrm{K}}(\mathrm{T})$	$\Delta H^{\circ}_{298\mathrm{K}}(\mathrm{F})$
ZrO ₂	-1100,560	49,76	-1095,095	-1083,883
HfO ₂	-1117,628	59,43	-1109,420	-1098,208
1.3. Фазові рівноваги в системі ZrO₂-HfO₂

Фазові рівноваги в системі ZrO_2 –HfO₂ досліджено в [252–255,271–273,276]. Система ZrO_2 –HfO₂ характеризується необмеженою розчинністю компонентів у твердому та рідкому станах. Попри дискусію стосовно поліморфізму [224–236], фазові взаємодії в системі ZrO_2 –HfO₂ свідчать про утворення твердих розчинів виключно на основі стабільних моноклінної (М), тетрагональної (Т) та кубічної флюоритоподібної (F) модифікацій діоксидів цирконію та гафнію.

В [252,253] з використанням металографії, ДТА, високороздільного РФА та мікрозонду в повному концентраційному інтервалі досліджено початкові та кінцеві температури для обидвох напрямків ($M \rightarrow T, T \rightarrow M$) монокліннотетрагонального перетворення. Враховуючи різницю між результатами ДТА і РФА, діаграма стану (*рис. 1.9 а*) містить наближені значення. Область системи вище 1750 °C не досліджено.

В [255] досліджено фазові рівноваги в системі ZrO_2 –HfO₂ в інтервалі 1100– 2800 °C з використанням ДТА в гелію, ТА і методу "гартування та відпалу" на повітрі. Підтверджено, що температура переходу М \rightarrow Т при збільшенні частки HfO₂ підвищується, водночас параметри елементарних комірок твердих розчинів на основі моноклінної структури (М) лінійно зменшуються (*рис. 1.9 б*).

Обидва напрямки моноклінно-тетрагонального переходу ($M \rightarrow T, T \rightarrow M$) в системі ZrO₂–HfO₂ досліджено з використанням ДТА [271,272]. Представлена діаграма стану (*рис. 1.10*) оптимізована з похідними термодинамічних функцій компонентів системи (*табл. 1.9*). Необхідно відзначити про застереження щодо використання границі гомогенності твердих розчинів моноклінної структури (*рис 1.9 б*), проведеної через точки A_s (*табл. 1.8, 1.10*), як моноклінно-тетрагональної міжфазної межі. Натомість границю М/Т встановлено [271,272] за значеннями T₀ (*табл. 1.8, 1.11*), котрі узгоджуються з термодинамічними даними. Винятково на підставі подібності термодинамічних параметрів діоксидів гафнію та цирконію, по межі М/Т проведено довільно вузький обрис двофазної області M+T з висотою до ~ 30 °C в точці еквімолярного складу 50 % *x*ZrO₂–50 % *x*HfO₂.

Таким чином, виявляється, що при взаємній відповідності результатів (*табл. 1.10*) і (*табл. 1.11*), межа гомогенності моноклінних твердих розчинів з *рис. 1.9 б* пролягає на 40~55 °C вище відповідної межі на *рис. 1.10*.

Рисунок 1.9 – Діаграми стану системи ZrO_2 –HfO₂: *a*) [252,253] ¹ T \rightarrow M ² M \rightarrow T, *б*) [255] ¹ геліотермічний аналіз, ² ДТА в Не, ³ метод "гартування та відпалу"

<i>x</i> HfO ₂ , %	A₅*, °C	T₀**, °C	M₅*, °C	$t(F \leftrightarrow T), ^{\circ}C$
10	1200	1155	1110	2350
20	1260	1225	1190	2365
30	1320	1310	1300	2380
40	1385	1372,5	1360	2400
50				2425
90	1740	1732,5	1725	

Таблиця 1.10 – Температури перетворень в системі ZrO₂–HfO₂ [255]

Умовні позначення:

* – A_S, M_S – початкові точки зворотного ($M \rightarrow T$) та прямого ($T \rightarrow M$) переходів

** – середня точка T₀ = (A_S+M_S)/2 для порівняння з даними *табл. 1.11* [271,272]

Рисунок 1.10 – Діаграма стану системи ZrO₂–HfO₂ [271,272] з результатами а) [273], б) [255], в) [276], г) [252,253], д) [271,272]

	$t(M \rightarrow T), ^{\circ}C$			$t(T \rightarrow M), ^{\circ}C$		
xHIO ₂ , %	A _s *	T ₀ ***	A _f **	M _s *	T ₀ '***	M _f **
6,7	1193	1139	1242	1085	1141	1040
8,2	1207	1147,5	1253	1088	1423,5	1048
10,3	1218	1161	1263	1104	1165	1067
12,0	1236	1177,5	1282	1119	1179	1076
13,8	1249	1194	1293	1139	1194,5	1096
18,2	1275	1219	1326	1163	1222	1118
33,1	1374	1324	1428	1274	1326	1224
67,3	1581	1533	1641	1525	1559	1477

Таблиця 1.11 – Температури М \rightarrow Т, Т \rightarrow М в системі ZrO₂–HfO₂ [271,272]

Умовні позначення:

* – A_s, M_s – початкові точки прямого ($M \rightarrow T$) та зворотного ($T \rightarrow M$) перетворень

** – A_f , M_f – кінцеві точки прямого ($M \rightarrow T$) та зворотного ($T \rightarrow M$) перетворень

*** – середні точки $T_0 = (A_s + M_s)/2$ та $T_0' = (A_f + M_f)/2$

З огляду на методику проведення експерименту в даному дисертаційному дослідженні – як граничну систему для ізотермічних перерізів діаграм стану потрійних систем раціональніше використати діаграму стану з *рис. 1.9 б* [255]. Слід відзначити, що на жодній з наведених вище діаграм стану системи ZrO₂– HfO₂ достовірно не встановлені границі подвійної області M+T.

1.4. Фазові рівноваги в системах ZrO₂(HfO₂)-Ln₂O₃

Діаграми стану систем рядів $ZrO_2-Ln_2O_3$ та $HfO_2-Ln_2O_3$ (Ln = La, Nd, Sm, Eu, Gd) характеризуються граничною розчинністю компонентів у твердому стані [185,272,277–280]. Оскільки різниця іонних радіусів Zr^{4+} та Hf^{4+} мізерна (*maбл.* 1.2), а діоксиди цирконію та гафнію є ізоструктурними аналогами (*maбл.* 1.7) – діаграми стану даних систем демонструють подібність будови, з відмінностями, що зумовлені вищою температурою поліморфних перетворень діоксиду гафнію (*maбл.* 1.8). В подвійних системах $ZrO_2-Ln_2O_3$ і $HfO_2-Ln_2O_3$ утворюються тверді розчини на основі: моноклінної (B), гексагональних (A, H), кубічних (C, X) модифікацій Ln_2O_3 , а також моноклінної (M), тетрагональної (T) та кубічної (F) модифікацій діоксидів цирконію та гафнію.

При розчиненні оксидів Ln_2O_3 в структурі F- MO_2 , одночасно з процесом заміщення катіонів на Ln^{3+} поступово зростає кількість структурних дефектів внаслідок створення вакансій аніонів *Va*. Тверді розчини заміщення дефектної структури $Ln_xM_{1-x}O_{2-\delta}$ належать до просторової групи $Fm\overline{3}m$ [281]. Наближення стехіометричної межі $Ln^{3+}/M^{4+}=1$ супроводжується впорядкуванням катіонів вздовж напрямку (110), внаслідок якого відбувається ізометричне подвоєння кубічної комірки (F) до похідної надструктури типу пірохлору Ру- $Ln_2M_2O_7$. Структура типу пірохлору кристалізується в просторовій групі $Fd\overline{3}m$, її елементарна комірка складається з восьми формульних одиниць з чотирма нееквівалентними іонними позиціями, через що її формулу кристалографічно записують як $Ln_2M_2O_6O'$ [282–284]. Координація катіонів Ln^{3+} в її структурі зберігається зі структури типу флюориту, тоді як для M^{4+} знижується до 6 (*puc*.

1.11 а). Катіони Ln^{3+} за двома коротшими та шести довшими зв'язками Ln–О координуються всередині скаленоедрів LnO_8 (CU-8). Катіони M^{4+} за шістьма рівновіддаленими зв'язками скоординовані всередині тригональних антипризм OC-6 MO_6 (*puc. 1.11 б*) [195]. Нееквівалентні координаційні позиції аніонів O²⁻ всього три: 48f у вузлах спотворених тетраедрів OLn_2M_2 , 8b у вузлах тетраедрів $O'M_4$, а також – вакансії 8a в тетраедрах $VaLa_4$. Число вакансій збільшується з наближенням до стехіометричного складу Ру- $Ln_2M_2O_7$. Збільшення частки MO_2 насичуючи аніонну підґратку, спричиняє зміщення вакансій 8a на позиції 8b в структурі дефектного флюориту [282,283].

Рисунок 1.11 – Просторові моделі елементарної комірки Ру-*Ln*₂*M*₂O₇: *a*) ¹/₈ [282], *б*) повна [284]

Умова впорядкування флюоритної ґратки в надструктуру типу пірохлору виникає при дотриманні відношення $rRE^{3+}_{KY=8}/rM^{4+}_{KY=6} \ge 1,46$ (*табл. 1.2*). Слід зазначити, що координаційний поліедр спрощується зі зменшенням rRE^{3+} . Даній умові задовольняють системи $ZrO_2-Ln_2O_3$ (Ln = La-Dy) та $HfO_2-Ln_2O_3$ (Ln = La-Tb) [282]. Проте в системі $ZrO_2-Dy_2O_3$ не виявлено впорядкування [271,272], а для систем $HfO_2-Dy_2O_3$ та $HfO_2-Tb_2O_3$ наведено суперечливі дані [285,286]. Решта систем даних рядів утворюють тверді розчини заміщення на основі структури дефектного флюориту F-*LnM*O_{4-δ} зі зниженням до 4 координації M^{4+} при збереженні KЧ=8 для Ln^{3+} [287], а також появою антиструктурних дефектів в катіонній підґратці [281]. Перетворення Ру \leftrightarrow F є термодинамічним фазовим переходом другого роду за типом "порядок–безлад", оскільки супроводжується незначною структурною зміною. Температура переходу в ряді від Nd₂Zr₂O₇ до Gd₂Zr₂O₇ знижується, однак збільшується протяжність областей гомогенності впорядкованої структури типу пірохлору (Ру) [288–291].

В цілому розчинність оксидів Ln_2O_3 в M-HfO₂ (M-ZrO₂) та T-ZrO₂ (T-HfO₂) не перевищує відповідно 2 та 5 % за мольною часткою. Додавання Ln_2O_3 знижує температуру перетворень T \leftrightarrow M та F \leftrightarrow T. Параметри елементарних комірок T- $Ln_xM_{1-x}O_{2-\delta}$ та M- $Ln_xM_{1-x}O_{2-\delta}$ зі зменшенням rLn^{3+} також стають меншими, однак кут моноклінальності (параметр β) при цьому збільшується.

Розчинність ZrO₂ і HfO₂ в A- Ln_2O_3 (B- Ln_2O_3) невелика – значно більшою є протяжність твердих розчинів на основі кубічної С-модифікації Ln_2O_3 [185], але найбільшими за протяжністю та температурною стабільністю в системах ZrO₂– Ln_2O_3 та HfO₂– Ln_2O_3 є тверді розчини зі структурою типу флюориту. Температури існування твердих розчинів на основі різних модифікацій Ln_2O_3 знижуються зі збільшенням частки діоксидів цирконію або гафнію [185,271,272].

1.4.1. Діаграми стану систем ZrO₂-La₂O₃ та HfO₂-La₂O₃

Фазові рівноваги в системі діоксиду цирконію з оксидом лантану досліджено в [270,272,277–279,289,293–304], оптимізацію за термохімічними розрахунками виконано в [272,279,298–304]. Достовірним прийнятно вважати [278], в якому систему ZrO₂–La₂O₃ досліджено з використанням методів термічного аналізу та високотемпературної рентгенівської дифрактометрії в широкому температурному та концентраційному інтервалах (*puc. 1.12*).

На кривій ліквідусу присутні дві точки евтектики (26 % xLa_2O_3 , 2220 °C; 62,5 % xLa_2O_3 , 2030 °C), між якими знаходиться дистектична точка – цирконат лантану Ру-

La₂Zr₂O₇ плавиться конгруентно при 2280 °C. При підвищенні температури область гомогенності впорядкованої структури типу пірохлору Ру розширюється. Кубічний твердий розчин зі структурою типу флюориту в точці з координатами (7 % xLa₂O₃, 1950 °C) зазнає евтектоїдного розпаду на гетерогенні області твердих розчинів F+T та F+Py. Протяжність області гомогенності гексагональної фази складає 15 % xZrO₂ при 1700 °C [278]. Евтектоїдне перетворення T \leftrightarrow M+Py в системі ZrO₂–La₂O₃ проходить при 1110 °C [270]. Координати нонваріантних реакцій в системі ZrO₂–La₂O₃ представлено в *табл. 1.12*.

Рисунок 1.12 – Діаграма стану системи ZrO₂–La₂O₃ [278]

Дослідження фазових рівноваг в системі діоксиду гафнію з оксидом лантану проведено [266,277,280,296,301,305–319]. Достовірним прийнятно вважати [309] (*рис. 1.13*). Дані [305,309] повністю узгоджуються для інтервалу концентрацій $0 \sim 33,3 \% x La_2O_3$ – відмінності в решті зумовлені переглядом ділянки високих концентрацій La₂O₃ в [307].

Deservite	T	Координа	ти точок	Π	
Реакція	ТИП	<i>x</i> La ₂ O ₃ , %	t, °C	Джерело	Примітки
$T \leftrightarrow M + Py$	евтектоїд	0,75	1110	[270]	
$F \leftrightarrow T + Py$	евтектоїд	7 6,46	1950 1875	[278] [303]	ТО
$L \leftrightarrow F + Py$	евтектика	26 24,68	2220 2267	[278] [303]	ТО
$L \leftrightarrow Py$	дистектика	33,33	2295 ± 10	[304]	
$L \leftrightarrow Py + X$	евтектика	62,5	2030 1980	[278] [299]	якщо C ₂ – Ру
		63,57	2012	[303]	ТО
$X \leftrightarrow Py + H$	евтектоїд	72 78,04	1900 1908	[278] [303]	ТО
$H \leftrightarrow Py + A$	евтектоїд	84,12	1766	[303]	ТО

Таблиця 1.12 – Нонваріантні реакції в системі ZrO₂-La₂O₃

Рисунок 1.13 – Діаграма стану системи HfO₂–La₂O₃ [309]

На кривій ліквідусу присутні дві евтектичні точки (23 % xLa_2O_3 , 2330 °C; 65 % xLa_2O_3 , 2070 °C) та точка дистектики – гафнат лантану Py-La₂Hf₂O₇ конгруентно плавиться при 2420 °C. За вищих температур область гомогенності впорядкованої структури типу пірохлору розширюється. Твердий розчин з флюоритоподібною структурою зазнає евтектоїдного розпаду в точці з координатами (7,5 % xLa_2O_3 , 2100 °C) на гетерогенні області з твердими розчинами F+T та F+Py. Евтектоїдне перетворення T \leftrightarrow M+Py в даній системі проходить при 1770 °C. Гексагональна структура оксиду лантану при 1700 °C розчиняє до 8 % $xHfO_2$ [309]. Координати нонваріантних взаємодій в системі HfO₂–La₂O₃ представлено в *табл. 1.13*.

Decurrie	T	Координати точок		Пинатала	Trans diama
Реакція	ТИП	<i>x</i> La ₂ O ₃ , %	t, °C	Джерела	примітки
$T \leftrightarrow M + Py$	евтектоїд	3	1770 ± 10	[308,309]	
$F \leftrightarrow T + Py$	евтектоїд	7,5 7,2	$\begin{array}{c} 2100\pm20\\ 2107 \end{array}$	[309] [314]	ТО
$L \leftrightarrow F + Py$	евтектика	24 23 20,4	$2250 \\ 2330 \pm 25 \\ 2343$	[305] [309] [314]	ТО
$L \leftrightarrow Py$	дистектика	33,33	2420	[309,310]	
$L \leftrightarrow Py + X$	евтектика	65	2150 2070	[305] [309]	якщо X – А
		65,9	2061	[314]	ТО
$X \leftrightarrow \mathbf{P} \mathbf{y} + \mathbf{H}$	евтектоїд	87 83,1	$\begin{array}{r} 1960\pm20\\ 1954 \end{array}$	[309] [314]	
$H \leftrightarrow Py + A$	евтектоїд	89,5 84,6	1840 ± 20 1842	[309] [314]	ТО

Таблиця 1.13 – Нонваріантні реакції в системі HfO₂–La₂O₃

1.4.2. Діаграми стану систем ZrO₂-Nd₂O₃ та HfO₂-Nd₂O₃

Фазові рівноваги в системі діоксиду цирконію з оксидом неодиму вивчено в [270,272,277–279,288,289,294,295,301,320–331], термохімічні розрахунки виконано в [270,277,327–329]. Достовірними прийнятно вважати [278,331] (*рис. 1.14*).

Рисунок 1.14 – Діаграми стану системи ZrO₂–Nd₂O₃: *a*) [278], *б*) [331]

Крива ліквідусу містить єдину точку евтектики з координатами (70 % xNd_2O_3 , 2115 °C). Цирконат неодиму Py-Nd₂Zr₂O₇ при 2300 °C переходить в структуру типу флюориту. Протяжність області гомогенності A-Nd₂O₃ за мольною часткою складає 10 % при 1950 °C та 5 % при 1400 °C (*puc. 1.14 a*). Евтектоїдна реакція F \leftrightarrow Py+A проходить при 1440 °C [278]. Евтектоїдна реакція T \leftrightarrow M+F – при 880 °C [270]. Результати [278,331] узгоджуються в допустимих для експериментальної похибки межах. Нонваріантні реакції в системі ZrO₂–Nd₂O₃ наведено в *табл. 1.14*.

Дослідження фазових рівноваг в системі діоксиду гафнію з оксидом неодиму проводили в [266,277,280,301,305,307–309,325,332]. Найбільш достовірними за суб'єктивною оцінкою даними є представлені в роботі [309].

Згідно [332], впорядкована структура типу пірохлору при температурі вище 2300 °С переходить в структуру типу флюориту. Обчислена від перших принципів температура 2952 °С переходу Ру \leftrightarrow F [292] вочевидь невірна, оскільки навіть перевищує температуру плавлення діоксиду гафнію (*табл. 1.4*).

46

Decurring		Координати то	Координати точок		The set dimension
Реакція	ТИП	<i>x</i> Nd ₂ O ₃ , %	t, °C	Джерела	примпки
$T \leftrightarrow M + Py$	евтектоїд	1 0,76	880 1032	[270] [331]	ТО
$F \leftrightarrow T + Py$	евтектоїд	13,25 13,43	1214 1198	[272,279] [331]	ТО
F↔Py	конгр. перехід	33,33	2300 2214	[278] [331]	ТО
		50	1440	[278]	
$F \leftrightarrow Py + A$	евтектоїд	53,85 53,6	1490 1476	[331]	ДТА ТО
$L \leftrightarrow F + X$	евтектика	70 71,07	2115 2103	[278] [331]	ТО
$X \leftrightarrow H + F$	евтектоїд	80 83,34	2060 2057	[278] [331]	ТО
$H \leftrightarrow F + A$	евтектоїд		1845 1852	[330]	ДТА TO

Таблиця 1.14 – Нонваріантні реакції в системі ZrO₂–Nd₂O₃

Крива ліквідусу містить єдину точку евтектики з координатами (73 % xNd_2O_3 , 2140 °C). Інконгруентний характер плавлення гафнату неодиму Py-Nd₂Hf₂O₇ при 2450 °C визначено за реакцією перитектичного утворення L+F \leftrightarrow Py (*puc. 1.15*). При підвищенні температури область гомогенності впорядкованої структури типу пірохлору розширюється. Твердий розчин флюоритоподібної структури в точці з координатами (7 % xNd_2O_3 , 1680 °C) зазнає евтектоїдного розпаду на гетерогенні області з твердими розчинами F+M і F+Py. Евтектоїдне перетворення T \leftrightarrow M+F в даній системі проходить при 1750 °C. В гексагональній структурі оксиду неодиму розчиняється до 3 % $xHfO_2$ при 1700 °C [309]. Координати нонваріантних реакцій в системі HfO₂–Nd₂O₃ представлено в *табл. 1.15*.

Рисунок 1.15 – Діаграма стану системи HfO₂–Nd₂O₃ [309]

Таблиця 1.15 – Нонваріантні реакції в системі HfO₂-Nd₂O₃

Deservise Trans		Координати точок		Π	п ·
Реакція	ТИП	<i>x</i> Nd ₂ O ₃ , %	t, °C	Джерела	Примітки
$T \leftrightarrow M + F$	евтектоїд	2,5	1750 ± 10	[309]	
$F \leftrightarrow M + Py$	евтектоїд	~ 7	1680 ± 10	[309,310]	
$L + F \leftrightarrow Py$	перитектика	33,33	2450 ± 25		
$Py + L \leftrightarrow F$	перитектика	52	2280 ± 20	[309]	
$F \leftrightarrow Py + A$	евтектоїд	62	1875 ± 20		
$L \leftrightarrow F + X$	евтектика	73	$\begin{array}{c} 2150\\ 2140\pm20 \end{array}$	[305] [309]	якщо X – А
$X \leftrightarrow F + H$	евтектоїд	91	2110 ± 20	[200]	
$H \leftrightarrow F + A$	евтектоїд	95	2100 ± 20	[309]	

Фазові рівноваги в системі діоксиду цирконію з оксидом самарію вивчали в [266,270,272,277–279,288,289,301,323,325,328,334–341], оптимізацію результатів за термохімічними розрахунками виконано в [272,279,333]. Найбільш достовірними прийнятно вважати [334,337], діаграми стану з яких представлено на *рис. 1.16*.

Рисунок 1.16 – Діаграми стану системи ZrO₂–Sm₂O₃: *a*) [334], *б*) [336,337]

На кривій ліквідусу визначена евтектична точка з координатами (75 % xSm₂O₃, 2190 °C). Перехід цирконату самарію Py-Sm₂Zr₂O₇ в твердий розчин зі структурою типу флюориту проходить при 2025 °C [278]. За даними [335] температура Py \leftrightarrow F становить 1940 °C. Дані щодо протяжності області гомогенності структури типу пірохлору також варіюються – інтервали за молярною часткою оксиду самарію визначені як 30,7–38,8 [334], 29–47 [336,337] та 24–38 [341] % xSm₂O₃ при

1500 °С. Евтектоїдне перетворення $T \leftrightarrow M + F$ проходить при 865 °С [270].

Результати досліджень [334] та [336,337] узгоджуються в припустимих для експериментальної похибки межах. Представлені на *рис. 1.16 а* та *б* діаграми стану є топологічно тотожними. Евтектоїдній взаємодії $F \leftrightarrow Py + B$ відповідає значення 1247 °C [334] або ~ 1350 °C [336,337]. Нонваріантні реакції в системі ZrO₂–Sm₂O₃ наведено в *табл. 1.16*.

Deservite	T	Координати	точок	Π	Π
Реакція	ТИП	$xSm_2O_3, \%$	t, °C	Джерела	Примітки
$T \leftrightarrow M + F$	евтектоїд	1,5 0,65	865 1042	[270] [334]	ТО
$F \leftrightarrow M + Py$	евтектоїд	14,8	842	[334]	ТО
$F \leftrightarrow Py$	конгр. перехід	33,33	2026 1940	[334] [335]	ТО
$F \leftrightarrow Py + B$	евтектоїд	51,85 56	1247 ~1350	[334] [336,337]	ТО
$L \leftrightarrow F + X$	евтектика	75	2190	[270]	
$X \leftrightarrow H + F$	евтектоїд	86	2100	[278]	$C_2 = F$
$H \leftrightarrow F + A$	евтектоїд	90	1979	[334]	ТО
$F + A \leftrightarrow B$	перитектоїд	~ 88 96,3	1900 1908	[278] [334]	$C_2 = F$ TO

Таблиця 1.16 – Нонваріантні реакції в системі ZrO₂–Sm₂O₃

Дослідження фазових рівноваг в системі діоксиду гафнію з оксидом самарію проведено в [266,277,280,301,307,343–346]. Найбільш достовірним прийнятно вважати дослідження [345], діаграму стану з якого представлено на *рис. 1.17*.

Для упорядкованої структури типу пірохлору встановлено існування області гомогенності з протяжністю 22~43 % xSm_2O_3 в діапазоні 1300–2300 °C [344]. Інконгруентний характер плавлення гафнату самарію визначений за реакцією перитектичного утворення L+F \leftrightarrow Py. Крива ліквідусу містить евтектичну точку з координатами (74 % xSm_2O_3 , 2240 °C). Евтектоїдному перетворенню T \leftrightarrow M+F відповідає значення температури 1750 °C. Моноклінна структура оксиду самарію В-Sm₂O₃ утворює твердий розчин 0–4 % $xHfO_2$ при 1700 °C [345]. Нонваріантні

реакції в системі HfO₂-Sm₂O₃ представлено в табл. 1.17.

Рисунок 1.17 – Діаграма стану системи HfO₂–Sm₂O₃ [345]

Deservit	T	Координати точок		Панала	Панціани	
Реакція	ТИП	$xSm_2O_3, \%$	t, °C	Джерело	Примітки	
$T \leftrightarrow M + F$	евтектоїд	~ 3	1750 ± 20	[345]		
$F \leftrightarrow M + Py$	евтектоїд	~ 15	~ 750	_	апроксимація [348]	
$L + F \leftrightarrow Py$	перитектика	33,33	2550 ± 25	[245]		
$Py+L \leftrightarrow F$	перитектика	46	2340 ± 25			
$F \leftrightarrow Py + C$	евтектоїд	~ 55	~ 1000	_	апроксимація [348]	
$L \leftrightarrow F + X$	евтектика	74	2240 ± 20	[345]		
$F + B \leftrightarrow C$	перитектоїд	~ 85	~ 1050	[277]		
$X \leftrightarrow F + H$	евтектоїд	92	2200 ± 20			
$H \leftrightarrow F + A$	евтектоїд	94	2040 ± 20	[344,345]		
$F + A \leftrightarrow B$	перитектоїд	96	1925 ± 20			

Таблиця 1.17 – Нонваріантні реакції в системі HfO₂–Sm₂O₃

1.4.4. Діаграми стану систем ZrO₂-Eu₂O₃ та HfO₂-Eu₂O₃

Дослідження фазових рівноваг в системі діоксиду цирконію з оксидом європію виконано в [214,266,270,274,277,278,301,326,347–350], оптимізацію результатів за термохімічними розрахунками виконано в [350].

Фазові рівноваги в системі діоксиду гафнію з оксидом європію досліджено в [214,266,270,274,277,301,326,351–354].

Достовірними прийнятно вважати дослідження ZrO₂–Eu₂O₃ [274,301] і HfO₂– Eu₂O₃ [275,301], що проводилися за однакових умов при температурі від 1250 °C. Представлені діаграми стану обидвох систем топологічно еквівалентні (*puc. 1.18*). Відмінність їх будови зумовлена різницею температур поліморфних перетворень діоксидів цирконію та гафнію. В системі з діоксидом гафнію область гомогенності впорядкованої структури типу пірохлору (Ру) відносно більш протяжна.

Рисунок 1.18 – Діаграми стану систем: *a*) ZrO₂–Eu₂O₃ [274,301], *б*) HfO₂–Eu₂O₃ [275,301,353]

На кривій ліквідусу діаграми стану системи з діоксидом цирконію за реакцією $L \leftrightarrow \langle F \rangle + \langle X-Eu_2O_3 \rangle$ визначено евтектичну точку з координатами (74 % xEu_2O_3 , 2130 °C). За перитектоїдною реакцією F + B \leftrightarrow C встановлено область існування для твердих розчинів на основі C-Eu₂O₃ (*puc. 1.18 a*). Цирконат європію Eu₂Zr₂O₇ при ~2100 °C переходить в твердий розчин зі структурою типу флюориту [274,301]. З використанням високочутливого ДТА отримано значення температури переходу Ру \leftrightarrow F при 1855 °C [350]. Нонваріантні реакції, що відбуваються в системі ZrO₂– Eu₂O₃ представлено в *табл. 1.18*.

Descrit	T	Координа	ти точок	Π	п .
Реакція	Тип	<i>x</i> Eu ₂ O ₃ , %	t, °C	Джерело	Примітки
$T \leftrightarrow M + F$	евтектоїл	2	850	[270,301]	
		3,48	826	[350]	ТО
$F \leftrightarrow M + Py$	евтектоїд	16,88	639	[550]	10
			~ 2100	[274,301]	
F↔Py	конгр. перехід	33,33	1852 1855	[350]	ТО ДТА
			1720 1780	[326]	РФА ДТА
$F \leftrightarrow Py + C$	евтектоїд	49,86	915	[354]	ТО
		74	2130 ± 20	[274,301]	
$L \leftrightarrow F + X$	евтектика	73,49	2123 2053	[350]	ТО ДТА
		~ 80	~ 1660	[274,301]	
$F + B \leftrightarrow C$	перитектоїд	82,95	1550	[350]	ТО ДТА
$X \leftrightarrow F + H$	евтектоїд	90 85,64	$\begin{array}{r} 2080\pm20\\ 2088 \end{array}$	[274,301] [350]	ТО
$H \leftrightarrow F + A$	евтектоїд	92 88,85	2000 ± 20 2027	[274,301] [350]	ТО
$A \leftrightarrow F + B$	евтектоїд	95 94,91	1920 ± 20 1923	[274,301] [350]	ТО

Таблиця 1.18 – Нонваріантні реакції в системі ZrO₂-Eu₂O₃

Гафнат європію $Eu_2Hf_2O_7$ переходить в структуру типу флюориту лише при досягненні температури ~2400 °С (*рис. 1.18 б*). Перитектоїдна реакція F+B \leftrightarrow C

проходить за відносно нижчої температури ~ 1300 °C [275,301,353]. Оптимізована згідно третього закону термодинаміки діаграма стану системи HfO_2 – Eu_2O_3 [354] суперечить наявним даним досліджень [275,301,351–353], а також поліморфізму оксиду європію (*табл. 1.4, рис. 1.2*). Координати нонваріантних реакції в системі HfO_2 – Eu_2O_3 представлено в *табл. 1.19*.

		Координа	Примітки	
Реакція	Тип	<i>x</i> Eu ₂ O ₃ , %	t, °C	
$T \leftrightarrow M + F$	евтектоїд	2	1750	
$F \leftrightarrow M + Py$	евтектоїд	~ 20	< 1000	апроксимація
$F \leftrightarrow Py$	конгр. перехід	33,33	~ 2400	
$F \leftrightarrow Py + C$	евтектоїд	~ 50	< 1000	апроксимація
$L \leftrightarrow F + X$	евтектика	75	2150 ± 20	
$F + B \leftrightarrow C$	перитектоїд	~ 77,5	~ 1300	
$X \leftrightarrow F + H$	евтектоїд	90	2130 ± 20	
$H \leftrightarrow F + A$	евтектоїд	92	2075 ± 20	
$A \leftrightarrow F + B$	евтектоїд	95	1980 ± 20	

Таблиця 1.19 – Нонваріантні реакції в системі HfO₂–Eu₂O₃ [275,301,353]

1.4.5. Діаграми стану систем ZrO₂-Gd₂O₃ та HfO₂-Gd₂O₃

Фазові рівноваги в системі діоксиду цирконію з оксидом гадолінію досліджено в [266,272,277–279,289,301,323,326,328,337,355–361], оптимізацію за термохімічними розрахунками виконано в [357–359]. Достовірною прийнятно вважати роботу [337] (*рис. 1.19 а*).

На кривій ліквідусу визначена точка евтектики з координатами (77 % xGd₂O₃, 2260 °C) [278]. Перетворення цирконату гадолінію Ру-Gd₂Zr₂O₇ в твердий розчин зі структурою типу флюориту проходить при 1530 °C [289]. Область гомогенності структури типу пірохлору при 1500 °C знаходиться в інтервалі 29–38 % xGd₂O₃.

Протяжність областей гомогенності твердих розчинів $<C-Gd_2O_3 > та <B-Gd_2O_3 > при$ 1500 °C знаходиться в межах 76–92 та 99–100 % xGd_2O_3 . При температурі 1100 °C в C-Gd₂O₃ розчиняється до 9 % $xZrO_2$. Гранична розчинність діоксиду цирконію в B-Gd₂O₃ – 4 % $xZrO_2$ при 2050 °C [337]. Евтектоїдне перетворення T \leftrightarrow M+F проходить при 1142 °C [355]. Представлена в [359] діаграма стану (*puc. 1.19 б*) топологічно тотожна діаграмі стану *puc. 1.19 а* [337]. Евтектоїдній взаємодії F \leftrightarrow Py + C відповідає значення 1125 °C [337,361]. Координати нонваріантних реакцій в системі ZrO₂–Gd₂O₃ представлено в *maбл. 1.20*.

Рисунок 1.19– Діаграми стану системи ZrO₂–Gd₂O₃: *a*) [337], *б*) [359]

Фазові рівноваги в системі діоксиду гафнію з оксидом гадолінію досліджено в [214,266,277,280,301,310,326,345,353,362–365]. Дані фазових полів, особливо при температурі, нижчій від 1600 °С, потребують уточнення. Найбільш достовірним прийнятно вважати дослідження [345] (*рис. 1.20*).

На кривій ліквідусу визначена точка евтектики з координатами (78 % xGd₂O₃,

2310 °C). Перехід гафнату гадолінію Ру-Gd₂Hf₂O₇ в твердий розчин зі структурою типу флюориту відбувається при 2350 °C. Евтектоїдне перетворення $T \leftrightarrow M + F$ проходить при 1760 °C [345]. Координати нонваріантних реакцій в системі HfO₂–Gd₂O₃ представлено в *табл. 1.21*.

Deerwig	Tur	Координат	и точок	Лиороно	Hnu dimu
Реакція	ТИП	$xGd_2O_3, \%$	t, °C	Джерела	примпки
$T \leftrightarrow M + F$	евтектоїд	~2 0,72	~ 1142 1036	[355] [359]	ТО
$F \leftrightarrow Py$	конгр. перехід	33,33	1550	[356,359]	
$F \leftrightarrow Py + C$	евтектоїд	43,45 ~ 47,5	620 1125	[359] [337,359]	ТО
$F + B \leftrightarrow C$	перитектоїд	57,52	1839	[359]	ТО
$L \leftrightarrow F + H$	евтектика	77	2260	[278]	
$C \leftrightarrow B + F$	перитектоїд	83,42	1550	[359]	ТО
$X \leftrightarrow H + F$	евтектоїд	90	2050	[278]	

Таблиця 1.20 – Нонваріантні реакції в системі ZrO₂–Gd₂O₃

Рисунок 1.20 – Діаграма стану системи HfO₂–Gd₂O₃ [345]

Decruyin	Tur	Координати точок			
Реакція	ТИП	<i>x</i> Gd ₂ O ₃ , %	t, °C		
$T \leftrightarrow M + F$	евтектоїд	2,5	1760 ± 20		
$F \leftrightarrow Py$	перехід	33,33	2350 ± 25		
$L \leftrightarrow F + X$	евтектика	78	2310 ± 25		
$X \leftrightarrow F + H$	евтектоїд	93	2280 ± 25		
$H \leftrightarrow F + A$	евтектоїд	95,5	2090 ± 20		
$A \leftrightarrow F + B$	евтектоїд	96	2026 ± 20		

Таблиця 1.21 – Нонваріантні реакції в системі HfO₂–Gd₂O₃ [345]

1.5. Проміжні фази з упорядкованою структурою типу пірохлору в системах $ZrO_2-Ln_2O_3$ та $HfO_2-Ln_2O_3$ (*Ln* = La, Nd, Sm, Eu, Gd)

Широкий діапазон утворення фази зі структурою типу пірохлору в рядах систем $ZrO_2-Ln_2O_3$ та $HfO_2-Ln_2O_3$ пов'язаний із суттєвою різницею значень катіонних радіусів $rLn^{3+}/r(Zr,Hf)^{4+}$ (*табл. 1.2*) [279,282]. При зменшенні даної різниці температурна та концентраційна протяжність фазових полів на основі впорядкованої кубічної структури типу пірохлору (Ру) скорочується. Характер діаграм стану систем $ZrO_2-La_2O_3$ та $HfO_2-La_2O_3$ дистектичний. Гафнати неодиму Nd₂Hf₂O₇ та самарію Sm₂Hf₂O₇ плавляться інконгруентно – водночас цирконати Nd₂Zr₂O₇ та самарію Sm₂Zr₂O₇ при підвищенні температури переходять в твердий розчин зі структурою типу флюориту. Очевидно, що крім умови впорядкування $rRE^{3+}_{Kq=8}/rM^{4+}_{Kq=6} \ge 1,46$, має значення співвідношення тригональних антипризм ZrO₆ (HfO₆) до об'єму елементарної комірки – ентальпія розупорядкування зі збільшенням ефективного іонного радіуса rM^{4+} стрімко зменшується [366,367].

Дослідження [304,313] вказують на те, що цирконати та гафнати РЗЕ сполуками змінного складу, в яких параметр елементарних комірок *а* лінійно змінюється зі зміною співвідношення часток катіонів [296]. Досліджено лінійну залежність для мікротвердості [368] та теплового розширення [369–371] фаз з упорядкованою кубічною структурою типу пірохлору.

В *табл. 1.22* наведено фізичні величини та властивості Ру- $Ln_2M_2O_7$ (де Ln = La, Nd, Sm, Eu, Gd; M = Zr, Hf) – періоди ґратки, температури плавлення, коефіцієнти осьового теплового розширення ($\alpha_a \cdot 10^6$), а також термодинамічні функції (- ΔH°_{298K}) та параметри (S°_{298K}) їх утворення з вихідних оксидів.

Сполука	<i>а</i> (Ру), нм	<i>t</i> пл*, °С	-∆Н° _{298К} , кДж∙моль⁻¹	<i>S</i> ° _{298K} , Дж∙моль ⁻¹ ∙К ⁻¹	$a_{a} \cdot 10^{6}, K^{-1}$	Джерело	Примітки	
1	2	3	4	5	6	7	8	
La ₂ Zr ₂ O ₇	1,0808 1,0837 1,0806 1,0805 1,0831 1,08076	$2160 \\ 2180 \pm 30 \\ 2280 \\ 2340 \\ 2283 \\ 2295 \pm 10$	126,1 110,1 107,3 \pm 5,1	242,26	9,129	[266] [277] [278] [282] [301] [303] [305] [316]	<i>t a</i> _a 25–900 °C TO	
	1,0808	2230 ± 20			10,2			
$\begin{array}{c} La_4Zr_3HfO_{14}\\ La_2ZrHfO_7\\ La_4ZrHf_3O_{14} \end{array}$	1,0800 1,0791 1,0782	$\begin{array}{c} 2270 \pm 20 \\ 2320 \pm 20 \\ 2340 \pm 20 \end{array}$			9,8 9,5 9,1	[296]	<i>t a</i> _a 20–1450 °C	
	1,0774	2350 ± 20			8,7			
La ₂ Hf ₂ O ₇	1,0776 1,0771 1,0776 1,0786 1,07728 1,07709 1,0775	$2287 \\ 2300 \pm 30 \\ 2300 \\ 2420$	107 ± 5	246.9+2	7,85	[266] [277] [282] [305] [313] [316] [317] [318]	<i>t a</i> _a 25–900 °C <i>t a</i> _a 0–1600 °C <i>T a</i> 57–302 K	
	1,0775		114,70±1,72	240,9±2	9~10	[371]	$t a_{\rm a} 25-900 ^{\circ}{\rm C}$	
Nd ₂ Zr ₂ O ₇	1,0668 1,0664	2320	111,0 126,4	260,5	11,72	[266] [112]	<i>t a</i> _a 25–900 °C	
Nd ₂ ZrHfO ₇	1,064788				10,04	[112]	на синхротроні	
Nd ₂ Hf ₂ O ₇	1,0651 1,0648 1,06189	2457	$-\frac{85}{80,04\pm2,89}$	$272,9 \pm 3,0$ $284,3 \pm 0,7$	9,27	[105] [266] [367]	<i>t a</i> _a 25–900 °C	
$\mathrm{Sm}_2\mathrm{Zr}_2\mathrm{O}_7$	1,0594	2350	106,8 $114,9 \pm 1,7$	254,1	10,73	[266] [335]	<i>t a</i> _a 25–900 °C T 60–300 K	

Таблиця 1.22 – ПЕК та деякі з фізичних властивостей Ру-La₂ M_2O_7 (M = Zr, Hf)

1	2	3	4	5	6	7	8
Sm ₂ Hf ₂ O ₇	1,0568 1,05474	2487	82 67,46 ± 3,12	277,9 ± 0,9	9,6 10,6	[107] [266] [367]	T 773 K t a _a 25–900 °C
$Eu_2Zr_2O_7$	1,0554	2350	80 112	247,1	9,347	[266] [372]	<i>t a</i> _a 25–900 °C
$Eu_2Hf_2O_7$	1,0540 1,05034	2462	_ 35,92 ± 5,15	266,5 ± 0,8	10,82	[266] [367]	<i>t a</i> _a 25–900 °C
Gd ₂ Zr ₂ O ₇	1,0528 1,0530	$\begin{array}{c} 2450\\ 2570\pm14 \end{array}$	75,8		11,52 12,48	[266] [364]	<i>t a</i> _a 25–900 °C
Gd ₂ ZrHfO ₇	1,05237				11,05	[112]	на синхротроні
Gd ₂ Hf ₂ O ₇	1,0502 1,0507	2517 2720 ± 20	$41 \\ 48,8 \pm 4,7$		10,40	[266] [313] [364]	<i>t a</i> _a 25–900 °C
	1,04801		$24,37 \pm 5,24$	$223,1 \pm 0,5$		[367]	

Продовження таблиці 1.22

1.6. Потрійні системи ZrO_2 -HfO₂-Ln₂O₃ (Ln = La, Nd, Sm, Eu, Gd)

В літературі є відомості про фазові взаємодії в даних системах, отримані Кнудсенівським високотемпературним (вище 2100 °С) мас-спектрометричним методом [105–112].

Подвійні системи La₂Zr₂O₇–La₂Hf₂O₇ [296] і Gd₂Zr₂O₇–Gd₂Hf₂O₇ [364], що являють собою політермічні перерізи відповідних потрійних систем ZrO₂– HfO₂–La₂O₃ та ZrO₂–HfO₂–Gd₂O₃ – також досліджено тільки при температурах вище 2100 та 1750 °C відповідно.

Фазові рівноваги в потрійних системах ZrO_2 -HfO₂- Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) в цілому не досліджено, відповідних діаграм стану не побудовано.

1.7. Висновки до першого розділу

1. Дослідження фазових взаємодій в системах оксидів ZrO_2 – HfO_2 – Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) становить значний науковий інтерес. Відомості про фазові рівноваги в зазначених потрійних системах в літературі практично відсутні.

2. Аналіз літературних даних щодо будови діаграми стану граничної подвійної системи ZrO₂–HfO₂ свідчить про її системне вивчення.

3. Аналіз літературних даних щодо будови діаграм стану граничних подвійних систем $ZrO_2(HfO_2)-Ln_2O_3$ (Ln = La, Nd, Sm, Eu, Gd) свідчить про відсутність належної уваги до температур нижче 1600 °C. Проте в літературі є координати більшості нонваріантних взаємодій, що визначають будову цих діаграм стану та проходять нижче температури 1600 °C.

4. Дані щодо фазових взаємодій в граничній системі HfO₂–Gd₂O₃, особливо при температурах нижче 1600 °C потребують уточнення границь фазових полів.

2. МЕТОДИКА ДОСЛІДЖЕННЯ

Встановлення рівноваги безпосередньо пов'язано із кінетикою дифузійних процесів і залежить від температури та тривалості її впливу. Через сповільнення катіонної дифузії час встановлення рівноваги зростає експоненційно відносно зниження температури. Крім цього, як зазначено вище, поведінка матеріалів на основі досліджуваних систем при охолодженні більшою мірою спричиняється бездифузійними, аніж рівноважними перетвореннями на зразок евтектоїдного розпаду чи впорядкування. Зважаючи на особливості характеру бездифузійних перетворень, методичний підхід щодо підвищення якості досягнення рівноваги залежить винятково від тривалості термообробки. Ефективний температурний коефіцієнт дифузії для досліджуваних систем становить більше 200 кДж/моль [354], що значно впливає на загальну тривалість та послідовність проведення експерименту. Блок-схему методики вивчення фазових рівноваг в досліджуваних системах, що зображує процедуру експерименту представлено на *рис. 2.1.*

Рисунок 2.1 – Методична блок-схема дослідження фазових рівноваг в системах ZrO_2 – HfO_2 – Ln_2O_3 (*Ln* = La, Nd, Sm, Eu, Gd)

Достовірність результатів дослідження забезпечується застосуванням перевіреного комплексу методів фізико-хімічного аналізу: рентгенофазового аналізу (РФА), сканувальної електронної мікроскопії (СЕМ) та локального рентгеноспектрального аналізу (ЛРСА).

2.1. Характеристика вихідних речовин та метод приготування зразків

Як вихідні використано реактиви стандартних марок – нітратну кислоту (68% HNO₃) XЧ, дигідрати оксонітратів [373] цирконію (99,5% ZrO(NO₃)₂·2H₂O) і гафнію (99,5% HfO(NO₃)₂·2H₂O) ЧДА, оксид гадолінію ОСЧ (99,95% Gd₂O₃) та оксиди лантаноїдів спеціальних марок (ТУ 48-4-523-90) – оксид лантану ЛаО-Л (>99,9% La₂O₃), оксид неодиму HO-Ж (>99,98% Nd₂O₃), оксид самарію СмО-М (>99,5% Sm₂O₃) та оксид європію ЕвО-Ж (>99,98% Eu₂O₃).

Приготуванню наважок оксонітратів цирконію та гафнію передувала стадія гомогенізації та проведення термогравіметричного аналізу з метою визначення вмісту оксидів в оксонітратах цирконію та гафнію. Перед зважуванням оксиди РЗЕ попередньо просушували протягом двох годин в лабораторній муфельній печі при: 120 °C (Gd₂O₃), 200 °C (Sm₂O₃ i Eu₂O₃), 300 °C (Nd₂O₃) та 400 °C (La₂O₃). Хімічний склад зразків визначали для концентраційного інтервалу 1–10 % мольною часткою визначеного компонента системи. Випарювання нітратних розчинів проводили в фарфорових чашах всередині витяжної шафи. Осаджені нітрати розкладали протягом двох годин при 800 °C в муфельній печі з витяжним відводом SNOL.

Одержані шихти гомогенізували в агатовій ступці, після чого пресували в брикети у формі таблеток діаметром 5 мм та висотою 3–5 мм при 10–30 МПа в сталевій прес-формі без використання зв'язуючих речовин. Задля запобігання гідратації перед термообробкою, зразки у формі шихт та брикетів зберігалися в лабораторному ексикаторі з силікагелевим поглиначем.

2.2. Метод термічної обробки

Термічну обробку брикетованих зразків проведено за один або декілька етапів ізотермічного спікання зі швидкістю підйому температури ~3,5 °C/хв. Зразки обробляли в муфельних печах з використанням нагрівачів FeCrAl або MoSi₂. Нагрівачі FeCrAl використовували при температурах до 1250 °C (SNOL 10/1300 LHM01), нагрівачі MoSi₂ – для температур вище 1500 °C (Micropyretics M18-40). Тривалість термообробки брикетованих зразків наведено в *табл. 2.1*.

Таблиця 2.1 – Тривалість (т, год) термообробки зразків систем ZrO₂–HfO₂–Ln₂O₃

Система	1100 °C	1250 °C	1500 °C	1600 °C	1700 °C
ZrO ₂ -HfO ₂ -La ₂ O ₃	τ=11700	τ=4000	$\tau_{1250 \circ C} = 4000$ $\tau_{1500 \circ C} = 80$	_	_
ZrO ₂ -HfO ₂ -Nd ₂ O ₃	τ=8500	_	$\tau_{1100 \circ C} = 8500$ $\tau_{1500 \circ C} = 80$	_	$\tau_{1100 \circ C} = 8500$ $\tau_{1500 \circ C} = 80$ $\tau_{1700 \circ C} = 2$
ZrO ₂ -HfO ₂ -Sm ₂ O ₃	_	_	$\tau_{1100 \ ^{\circ}C} = 8500$ $\tau_{1500 \ ^{\circ}C} = 80$	$\tau_{1100 \circ C} = 2000$ $\tau_{1500 \circ C} = 80$ $\tau_{1600 \circ C} = 10$	_
ZrO ₂ -HfO ₂ -Eu ₂ O ₃	τ=8500	_	$\tau_{1100 ^{\circ}C} = 8500$ $\tau_{1500 ^{\circ}C} = 80$	_	$\tau_{1100 \circ C} = 8500$ $\tau_{1500 \circ C} = 80$ $\tau_{1700 \circ C} = 2$
ZrO ₂ -HfO ₂ -Gd ₂ O ₃	τ=9000	_	$\tau_{1100 \circ C} = 1200$ $\tau_{1500 \circ C} = 80$	$\tau_{1100 \circ C} = 1200$ $\tau_{1500 \circ C} = 80$ $\tau_{1600 \circ C} = 10$	_

Досягнення рівноважного стану визначали за допомогою інтервальної ідентифікації фазового складу зразків [374].

З досягненням рівноваги термообробку зразків припиняли, їх охолодження відбувалося всередині печі.

Після термічної обробки зразки розтирали в агатовій ступці. Надалі вони зберігалися в лабораторному ексикаторі з силікагелевим поглиначем.

2.3. Метод ідентифікації фазового складу

Для ідентифікації фазового складу використовували РФА та дослідження мікроструктури термооброблених зразків.

Для РФА зразки препарували безпосередньо перед його проведенням.

Фазовий склад зразків визначали проведенням рентгенофазового аналізу (РФА) на дифрактометрі ДРОН-З (СиКа–випромінювання, $\lambda = 0,15406$ нм, Niфільтр) в діапазоні вимірювання $15^{\circ} \le 2\theta \le 100^{\circ}$ з кроком сканування $0,05-0,1^{\circ}$ та експозицією 4 с.

Для дослідження та ідентифікації фазового складу використовували базу даних JCPDS-ICDD 1999 від Міжнародного центру дифракційних даних (https://www.icdd.com).

Структурні параметри елементарних комірок обчислювали за методом найменших квадратів за допомогою прикладного програмного забезпечення LATTIC [375,376] з гарантованою точністю $\pm 0,0002$ нм, $\pm 0,0003$ нм, $\pm 0,0005$ нм та $\pm 0,0007$ нм — відповідно для ізометричних та ортогональних проекцій, а також для моноклінної та триклінної сингоній. Об'єми елементарних комірок різних симетрій обчислювали за рівняннями з *табл. 2.2*.

Симетрія	Об'єм елементарної комірки
кубічна	$V = a^3$
тетрагональна	$V = a^2 \cdot c$
гексагональна (тригональна)	$V = a^2 \cdot c \cdot \sin(60^\circ)$
моноклінна	$V = a \cdot b \cdot c \cdot \sin(\beta)$

Таблиця 2.2 – Об'єми елементарних комірок відповідних симетрій [377]

Відсоткову частку кубічної структури в зразках із гетерогенних областей F+M та Py+M визначали за рівнянням, в якому: $I^{(111)}_{C}$ – інтегральна інтенсивність дифракційного піку (111) кубічної структури типу флюориту (пірохлору), а $I^{(11-1)}_{M}$ –

інтегральна інтенсивність дифракційного піку (11-1) моноклінної структури.

$$ωF = 100 \cdot I^{(111)}_{F} / (I^{(111)}_{F} + I^{(11-1)}_{M})$$
 (Рівняння 2.1)

2.4. Методи дослідження структури

Дослідження мікроструктури зразків проводили методами сканувальної електронної мікроскопії (СЕМ) та локального рентгеноспектрального аналізу (ЛРСА) на детекторах зворотно-розсіяних (ЗРЕ, ВЅЕ) та вторинних (ВЕ, ЅЕ) електронів з шліфованих поверхонь зразків на електронних мікроскопах JEOL JCXA-733 та Tescan Mira 3 LMU.

Після термообробки та перед проведенням мікроструктурних досліджень зразки полірували на шліфувально-полірувальному верстаті Buehler EcoMet 250 Pro. Відполіровані зразки напилювали тонким шаром золота після термічного травлення.

3. ФАЗОВІ РІВНОВАГИ В СИСТЕМІ ZrO₂-HfO₂-La₂O₃

Фазові рівноваги в потрійній системі ZrO_2 –HfO₂–La₂O₃ досліджено після термообробки зразків на повітрі при температурах 1100, 1250 та 1500 °C. Зразки підготовлено з інтервалом 5 % (за мольною часткою) вздовж променів La₂O₃(ZrO₂–HfO₂), ZrO₂(HfO₂–La₂O₃), ZrO₂(85 HfO₂–15 La₂O₃) концентраційного трикутника. За отриманими результатами побудовано ізотермічні перерізи діаграми стану системи ZrO₂–HfO₂–La₂O₃ при 1500, 1250 та 1100 °C.

3.1. Ізотермічний переріз діаграми стану системи ZrO₂-HfO₂-La₂O₃ при 1500 °C

Хімічний та фазовий склад, а також параметри елементарних комірок після термообробки зразків при 1500 °С наведено в *табл. 3.1.* При даній температурі утворюються тверді розчини на основі модифікацій A-La₂O₃, T-ZrO₂, M-HfO₂, а також фази з упорядкованою кубічною структурою типу пірохлору Py-La₂Hf₂O₇ (Py-La₂Zr₂O₇). Для визначення меж фазових полів, крім даних про фазовий склад зразків використано концентраційну залежність параметра елементарних комірок твердих розчинів з упорядкованою структурою типу пірохлору (*puc. 3.1*).

Побудований ізотермічний переріз дослідженої системи при 1500 °С (*рис. 3.2*) характеризується чотирма однофазними (A, Py, T, M), чотирма двофазними (A+Py, Py+T, Py+M, T+M) та однією трифазною Py+T+M областями.

Область гомогенності на основі гексагональної модифікації оксиду лантану A-La₂O₃ має характерну опукло увігнуту до вершини HfO₂ трикутника форму. Межі зазначеної області визначені за граничним складом твердого розчину 5 ZrO₂–5 HfO₂– 90 La₂O₃ і двофазним складом A+Py (7,5 ZrO₂–7,5 HfO₂–85 La₂O₃). Необхідно зауважити, що за визначеним режимом термообробки – при охолодженні зразків нижче 500 °C оксид лантану поглинає вологу з повітря та гідратує, утворюючи фазу на основі гексагональної модифікації гідроксиду лантану A*-La(OH)₃. Утворення даної фази спостерігається в діапазоні складів з молярною концентрацією La₂O₃ вище 35~40 %.

Хімічний склад (х), %				Параметри елементарних комірок, нм							
7.0	1100	LO	Фазовий склад	</th <th><i>H</i>></th> <th>Ру</th> <th colspan="5"><m></m></th>	<i>H</i> >	Ру	<m></m>				
ZrO_2	HfO ₂	La_2O_3	СКЛИД	a	С	а	а	b	С	β,°	
1	2	3	4	5	6	7	8	9	10	11	
			промінь 2	ZrO ₂ (Hf	O_2 – La_2O) ₃)					
0	50	50	<a*>+Py</a*>	0,6503	0,3846	1,0767		_	_	_	
5	47,5	47,5	<a*>+Py</a*>	0,6474	0,3844	1,0749	_	_	_	_	
10	45	45	<a*>+Py</a*>	0,6498	0,3837	1,0764	_	_	_	_	
30	35	35	Ру	_	_	1,0742	_	_	_	_	
35	32,5	32,5	Ру	_	_	1,0750	-	_	_	_	
40	30	30	Py+ <m></m>	_	_	1,0769	_	_	_	_	
45	27,5	27,5	Py+ <t**>+<m></m></t**>	_	_	1,0772	0,5176	0,5922	0,4532	100,4	
50	25	25	Py+ <t**></t**>	0,6516	0,3841	_	_	_	_	_	
55	22,5	22,5	Py+ <t**></t**>	0,6530	0,3852	1,0782	_	_	_	_	
60	0	0	Py+ <t**></t**>	0,6520	0,3847	1,0779	_	_	_	_	
65	17,5	17,5	Py+ <t**></t**>	0,6529	0,3850	1,0779	-	_	_	_	
70	15	15	Py+ <t**></t**>	0,6512	0,3842	1,0774	_	_	_	_	
75	12,5	12,5	Py+ <t**></t**>	0,6511	0,3838	1,0770	_	_	_	_	
80	0	0	Py+ <t**></t**>	0,6524	0,3841	1,0769	_	_	_	_	
85	7,5	7,5	Py+ <t**></t**>	0,6511	0,3842	1,0771	_	_	_	_	
95	2,5	2,5	Py+ <t**></t**>	0,6499	0,3853	1,0765	_	_	_	_	
		1	промінь]	$La_2O_3(Z)$	rO ₂ –HfC	D ₂)				1	
5	5	90	<a*></a*>	0,6516	0,3841	_	_	_	_	_	
7,5	7,5	85	<a*>+Py</a*>	0,6530	0,3852	1,0782	_	_	_	_	
10	10	80	<a*>+Py</a*>	0,6520	0,3847	1,0779	_	_	_	_	
12,5	12,5	75	<a*>+Py</a*>	0,6529	0,3850	1,0779	_	_	_	_	
15	15	70	<a*>+Py</a*>	0,6512	0,3842	1,0774	_	_	_	_	
17,5	17,5	65	<a*>+Py</a*>	0,6511	0,3838	1,0770	_	_	_	_	

Таблиця 3.1 – Хімічний та фазовий склад зразків системи ZrO₂–HfO₂–La₂O₃ після термічної обробки при 1500 °С (за даними РФА та СЕМ)

Продовження таблиці 3.1

1	2	3	4	5	6	7	8	9	10	11	
20	20	60	<a*>+Py</a*>	0,6524	0,3841	1,0769	_	_	_	_	
22,5	22,5	55	<a*>+Py</a*>	0,6511	0,3842	1,0771	_	_	_	_	
25	25	50	<a*>+Py</a*>	0,6499	0,3853	1,0765	_	_	_	_	
27,5	27,5	45	<a*>+Py</a*>	0,6515	0,3837	1,0763	_	_	_	_	
32,5	32,5	35	Ру	_	_	1,0759	_	_	_	_	
35	35	30	Py+ <m></m>	-	_	1,0758	_	_	_	_	
40	40	20	Py+ <t**>+<m></m></t**>	-	_	1,0756	_	_	_	_	
42,5	42,5	15	Py+ <t**>+<m></m></t**>	-	_	1,0757	0,5081	0,5107	0,5216	97,74	
45	45	10	Py+ <t**>+<m></m></t**>	_	_	1,0756	0,5077	0,5095	0,5237	97,37	
47,5	47,5	5	Py+ <t**>+<m></m></t**>	_	_	1,0757	0,5077	0,5093	0,5243	97,34	
промінь ZrO ₂ (85 HfO ₂ -15 La ₂ O ₃)											
5	80,75	14,25	Py+ <m></m>	_	_	1,0772	0,5084	0,5087	0,5237	97,69	
10	76,5	13,5	Py+ <m></m>	_	_	1,0761	0,5080	0,5079	0,5227	97,78	
15	72,25	12,5	Py+ <m></m>	-	_	1,0765	0,5078	0,5082	0,5232	97,70	
20	68	12	Py+ <m></m>	_	_	1,0762	0,5086	0,5247	0,5207	98,58	
25	63,75	11,25	Py+ <m></m>	-	_	1,0768	0,5100	0,5255	0,5221	98,61	
30	59,5	10,5	Py+ <m></m>	_	_	1,0766	0,5097	0,5258	0,5218	98,57	
35	55,25	9,75	Py+ <m></m>	_	_	1,0767	0,5093	0,5248	0,5218	98,45	
40	51	9	Py+ <t**>+<m></m></t**>	_	_	1,0757	0,5096	0,5254	0,5214	98,58	
45	46,75	8,25	Py+ <t**>+<m></m></t**>	-	_	1,0771	0,5094	0,5258	0,5222	98,28	
50	42,5	7,5	Py+ <t**>+<m></m></t**>	_	_	1,0778	0,5097	0,5261	0,5232	98,24	
55	38,25	6,75	Py+ <t**>+<m></m></t**>	_	_	1,0776	0,5096	0,5254	0,5217	98,54	
60	34	6	Py+ <t**>+<m></m></t**>	_	_	1,0763	0,5096	0,5253	0,5226	98,29	
65	29,75	5,25	Py+ <t**></t**>	_	_	1,0799	0,5087	0,5097	0,5245	97,44	
70	25,5	4,5	Py+ <t**></t**>	_	_	1,0799	0,5088	0,5102	0,5254	97,43	
75	21	4	Py+ <t**></t**>	_	_	_	0,5094	0,5101	0,5246	97,58	
80	17	3	Py+ <t**></t**>	_	_	_	0,5089	0,5100	0,5241	97,52	

Примітки: <A*> – А-La₂O₃ гідратує до А-La(OH)₃; <T**> – тетрагональна модифікація не гартується за обраного режиму термообробки, тому досліджено ознаки її утворення

Рисунок 3.1 – Концентраційна залежність ПЕК *а* твердих розчинів зі структурою типу пірохлору на промені La₂O₃(ZrO₂–HfO₂) ізотермічного перерізу системи ZrO₂–HfO₂–La₂O₃ при 1500 °C

Рисунок 3.2 – Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂–La₂O₃ при 1500 °C

69

В ході даного дослідження встановлено, що в потрійній системі ZrO₂–HfO₂– La₂O₃ параметри елементарних комірок кубічних твердих розчинів зі структурою типу пірохлору змінюються лінійно – відповідно до правила Веґарда [378,379].

Встановлено, що вздовж променя La₂O₃(ZrO₂–HfO₂) параметр елементарних комірок *а* твердих розчинів зі структурою типу пірохлору зменшується з 1,0782 нм для гетерогенного складу A+Py (7,5 ZrO₂–7,5 HfO₂–85 La₂O₃) до 1,0759 нм для граничного складу твердого розчину, а також до 1,0758 нм для двофазного складу Py+M (35 ZrO₂–35 HfO₂–30 La₂O₃) та до 1,0756 нм для трифазного складу Py+T+M (40 ZrO₂–40 HfO₂–20 La₂O₃). З отриманих даних слідує, що зі зменшенням кількості іонів La³⁺ відбувається зменшення параметрів елементарних комірок.

Вздовж граничної подвійної системи ZrO₂–HfO₂ утворюються вузькі області гомогенності на основі модифікацій T-ZrO₂ та M-HfO₂ – розчинність оксиду лантану в зазначених кристалічних ґратках не перевищує 1~2 % за мольною часткою.

На рис. 3.3 представлено мікроструктури зразків з різних фазових областей дослідженого ізотермічного перерізу при 1500 °С. На рис. 3.3 а представлено 100 % М-HfO₂ – його мікроструктура примітна утворенням зерен характерної морфології розміром 2,5~15 µм. Слід зазначити, що всі зразки з вмістом М-HfO₂, мають зерна зазначеної форми, однак розмір зерен змінюється залежно від хімічного складу. Мікроструктура зразка з двофазної області Ру+М характеризується двома структурними складовими, що чітко відрізняються за контрастом – сіра матриця М-HfO₂ містить дрібні світлі включення кубічної фази (*рис. 3.3 б*). Мікроструктури зразка 45 ZrO₂-27,5 HfO₂-27,5 La₂O₃, що відповідає трифазній області Ру+Т+М, показано на рис. 3.3 в, 3.4 а. Вони характеризуються наявністю трьох структурних компонентів, що різняться за морфологією та контрастом. Кількісний ЛРСА матриці в спектральних точках S2, S3 показує середній вміст 25 та 11 ат.% Zr і Hf, відповідно – що свідчить про тетрагональну структуру T-ZrO₂ (*puc.* 3.4 б). Світлу структурну складову ідентифіковано як M-HfO₂ – кількісний ЛРСА точкок S4, S5 демонструє вміст ~14 ат.% Hf, ~9 ат.% Zr i ~13 ат.% La. Якісний ЛРСА темної структурної складової в точці S1 показує наявність винятково Zr та La – її ідентифіковано як твердий розчин фази з упорядкованою кубічною структурою типу пірохлору.

Мікроструктуру двофазного зразка М+Т представлено на *рис. 3.3 ж*.

Стабілізації тетрагональної структури діоксиду цирконію не спостерігається, оскільки РФА проведено при кімнатній температурі. На дифрактограмах виявлені піки, що відповідають структурі M-ZrO₂. Даний факт ускладнює визначення меж областей, що містять T-ZrO₂ – з огляду на це, визначення меж трифазної області Py+T+M також потребує результатів досліджень мікроструктури. Слід зауважити, що темніша структурна складова T** в зазначених мікроструктурах відзначається розтріскуванням та викришуванням зерен, що відбуваються під час полірування зразків та є наслідком тетрагонально-моноклінного переходу T \rightarrow M (*puc. 3.3 в–и*).

a - x2000, M (100 HfO₂); $\delta - x2000$, Py+<M> (35 ZrO₂-35 HfO₂-30 La₂O₃): світла Ру, темна <M>, чорні пори; a - x400, Py+<T**>+<M> (45 ZrO₂-27,5 HfO₂-27,5 La₂O₃): світла Ру, темна <T**>, сіра <M>, чорні пори; z - x2000, Py+<T**>+<M> (45 ZrO₂-27,5 HfO₂-27,5 HfO₂-27,5 HfO₂-27,5 La₂O₃); $\delta - x400$, Py+<T**>+<M> (45 ZrO₂-46,75 HfO₂-8,25 La₂O₃); e - x2000, Py+<T**>+<M> (45 ZrO₂-46,75 HfO₂-8,25 La₂O₃); e - x2000, Py+<T**>+<M> (45 ZrO₂-46,75 HfO₂-8,25 La₂O₃); c - x2000, Py+<T**> (80 ZrO₂-10 HfO₂-10 La₂O₃): світла Ру, темна <T**>, чорні пори; u - x400, Py+<T**> (95 ZrO₂-27,5 HfO₂-2,5 La₂O₃): зерна – <T-ZrO₂>

Рисунок 3.3 – Мікроструктури зразків системи ZrO₂–HfO₂–La₂O₃ після термічної обробки при 1500 °C, CEM-3PE (SEM-BSE)

ж

Рисунок 3.3, аркуш 2

Рисунок 3.4 – мікроструктура (*a*) та спектр в локальній точці S2 (*б*) зразка зі складом 45 ZrO₂–27,5 HfO₂–27,5 La₂O₃ після термообробки при 1500 °C, CEM-ЗРЕ та ЛРСА (SEM-BSE, EDXS)

3.2. Ізотермічний переріз діаграми стану системи ZrO2-HfO2-La2O3 при 1250 °C

Хімічний та фазовий склад, а також параметри елементарних комірок після термообробки зразків при 1250 °C наведено в *табл. 3.2*. При даній температурі утворюються тверді розчини на основі поліморфних модифікацій A-Nd₂O₃, T-ZrO₂, M-HfO₂, а також фази з упорядкованою структурою типу пірохлору Py-La₂Hf₂O₇ (Py-La₂Zr₂O₇).

Для визначення меж фазових полів, крім даних про фазовий склад зразків використано концентраційну залежність параметра елементарних комірок твердих розчинів з упорядкованою структурою типу пірохлору (*puc. 3.5*).

Встановлено, що будова ізотермічного перерізу потрійної системи ZrO_2 –HfO₂– La₂O₃ при температурі 1250 °C (*puc.3.6*) подібна до будови вищенаведеного ізотермічного перерізу при 1500 °C. Відмінності їх будови пов'язані з будовою граничної системи ZrO_2 –HfO₂, в якій при пониженні температури відбувається поліморфне перетворення T \rightarrow M. Як наслідок – трифазна область Ру+T+M при 1250 °C зміщується до вершини ZrO₂ трикутника.

Таблиця 3.2 – Хімічний та фазовий склад зразків системи ZrO₂–HfO₂–La₂O₃ після термічної обробки при 1250 °C (за даними РФА та СЕМ)

Хімічн	ний скл	ад (х), %		Параметри елементарних комірок, нм							
7-0	UITO	L o O	Фазовий склал	</td <td>/></td> <td>Ру</td> <td></td> <td><<u>N</u></td> <td><u>/</u>></td> <td></td>	/>	Ру		< <u>N</u>	<u>/</u> >		
ZrO_2	HIO_2	La_2O_3	onnag	а	С	а	a	b	С	β,°	
1	2	3	4	5	6	7	8	9	10	11	
			пром	інь La ₂ O ₃	(ZrO ₂ -Ht	fO ₂)					
5	5	90	<a*></a*>	0,6516	0,3841	_	_	_	_	_	
7,5	7,5	85	<a*>+Py</a*>	0,6510	0,3843	_	_	_	_	_	
10	10	80	<a*>+Py</a*>	0,6525	0,3841	1,0696	_	_	_	_	
12,5	12,5	75	<a*>+Py</a*>	0,6510	0,3852	1,0742	_	_	_	_	
15	15	70	<a*>+Py</a*>	0,6517	0,3836	1,0742	_	_	_	_	
17,5	17,5	65	<a*>+Py</a*>	0,6511	0,3839	1,0754	_	_	_	_	
22,5	22,5	55	<a*>+Py</a*>	0,6509	0,3836	1,0756	_	_	_	_	
25	25	50	<a*>+Py</a*>	0,6514	0,3840	1,0763	_	_	_	_	
27,5	27,5	45	<a*>+Py</a*>	0,6519	0,3842	1,0769	_	_	_	_	
30	30	40	<a*>+Py</a*>	0,6514	0,3839	1,0768	_	_	_	_	
32,5	32,5	35	Ру	_	_	1,0769	_	_	_	_	
			пром	інь ZrO ₂ (HfO ₂ –La	₂ O ₃)	1	1			
0	50	50	<a*>+Py</a*>	0,6513	0,3846	1,0762	_	_	_	_	
5	47,5	47,5	<a*>+Py</a*>	0,6498	0,3838	1,0761	_	_	_	_	
10	45	45	<a*>+Py</a*>	_	_	1,0763	_	_	_	_	
30	35	35	Ру	_	_	1,0765	_	_	_	_	
35	32,5	32,5	Ру	_	_	1,0767	_	_	_	_	
40	30	30	Py+ <m></m>	_	_	1,0769	0,5224	0,5076	0,5444	91,47	
45	27,5	27,5	Py+ <m></m>	_	_	1,0770	0,5117	0,5216	0,5206	99,03	
50	25	25	Py+ <m></m>	_	_	1,0772	0,5077	0,5239	0,5467	98,14	
65	17,5	17,5	Py+ <t**>+<m></m></t**>	_	_	1,0774	0,5073	0,5241	0,5466	98,21	
70	15	15	Py+ <t**>+<m></m></t**>	_	_	1,0773	0,5122	0,5234	0,5465	97,40	
75	12,5	12,5	Py+ <t**></t**>	_	_	1,0784	0,5119	0,5225	0,5466	97,31	
80	10	10	Py+ <t**></t**>	_	_	1,0779	0,5123	0,5225	0,5467	97,44	
85	7,5	7,5	Py+ <t**></t**>	_	_	1,0783	0,5131	0,5232	0,5470	97,39	
90	5	5	Py+ <t**></t**>	_	_	1,0787	0,5122	0,5231	0,5473	97,28	
95	2,5	2,5	Py+ <t**></t**>	_	_	1,0791	0,5130	0,5230	0,5472	97,32	

1	2	3	4	5	6	7	8	9	10	11
			промін	њ ZrO ₂ (8	5 HfO ₂ -	15 La ₂ O ₃)			
0	85	15	Py+ <m></m>	_	_	1,0758	0,5792	0,5186	0,5192	87,06
5	80,75	14,25	Py+ <m></m>	_	_	1,0764	0,5807	0,5195	0,5192	87,10
10	76,5	13,5	Py+ <m></m>	_	_	1,0760	0,5789	0,5188	0,5193	87,25
15	72,25	12,5	Py+ <m></m>	_	_	1,0756	0,5795	0,5191	0,5192	86,99
20	68	12	Py+ <m></m>	_	_	1,0755	0,5803	0,5191	0,5187	86,89
25	63,75	11,25	Py+ <m></m>	_	_	1,0762	0,5822	0,5210	0,5183	86,69
30	59,5	10,5	Py+ <m></m>	_	_	1,0765	0,5806	0,5200	0,5198	86,94
35	55,25	9,75	Py+ <m></m>	_	_	1,0760	0,5811	0,5203	0,5194	86,90
40	51	9	Py+ <m></m>	_	_	1,0769	0,5832	0,5217	0,5185	86,53
45	46,75	8,25	Py+ <m></m>	_	_	1,0770	0,5807	0,5205	0,5213	87,07
55	38,25	38,25	Py+ <m></m>	_	_	1,0774	0,5825	0,5206	0,5202	86,96
60	34	6	Py+ <m></m>	_	_	1,0776	0,5828	0,5205	0,5198	86,99
70	25,5	4,5	Py+ <m></m>	_	_	1,0778	0,5831	0,5205	0,5200	86,92
75	21	4	Py+ <t**>+<m></m></t**>	_	_	1,0780	0,5093	0,5003	0,5465	95,96
80	17	3	Py+ <t**>+<m></m></t**>	_	_	1,0780	0,4979	0,5134	0,5480	96,83

Продовження таблиці 3.2

Примітки: <A*> – А-La₂O₃ гідратує до А-La(OH)₃; <T**> – тетрагональна модифікація не гартується за обраного режиму термообробки, тому досліджено ознаки її утворення

Рисунок 3.5 – Концентраційна залежність ПЕК *а* твердих розчинів зі структурою типу пірохлору на промені ZrO₂(HfO₂–La₂O₃) ізотермічного перерізу системи ZrO₂–HfO₂–La₂O₃ при 1250 °C

Рисунок 3.6 – Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂–La₂O₃ при 1250 °C

В даному ізотермічному перерізі утворюється вузька область гомогенності на основі тетрагональної Т-модифікації діоксиду цирконію. Вище зазначено, що при використаного режиму термообробки стабілізації зазначеної фази не відбувається – тому на дифрактограмах спостерігаються піки, що відповідають структурі M-ZrO₂. Даний факт ускладнює визначення меж областей, які містять T-ZrO₂. Визначення меж трифазної області Ру+T+M проведено з використанням концентраційної залежності параметру елементарних комірок *a* кубічних твердих розчинів зі структурою типу пірохлору (*рис. 3.5*) та досліджень мікроструктури (*рис. 3.7 д, е*).

Область гомогенності моноклінного твердого розчину на основі М-HfO₂ простягається від 20 до 100 % *x*HfO₂ вздовж граничної подвійної системи ZrO₂–HfO₂ (*poзділ 1.3, puc. 9 б*). Параметри елементарних комірок твердих розчинів на основі М-HfO₂ змінюються від a = 0,5792 нм, b = 0,5186 нм, c = 0,5192 нм, $\beta = 87,06^{\circ}$ для двокомпонентного двофазного складу Ру+М (85 HfO₂–15 La₂O₃) до a = 0,5093 нм, b = 0,5003 нм, c = 0,5465 нм, $\beta = 95,96^{\circ}$ для

76

трифазного складу Ру+Т+М (75 ZrO₂-21 HfO₂-4 La₂O₃).

Область гомогенності твердих розчинів з упорядкованою структурою типу пірохлору (Ру) порівняно з ізотермічним перерізом даної системи при 1500 °C звужується несуттєво.

a – x400, Ру (30 ZrO₂–35 HfO₂–35 La₂O₃); *б* – x2000, Ру+<М> (50 ZrO₂–25 HfO₂–25 La₂O₃): світла <М>, темна Ру, чорні пори; *в* – x400, Ру+<М> (20 ZrO₂–68 HfO₂–12 La₂O₃): світла <М>, темна Ру, чорні пори; *г* – x400, Ру+<Т**>+<М> (65 ZrO₂–17,5 HfO₂–17,5 La₂O₃): світла <М>, темна Ру, "викришена" <T**>, чорні пори; *д* – x2000, Ру+<T**>+<М> (65 ZrO₂–17,5 HfO₂–17,5 La₂O₃); *е* – x400, Ру+<T**> (80 ZrO₂–10 HfO₂–10 La₂O₃): світла Ру, темна <T**>, чорні пори; *ж* – x400, Ру+<T**> (90 ZrO₂–5 HfO₂–5 La₂O₃); *и* – x2000 Ру+<T**> (95 ZrO₂–2,5 HfO₂–2,5 La₂O₃): зерна – <T-ZrO₂>

Рисунок 3.7 – Мікроструктури зразків системи ZrO₂–HfO₂–La₂O₃ після термічної обробки при 1250 °C, CEM-3PE (SEM-BSE)

Рисунок 3.7, аркуш 2

Вздовж променя $ZrO_2(HfO_2-La_2O_3)$ область гомогенності твердих розчинів з упорядкованою кубічною структурою типу пірохлору утворюється в інтервалі концентрацій 29–36 % $xZrO_2$. На *рис. 3.7 а, 3.8 а* представлено мікроструктуру та дифрактограму відповідних граничних складів 30 ZrO_2-35 HfO_2-35 La_2O_3 і 35 $ZrO_2-32,5$ $HfO_2-32,5$ La_2O_3 . Параметр елементарних комірок *а* твердих розчинів зі структурою типу пірохлору (Ру) вздовж променя $ZrO_2(HfO_2-La_2O_3)$ зростає від 1,0762 нм для двокомпонентного складу Ру+А (50 HfO_2-50 La_2O_3) до 1,0765 нм для граничного складу твердого розчину, до 1,0769 нм для двофазного складу Ру+М (40 ZrO_2-30 HfO_2-30 La_2O_3), до 1,0774 нм для трифазного складу Ру+Т+М (65 $ZrO_2-17,5$ $HfO_2-17,5$ La_2O_3) та 1,0791 нм для двофазного складу Ру+М (95 $ZrO_2-2,5$ $HfO_2-2,5$ La_2O_3). Вздовж променя $ZrO_2(85$ HfO_2-15 La_2O_3) відповідний параметр елементарних комірок зростає з 1,0758 нм для двокомпонентного двофазного складу Ру+М (85 HfO₂– 15 La₂O₃) до 1,0780 нм для трифазного складу Ру+Т+М (75 ZrO₂–21 HfO₂–4 La₂O₃). Мікроструктури трифазних зразків Ру+Т+М представлено на *рис. 3.7 г*, ∂ – обидві містять три структурні складові, що чітко відрізняються за контрастом та морфологією: темна – M-HfO₂, світла – Ру, "викришена" – T-ZrO₂. Руйнування поверхні з осередків утворення тетрагональної T-фази в зразках відбувається внаслідок деформації, що спричиняє об'ємні зміни під час перетворення при охолодженні Т — М (*розділ 1.2*).

a – Py (35 ZrO₂–32,5 HfO₂–32,5 La₂O₃); *δ* – Py+M (40 ZrO₂–30 HfO₂–30 La₂O₃); *σ* – A*+Py (32,5 ZrO₂–32,5 HfO₂–35 La₂O₃); *σ* – A*+Py (7,5 ZrO₂–7,5 HfO₂–85 La₂O₃); *δ* – A* (5 ZrO₂–5 HfO₂–90 La₂O₃)

Рисунок 3.8 – Дифрактограми зразків системи ZrO₂–HfO₂–La₂O₃ після термічної обробки при 1250°C

Рисунок 3.8, аркуш 2

Поблизу вершини La₂O₃ трикутника утворюється область гомогенності на основі гексагональної А-модифікації оксиду лантану, але оскільки остання має здатність адсорбувати вологу повітря – отримані дифрактограми містять відповідні піки гексагональної структури гідроксиду лантану A-La(OH)₃, яка кристалізується в просторовій групі $P6_{3m}$. Параметри елементарних комірок твердих розчинів на основі A*-La(OH)₃ змінюються від a = 0,6516 нм, c = 0,3841 нм зі співвідношенням c/a = 0,589 для граничного складу твердого розчину до a = 0,6510 нм, c = 0,3843 нм з c/a = 0,590 для двофазного складу A+Py (7,5 ZrO₂-7,5 HfO₂-85 La₂O₃). Границю області гомогенності фази з упорядкованою кубічною структурою типу пірохлору визначено за складом A+Py (30 ZrO₂-30 HfO₂-40 La₂O₃). Відповідні дифрактограми представлено на *рис. 3.8 е-д*.

3.3. Ізотермічний переріз діаграми стану системи ZrO₂-HfO₂-La₂O₃ при 1100 °C

При зниженні температури в досліджуваній системі до 1100 °C спостережено зменшення кількості фазових полів, що пов'язано з тетрагонально-моноклінним перетворенням T-ZrO₂ \rightarrow M-ZrO₂. В даній системі при 1100 °C утворюються три неперервні ряди твердих розчинів на основі: моноклінної модифікації M-HfO₂ (M-ZrO₂), фази з упорядкованою кубічною структурою типу пірохлору Py-La₂Hf₂O₇ (Py-La₂Zr₂O₇), а також гексагональної А-модифікації оксиду лантану.

Хімічний та фазовий склад, а також параметри елементарних комірок після термообробки зразків при 1100 °С наведено в *табл. 3.3*.

Вздовж граничної подвійної системи ZrO_2 –HfO₂ утворюється твердий розчин на основі моноклінної модифікації M-HfO₂ (M-ZrO₂) – розчинність оксиду лантану в даній ґратці складає 1~2 % xLa_2O_3 .

З урахуванням гетерофазних областей, більшу частину даного ізотермічного перерізу займають тверді розчини на основі фази з упорядкованою структурою типу пірохлору.

Хімічн	ий склад	(<i>x</i>), %			Параме	три елем	ментарні	их комір	ок, нм	
7-0		L	Фазовий склал	</td <td><i>4></i></td> <td>Ру</td> <td></td> <td><n< td=""><td>[></td><td></td></n<></td>	<i>4></i>	Ру		<n< td=""><td>[></td><td></td></n<>	[>	
ZrO_2	HIO ₂	La_2O_3	Склад	a	c	a	a	b	c	β,°
1	2	3	4	5	6	7	8	9	10	11
			пром	иінь La ₂ ($O_3(ZrO_2 -$	HfO ₂)				
0	0	100	<a*></a*>	0,6513	0,3846	_	_	_	_	_
5	5	90	<a*></a*>	0,6535	0,3838	_	_	_	_	_
7,5	7,5	85	<a*>+Py</a*>	0,6517	0,3836	_	_	_	_	_
10	10	80	<a*>+Py</a*>	0,6535	0,3854	1,0781	_	_	_	_
12,5	12,5	75	<a*>+Py</a*>	0,6518	0,3842	1,0779	_	_	_	_
15	15	70	<a*>+Py</a*>	0,6534	0,3847	1,0784	_	_	_	_
17,5	17,5	65	<a*>+Py</a*>	0,6520	0,3834	1,0777	_	_	_	_
20	20	60	<a*>+Py</a*>	0,6522	0,3849	1,0778	_	_	_	_
22,5	22,5	55	<a*>+Py</a*>	0,6508	0,3848	1,0775	_	_	_	_
25	25	50	<a*>+Py</a*>	0,6501	0,3844	1,0760	_	_	_	_
30	30	40	<a*>+Py</a*>	0,6549	0,3840	1,0774	_	_	_	_
32,5	32,5	35	Ру	_	_	1,0772	_	_	_	_
35	35	30	Py+ <m></m>	_	_	1,0769	_	_	_	_
40	40	20	Py+ <m></m>	_	_	1,0767	0,5003	0,5119	0,5138	94,65
42,5	42,5	15	Py+ <m></m>	_	_	1,0766	0,5083	0,5199	0,5218	94,85
45	45	10	Py+ <m></m>	_	_	1,0763	0,5110	0,4785	0,5692	98,13
47,5	47,5	5	Py+ <m></m>	_	_	1,0761	0,5119	0,4769	0,5721	98,46
50	50	0	<m></m>	-	_	_	0,5180	0,4671	0,6044	98,16

Таблиця 3.3 – Хімічний та фазовий склад системи ZrO₂–HfO₂–La₂O₃ після термічної обробки при 1100 °С (за даними РФА та СЕМ)

Примітка: <A*>- А-La₂O₃ гідратує до А-La(OH)₃

Вздовж променя La₂O₃(ZrO₂–HfO₂) зазначена область гомогенності обмежена концентраційним інтервалом 35–38 % xLa₂O₃. Параметр елементарних комірок *a* фази з упорядкованою структурою типу пірохлору вздовж променя La₂O₃(ZrO₂–HfO₂) змінюється з 1,0761 нм для двофазного складу Ру+М (47,5 ZrO₂–47,5 HfO₂–5 La₂O₃) до 1,0772 нм для граничного складу твердого розчину та до 1,0781 нм для гетерогенного складу A+Py (10 ZrO₂–10 HfO₂–80 La₂O₃).

Ізотермічний переріз діаграми стану потрійної системи ZrO_2 –HfO₂–La₂O₃ при температурі 1100 °C (*рис. 3.9*) характеризується наявністю шести однофазних областей (A, двох F, Py, T, M), семи двофазних областей (A+F, A+Py, двох F+Py, F+T, F+M, T+M) та двох трифазних областей (A+F+Py, F+T+M).

Рисунок 3.9 – Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂–La₂O₃ при 1100 °C

Об'єм елементарної комірки моноклінної ґратки зменшується з 0,144 нм³ для двокомпонентного граничного складу 50 ZrO₂–50 HfO₂ до 0,131 нм³ для гетерогенного складу Ру+М (40 ZrO₂–40 HfO₂–20 La₂O₃). Кількісний вміст фази типу пірохлору в зразках гетерогенного складу Ру+М визначали шляхом обчислення частки інтегральної інтенсивності фази типу пірохлору (*poзділ 2.3*, *pівняння 2.1*). Для зразків із вмістом 5, 10, 15, 20 та 30 % xLa₂O₃ визначено відповідні кількості – 35, 72, 86, 94 та 98 % Ру.

Для визначення фазових границь використано концентраційну залежність

параметру елементарних комірок *а* твердих розчинів зі структурою типу пірохлору (*puc. 3.10*).

Рисунок 3.10 – Концентраційна залежність ПЕК *а* твердих розчинів зі структурою типу пірохлору на промені La₂O₃(ZrO₂–HfO₂) ізотермічного перерізу системи ZrO₂–HfO₂–La₂O₃ при 1100 °C

Поблизу вершини La₂O₃ трикутника утворюється область гомогенності на основі A-La₂O₃. Межі зазначеної області визначаються за граничним складом твердого розчину 5 ZrO₂–5 HfO₂–90 La₂O₃ та двофазним складом A+Py (7,5 ZrO₂–7,5 HfO₂–85 La₂O₃). Вище зазначено, що в даній системі повинні утворюватися тверді розчини на основі A-La₂O₃, однак оксид лантану гідратує на повітрі після охолодження, внаслідок чого замість A-La₂O₃ на дифрактограмах спостережено піки, що відповідають гексагональній структурі гідроксиду лантану A-La(OH)₃. Параметри гексагональних елементарних комірок змінюються з a = 0,6535 нм, c = 0,3838 нм з c/a = 0,587 для граничного складу твердого розчину до a = 0,6549 нм, c = 0,3840 нм з c/a = 0,586 для гетерогенного складу 30 ZrO₂–30 HfO₂–40 La₂O₃.

На *рис. 3.11* представлено дифрактограми зразків системи ZrO₂–HfO₂–La₂O₃ після їх термічної обробки при температурі 1100 °С.

$$\partial$$
 – A*+Py (32,5 ZrO₂-32,5 HfO₂-35 La₂O₃) e – A*+Py (35 ZrO₂-35 HfO₂-30 La₂O₃);
 Hc – A*+Py (40 ZrO₂-40 HfO₂-20 La₂O₃) u – A*+Py (47,5 ZrO₂-47,5 HfO₂-5 La₂O₃);

 $\kappa - A^{*}+Py$ (50 ZrO₂-50 HfO₂-0 La₂O₃)

Рисунок 3.11 – Дифрактограми зразків системи ZrO₂–HfO₂–La₂O₃ після термообробки при 1100 °C

3.3. Висновки до третього розділу

Представлені в розділі експериментальні дані опубліковано в [380–385].

1. Досліджено фазові рівноваги в системі ZrO₂–HfO₂–La₂O₃ при 1500, 1250 та 1100 °C, а також побудовано відповідні ізотермічні перерізи. Утворення нових фаз в даній системі не встановлено.

2. Встановлено, що в даній системі при 1500, 1250 та 1100 °С утворюється неперервний ряд твердих розчинів на основі впорядкованої кубічної структури типу пірохлору. Параметри елементарних комірок твердих розчинів на основі впорядкованої структури типу пірохлору змінюються лінійно з концентрацією легуючої домішки – згідно з правилом Вегарда.

Встановлено, що при температурах досліджених перерізів тверді розчини з упорядкованою структурою типу пірохлору та гетерогенні суміші на їх основі займають значні частини зазначених ізотермічних перерізів.

3. Встановлено, що при зниженні температури від 1500 до 1250 °С трифазна область Ру+Т+М зміщується до вершини ZrO₂ трикутника – водночас область гомогенності на основі моноклінної модифікації М-HfO₂ збільшується. При подальшому пониженні до температури 1100 °С виявлено зменшення кількості фазових полів, що зумовлено перетворенням T-ZrO₂ → M-ZrO₂.

4. ФАЗОВІ РІВНОВАГИ В СИСТЕМІ ZrO₂-HfO₂-Nd₂O₃

Фазові рівноваги в потрійній системі ZrO_2 –HfO₂–Nd₂O₃ досліджено після термообробки зразків на повітрі при температурах 1100, 1500 та 1700 °C. Зразки підготовлено з інтервалом 5 % за мольною часткою вздовж променя Nd₂O₃(ZrO₂–HfO₂) та чотирьох ізоконцентрат 90, 45, 15 ZrO₂ і 15 Nd₂O₃ на концентраційному трикутнику. За отриманими результатами побудовано ізотермічні перерізи діаграми стану системи ZrO₂–HfO₂–Nd₂O₃ при 1700, 1500 та 1100 °C.

4.1. Ізотермічний переріз діаграми стану системи ZrO₂-HfO₂-Nd₂O₃ при 1700 °C

Хімічний та фазовий склад, а також параметри елементарних комірок після термообробки зразків при 1700 °С наведено в *табл. 4.1*. При даній температурі утворюються тверді розчини на основі поліморфних модифікацій A-Nd₂O₃, T-ZrO₂, M-HfO₂, F-ZrO₂ (F-HfO₂), а також фази з упорядкованою структурою типу пірохлору Py-Nd₂Hf₂O₇ (Py-Nd₂Zr₂O₇).

В даній системі відбувається утворення двох областей гомогенності твердих розчинів із кубічною структурою типу флюориту. Існування зазначених областей зумовлено розривом розчинності області гомогенності внаслідок утворення фази з упорядкованою структурою типу пірохлору. В [304] встановлено, що в точці з координатами (1680 ± 10 °C, 93,5 % *x*HfO₂) граничної подвійної системи HfO₂– Nd₂O₃ відбувається евтектоїдна взаємодія M-HfO₂+ Py-Nd₂Hf₂O₇ \rightarrow F-HfO₂, що спричиняє існування при 1700 °C вузької області гомогенності кубічних твердих розчинів зі структурою типу флюориту (*розділ 1.4.2, табл. 1.15*).

Інша евтектоїдна взаємодія в згаданій граничній системі з діоксидом гафнію A-Nd₂O₃ + Py-Nd₂Hf₂O₇ \rightarrow F-HfO₂ проходить за температури 1875 °C, зумовлюючи утворення вздовж граничної системи HfO₂–Nd₂O₃ при 1700 °C лише однієї області гомогенності кубічної структури типу флюориту (F).

Хімічний склад (x), % Параметри елементарних комірок, нм Фазовий <F> Py <A> | <M> склад ZrO_2 HfO₂ Nd_2O_3 b β,° С а а а 2 7 9 1 3 4 5 6 8 10 промінь Nd₂O₃(ZrO₂-HfO₂) 0,5191 47,5 47,5 5 F + < M >_ _ _ _ 45 45 10 F + < M >0,5201 — — — — — 40 40 20 <F> 0,5282 _ _ _ _ _ 37,5 37,5 25 $P_V + < F >$ 0,5292 1,0585 _ _ _ _ 35 35 30 $P_V + < F >$ 0,5297 1,0594 _ _ _ _ 32,5 35 1,6001 32,5 Py — _ — — — <A*>+<F>+PV0,5342 1,0684 25 25 50 _ _ _ _ 20 20 60 <A*>+<F>+Py 0,5341 1,0680 0,6436 c/a = 0,5750,3700 _ 15 15 70 <A*>+<F>+Pv 0,5340 1,0683 0,6407 c/a = 0,5830,3734 _ 10 10 80 <A*>+<F>+Py 0,5399 1,0681 0,6409 0,3724 c/a = 0,581_ <A*> 2.5 2.5 95 _ _ 0,6404 c/a = 0,5830,3733 _ ізоконцентрата 45 ZrO2 <F>+<T**> 45 54 1 0,5191 — _ _ <F>+<T**> 45 53 2 0,5193 0,5035 0,4952 0,5612 100,7 3 <F>+<T**> 45 52 0,5194 0,5028 0,4953 0,5607 100,8 — 45 40 15 <F>+<T**> 0,5199 _ _ _ _ _ 45 35 20 <F> 0,5271 _ _ — _ _ 45 25 30 $P_V + < F >$ 0,5272 1,0544 _ _ _ _ 45 20 35 Py 1,0666 _ — — — — 45 5 50 <F>+Pv0,5402 1,0692 _ ___ _ _ ізоконцентрата 15 Nd₂O₃ <F> 0,5194 84 1 15 _ _ _ _ 2 15 <F> 0,5199 83 80 5 15 <F> 0,5201 _ _ _ _ _ 10 15 <F> 0,5184 75 _ _ _ _ _ 70 15 15 <F> 0,5196 _ _ _ _ _

Таблиця 4.1 – Хімічний та фазовий склад системи ZrO₂–HfO₂–Nd₂O₃ після термічної обробки при 1700 °С (за даними РФА та СЕМ)

Продовження таблиці 4.1

1	2	3	4	5	6	7	8	9	10
65	20	15	<f></f>	0,5200	_	_	_	_	_
60	25	15	<f></f>	0,5202	_	_	_	_	_
55	30	15	<f>+<t**></t**></f>	0,52044	_	_	_	_	_
50	35	15	<f>+<t**></t**></f>	0,5216	-	_	_	_	_
35	50	15	<f>+<t**></t**></f>	0,5265	-	_	_	_	_
30	55	15	<f>+<t**></t**></f>	0,5279	_	_	_	_	_
25	60	15	<f>+<t>+<m></m></t></f>	0,5298	_	0,5081	0,4030	0,8675	96,2
20	65	15	<f>+<t>+<m></m></t></f>	0,5300	_	0,5071	0,3975	0,8665	95,3
15	70	15	<f>+<m></m></f>	0,5302	-	0,5080	0,4028	0,8693	96,2
10	75	15	<f>+<m></m></f>	0,5305	-	0,5096	0,4050	0,8691	96,4
			i301	концентрат	a 15 ZrO ₂	2			
15	83	2	<f>+<t>+<m></m></t></f>	0,5303	_	0,5009	0,4949	0,5585	100,7
15	75	10	<f>+<m></m></f>	0,5303	_	0,5023	0,4947	0,5593	100,5
15	35	50	<a*>+Py</a*>	_	1,0790	_	_	_	_
15	30	55	<a*>+<f>+Py</f></a*>	0,5403	1,0806	0,6420	<i>c/a</i> =0,580	0,3722	_
15	25	60	<a*>+<f>+Py</f></a*>	0,5398	1,0797	_	_	_	_
15	20	65	<a*>+<f>+Py</f></a*>	0,5394	1,0788	_	_	_	_
15	15	70	<a*>+<f>+Py</f></a*>	0,5398	1,0796	0,6422	c/a = 0,579	0,3718	_
15	10	75	<a*>+<f>+Py</f></a*>	0,5403	1,0806	_		_	_
15	5	80	<a*>+<f>+Py</f></a*>	0,5404	1,0802	-	_	_	_

Примітка: <T*> – оскільки при вибраному режимі термообробки тетрагональна модифікація не загартовується, досліджено ознаки її утворення

При визначенні меж фазових полів, крім даних про фазовий склад зразків використовували залежність параметрів елементарних комірок твердих розчинів зі структурою типу флюориту від концентрації *x*HfO₂ (*puc. 4.1*).

Представлений ізотермічний переріз даної системи при 1700 °С (*рис. 4.2*) характеризується наявністю шести однофазних (A, Py, T, M, двох F), семи двофазних (A+F, A+Py, F+T, F+M, T+M, двох F+Py) і двох трифазних (A+F+Py, F+T+M) областей.

Рисунок 4.1 – Концентраційна залежність ПЕК *а* твердих розчинів зі структурою типу флюориту (F) на ізоконцентраті 15 Nd₂O₃ ізотермічного перерізу діаграми стану системи ZrO₂–HfO₂–Nd₂O₃ при 1700 °C

Рисунок 4.2 – Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂– Nd₂O₃ при 1700 °C

На *рис. 4.3 г* представлено мікроструктуру, що характерна для твердих розчинів зі структурою типу флюориту.

Вздовж граничної системи ZrO_2 –HfO₂ утворюється область гомогенності твердих розчинів на основі T-ZrO₂. Зразки, що відповідають цій області, при обраному режимі термообробки не гартуються, що призводить до присутності на дифрактограмах характерних піків моноклінної М-модифікації діоксиду цирконію. Водночас в трифазних зразках F+T+M спостережено часткову стабілізацію T-ZrO₂. Утворення трьох фаз підтверджено за допомогою досліджень мікроструктури зразків з хімічним складом 25 ZrO₂–60 HfO₂–15 Nd₂O₃ і 20 ZrO₂–65 HfO₂–15 Nd₂O₃. Мікроструктури даних зразків містять три структурні складові, які різняться за контрастом та морфологією. Матрицю становить сіра структурна складова, що вирізняється безпористою структурою та належить до кубічних твердих розчинів з кубічною структурою типу флюориту. Фази з тетрагональною та моноклінною структурами теж різняться за контрастом: сіру ідентифіковано як T-ZrO₂, світлу – M-HfO₂ (*рис. 4.3 а, б*). Тверді розчини на основі тетрагональної T-модифікації ZrO₂ утворюються в двофазних F+T, T+M та трифазній F+T+M областях.

В представленому ізотермічному перерізі утворюється неперервний ряд твердих розчинів на основі фази з упорядкованою структурою типу пірохлору Ру-Nd₂Hf₂O₇ (Py-Nd₂Zr₂O₇). Область гомогенності даних твердих розчинів порівняно з граничними подвійними системами суттєво не збільшується. На *рис. 4.3 в* представлено мікроструктуру зразка з гетерогенної області Ру+F. Вказана мікроструктура характеризується двома рівномірно розміщеними по поверхні структурними складовими, що чітко різняться за контрастом. Темна структурна складова ідентифікована як кубічний твердий розчин зі структурою типу пірохлору, світла належить до кубічних твердих розчинів зі структурою типу флюориту. Таким чином, тверді розчини зі структурою типу пірохлору присутні в двох двофазних (A+Py, Py+F) та одній трифазній A+F+Py областях.

В області з високим вмістом Nd₂O₃ утворюються тверді розчини на основі A-Nd₂O₃ – проте оксид неодиму поглинає вологу з повітря, утворюючи гідроксид гексагональної структури A*-Nd(OH)₃ (просторова група *P*6₃*m*). Зазначена область

гомогенності (A) вирізняється малою протяжністю, а також опукло увігнутою в сторону граничної системи ZrO_2 –HfO₂ формою. Параметри елементарних комірок твердих розчинів з гексагональною структурою змінюються від a = 0,6404 нм, c = 0,3733 нм з c/a = 0,583 для граничного складу твердого розчину 2,5 ZrO_2 –2,5 HfO₂–95 Nd₂O₃ до a = 0,6409 нм, c = 0,3724 нм та c/a = 0,581 для гетерогенного складу А+F+Ру (10 ZrO_2 –10 HfO₂–80 Nd₂O₃). Тверді розчини на основі гексагональної А-модифікації перебувають в рівновазі виключно з твердими розчинами кубічної структури в областях A+F, A+Py та A+F+Py.

a – <F>+<T>+<M> (20 ZrO₂–65 HfO₂–15 Nd₂O₃): світла <M>, сіра <F>, світло-сіра <T>, чорні пори; *б* – <F>+<T>+<M> (25 ZrO₂–60 HfO₂–15 Nd₂O₃): світла <M>, сіра <F>, світло-сіра <T>, чорні пори; *в* – Ру+<F> (35 ZrO₂–35 HfO₂–30 Nd₂O₃): світла <F>, сіра Ру, чорні пори; *г* – <F> (75 ZrO₂–10 HfO₂–15 Nd₂O₃)

Рисунок 4.3 – Мікроструктури зразків системи ZrO₂–HfO₂–Nd₂O₃ після термообробки при 1700 °C, CEM-3PE (SEM-BSE) x400

4.2. Ізотермічний переріз діаграми стану системи ZrO₂-HfO₂-Nd₂O₃ при 1500 °C

Даний ізотермічний переріз ускладнюється відносно перерізу при 1700 °C у зв'язку з евтектоїдними взаємодіями, що відбуваються за вищих температур в граничній подвійній системі HfO₂–Nd₂O₃. Хімічний та фазовий склад, а також параметри елементарних комірок після термічної обробки зразків при 1500 °C представлено в *табл. 4.2*. Ізотермічний переріз представлено на *рис. 4.4*.

Хіміч	ний скла,	д (х), %		П	араметр	и елеме	нтарних ком	прок, ни	1
7.0	1100	210	Фазовий	<f></f>	Ру		<a> <	<1>	
ZrO_2	HfO ₂	Nd_2O_3	СКЛАД	a	а	а	b	с	β,°
1	2	3	4	5	6	7	8	9	10
			промінь N	d ₂ O ₃ (ZrO	D ₂ -HfO ₂)			
47,5	47,5	5	Py+ <t*></t*>	_	1,0568	0,5178	0,5300	0,5055	99,77
45	45	10	Py+ <t*></t*>	-	1,0574	0,5116	0,6023	0,4941	97,94
42,5	42,5	15	Py+ <t*></t*>	_	1,0586	_	_	_	_
40	40	20	Py+ <t*></t*>	-	1,0594	_	_	_	_
37,5	37,5	25	Py+ <t*></t*>	_	1,0600	_	_	_	_
35	35	30	Py+ <t*></t*>	_	1,0610	_	_	_	_
32,5	32,5	35	Ру	_	1,0630	_	_	_	_
30	30	40	<a**>+Py</a**>	_	1,0640	0,6428	<i>c/a</i> =0,577	0,3708	_
25	25	50	<a**>+Py</a**>	-	1,0650	0,6422	c/a = 0,577	0,3709	-
20	20	60	<a**>+Py</a**>	_	1,0658	0,6412	c/a = 0,578	0,3709	_
15	15	70	<a**>+Py</a**>	_	1,0673	0,6420	<i>c/a</i> =0,579	0,3715	_
10	10	80	<a**>+Py</a**>	_	1,0680	0,6416	<i>c/a</i> =0,579	0,3712	_
5	5	90	<a**>+Py</a**>	_	1,0682	0,6407	<i>c/a</i> =0,591	0,3785	_
2,5	2,5	95	<a**></a**>	_	_	0,6403	<i>c/a</i> =0,583	0,6403	_
ізоконцентрата 45 ZrO ₂									
45	5	50	<a**>+<f>+Py</f></a**>	0,5408	1,0700	_	_	_	_
45	10	45	<f>+Py</f>	0,5410	1,0668	_	_	_	_
45	15	40	<f>+Py</f>	0,5415	1,0672		_	_	_

Таблиця 4.2 – Хімічний та фазовий склад системи ZrO₂–HfO₂–Nd₂O₃ після термічної обробки при 1500 °С (за даними РФА та СЕМ)

Продовження таблиці 4.2

1	2	3	4	5	6	7	8	9	10
45	25	30	Py+ <t*></t*>	0,5200	1,0639	_	_	_	_
45	30	25	Py+ <t*></t*>	_	1,0569	_	_	_	_
45	35	20	Py+ <t*></t*>	_	1,0576	_	_	_	_
45	45	10	Py+ <t*></t*>	_	1,0430	0,5321	0,4684	0,5724	98,28
45	50	5	Py+ <t*></t*>	_	1,0363	0,5326	0,4681	0,5773	98,22
45	51	4	Py+ <t*>+<m></m></t*>	_	1,0381	0,5327	0,4693	0,5717	98,34
			ізоконцен	нтрата 1	5 Nd ₂ O ₃				
84	1	15	Py+ <f>+<t*></t*></f>	0,5198	1,0591	_	_	_	_
83	2	15	Py+ <f>+<t*></t*></f>	0,5196	1,0593	_	_	_	_
82	3	15	Py+ <f>+<t*></t*></f>	0,5204	1,0590	_	_	_	_
80	5	15	Py+ <f>+<t*></t*></f>	0,5195	1,0590	_	_	_	_
75	10	15	Py+ <f>+<t*></t*></f>	0,5194	1,0588	_	_	_	_
70	15	15	Py+ <f>+<t*></t*></f>	0,5190	1,0589	_	_	_	_
65	20	15	Py+ <f>+<t*></t*></f>	0,5193	1,0586	_	_	_	_
60	25	15	Py+ <f>+<t*></t*></f>	0,5195	1,0590	_	_	_	_
55	30	15	Py+ <t*></t*>	_	1,0592	_	—	_	_
50	35	15	Py+ <t*></t*>	_	1,0594	_	_	_	_
35	50	15	Py+ <t*></t*>	_	1,0598	_	—	_	_
30	55	15	Py+ <t>+<m></m></t>	_	1,0599	0,6353	0,6201	0,4861	110,2
25	60	15	Py+ <t>+<m></m></t>	_	1,0600	0,6915	0,7962	0,4883	121,7
20	65	15	Py+ <m></m>	_	1,0606	0,7033	0,8159	0,4965	124,1
15	70	15	Py+ <m></m>	_	1,0613	_	_	_	_
15	85	0	<m></m>	_	_	0,5100	0,5015	0,5449	98,75
15	84	1	Py+ <m></m>	_	_	0,5100	0,5019	0,5443	98,80
15	83	2	Py+ <m></m>	_	1,0581	0,5109	0,5030	0,5452	99,09
15	82	3	Py+ <m></m>	-	1,0583	0,5113	0,5047	0,5446	99,93
15	81	4	Py+ <m></m>	_	1,0583	0,5121	0,5045	0,5446	100,1
15	80	5	Py+ <m></m>	_	1,0586	0,5129	0,5065	0,5452	99,99
15	75	10	Py+ <m></m>	_	1,0593	0,5130	0,5057	0,5454	100,0
15	70	15	Py+ <m></m>	_	1,0609	0,5123	0,5048	0,5454	99,91
15	65	20	Py+ <m></m>	_	1,0613	0,5118	0,5216	0,5291	99,56
15	60	25	Py+ <t*>+<m></m></t*>	_	1,0620	_	_	_	_

1	2	3	4	5	6	7	8	9	10
15	55	30	Py+ <t*></t*>	_	1,0624	_	_	_	_
15	50	35	Ру	_	1,0634	_	_	_	_
15	45	40	Ру	_	1,0633	_	_	_	_
15	40	45	<a**>+Py</a**>	_	1,0646	_	_	_	_
15	35	50	<a**>+Py</a**>	_	1,0650	_	_	_	_
15	25	60	<a**>+Py</a**>	_	1,0658	_	_	_	_
15	20	65	<a**>+Py</a**>	_	1,0663	_	_	_	_
15	15	70	<a**>+Py</a**>	_	1,0673	_	_	_	_
15	10	75	<a**>+<f>+Py</f></a**>	_	1,0678	_	_	_	_
15	5	80	<a**>+<f>+Py</f></a**>	_	1,0680	_	_	_	_

Продовження таблиці 4.2

Примітки: <T*> – тетрагональна модифікація не гартується за обраного режиму термообробки, тому досліджено ознаки її утворення; <A**> – A-Nd₂O₃ гідратує до A-Nd(OH)₃

Рисунок 4.4 – Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂– Nd₂O₃ при 1500 °C

Побудований ізотермічний переріз даної системи при температурі 1500 °C характеризується утворенням шести однофазних (А, двох F, Ру, Т, М), восьми двофазних (А+F, А+Ру, F+T, Ру+T, Ру+М, Т+М, двох F+Ру) та трьох трифазних (А+F+Ру, Ру+F+T, Ру+T+М) областей. Для визначення границь фазових полів використовували концентраційні залежності параметрів елементарних комірок утворених фаз (*рис. 4.5*).

Рисунок 4.5 – Концентраційні залежності ПЕК *а* твердих розчинів зі структурою типу пірохлору на промені $Nd_2O_3(ZrO_2-HfO_2)$ (*a*) та вздовж ізоконцентрати 15 ZrO_2 (*б*) ізотермічного перерізу діаграми стану системи $ZrO_2-HfO_2-Nd_2O_3$ при 1500 °C

Суттєвих змін в протяжності неперервного ряду твердих розчинів на основі упорядкованої структури типу пірохлору при зниженні температури від 1700 до 1500 °C не спостережено. Параметр елементарних комірок *а* твердих розчинів з упорядкованою структурою типу пірохлору вздовж променя $Nd_2O_3(ZrO_2-HfO_2)$ змінюється від 1,0568 нм для гетерогенного складу Ру+Т (47,5 $ZrO_2-47,5$ HfO_2-5 Nd_2O_3) до 1,0630 нм для граничного складу твердого розчину 32,5 $ZrO_2-32,5$ HfO_2-35 Nd_2O_3 та до 1,0640 нм для двофазного складу A+Py (30 ZrO_2-30 HfO_2-40 Nd_2O_3).

Параметр елементарних комірок твердих розчинів з упорядкованою кубічною структурою типу пірохлору вздовж ізоконцентрати 45 ZrO_2 зменшується з 1,0700 нм для трифазного складу A+F+Py (45 ZrO_2 -5 HfO₂-50 Nd₂O₃) до 1,0668 нм для двофазного складу F+Py (45 ZrO_2 -10 HfO₂-45 Nd₂O₃), до 1,0639 нм для двофазного складу Py+T (45 ZrO_2 -25 HfO₂-30 Nd₂O₃) та до 1,0381 нм для трифазного складу Py+T+M (45 ZrO_2 -51 HfO₂-4 Nd₂O₃).

З представлених даних слідує, що параметр елементарних комірок *а* твердих розчинів з упорядкованою структурою типу пірохлору (Ру) зростає при збільшенні частки оксиду неодиму. Тверді розчини на основі зазначеної фази вздовж променя $Nd_2O_3(ZrO_2-HfO_2)$ утворюються в інтервалі концентрацій $30-39 \% xNd_2O_3$ (*puc. 4.5*).

Мікроструктури зразків фази з упорядкованою структурою типу пірохлору Ру наведено на *рис. 4.6 г, и.* Поблизу вершини Nd₂O₃ існує вузька область гомогенності твердих розчинів на основі гексагональної структури, яка дещо звужується при зниженні температури від 1700 до 1500 °C. Мікроструктури зразків з гетерогенної області Ру+А характеризуються двома структурними складовими, що різняться за контрастом та морфологією (*рис. 4.6 б, в*) – "стрижнеподібна" складова належить гексагональній структурі A-Nd₂O₃, іншу ідентифіковано як фазу з упорядкованою структурою типу пірохлору. Мікроструктури зразків з гетерогенної області A+F+Ру містять три структурні складові, що чітко різняться за контрастом (*рис. 4.6 а, л, м*). Світла "стрижнеподібна" структурі A**. Дещо темніша від неї матриця належить до твердих розчинів із флюоритоподібною структурою. Сіра структурна складова зі значною пористістю належить фазі з упорядкованою структурою типу пірохлору.

a – x2000, <A**>+<F>+Py (15 ZrO₂–5 HfO₂–80 Nd₂O₃): "стрижнеподібна" <A**>, світла <F>, сіра Ру, чорні пори; *б* – x2000, <A**>+Py (15 ZrO₂–20 HfO₂–65 Nd₂O₃); *в* – x2000, <A**>+Py (15 ZrO₂–30 HfO₂–55 Nd₂O₃): "стрижнеподібна" <A**>, сіра Ру, чорні пори; *г* – x2000, Py (15 ZrO₂–45 HfO₂–40 Nd₂O₃): *д* – x2000, Py+<T*> (15 ZrO₂–55 HfO₂–30 Nd₂O₃): світла <T>, сіра Ру, чорні пори; *e* – x400, Py+<T*>+<M> (15 ZrO₂–60 HfO₂–25 Nd₂O₃); *ж* – x400, Py+<T*>+<M> (15 ZrO₂–60 HfO₂–25 Nd₂O₃); *w* – x400, Py+<T*>+<M> (15 ZrO₂–60 HfO₂–25 Nd₂O₃); *w* – x400, Py+<T*>+<M> (15 ZrO₂–65 HfO₂–20 Nd₂O₃); *w* – x400, Py+<T*>+<M> (15 ZrO₂–65 HfO₂–20 Nd₂O₃); *w* – x400, Py+<M> (15 ZrO₂–81 HfO₂–4 Nd₂O₃); *n* – x400, <A**>+<F>+Py (45 ZrO₂–5 HfO₂–50 Nd₂O₃); *w* – x400, <A**>+<F>+Py (40 Nd₂O₃)

Рисунок 4.6 – Мікроструктури зразків системи ZrO₂–HfO₂–Nd₂O₃ після термічної обробки при 1500 °C, CEM-3PE (SEM-BSE)

Рисунок 4.6, аркуш 2

Вздовж ізоконцентрати 15 ZrO₂ параметр елементарних комірок *а* твердих розчинів з упорядкованою структурою типу пірохлору зменшується від 1,0680 нм для трифазного складу A+F+Py (15 ZrO₂–5 HfO₂–80 Nd₂O₃) до 1,0673 нм для двофазного складу A+Py (15 ZrO₂–15 HfO₂–70 Nd₂O₃), а також до 1,0633 нм для граничного складу твердого розчину 15 ZrO₂–45 HfO₂–40 Nd₂O₃, а також до 1,0624 нм для двофазного складу Py+T (15 ZrO₂–55 HfO₂–30 Nd₂O₃) та 1,0620 нм для трифазного складу Py+T+M (15 ZrO₂–60 HfO₂–25 Nd₂O₃). Дифрактограми зразків, що представляють фазові області на ізоконцентраті 15 ZrO₂ представлено на *рис.4.7*.

Рисунок 4.7 – Дифрактограми зразків вздовж ізоконцентрати 15 ZrO₂ в системі ZrO₂–HfO₂–Nd₂O₃ після термообробки при 1500 °C

В даному ізотермічному перерізі при 1500 °С спостерігається утворення двох областей гомогенності твердих розчинів з кубічною структурою типу флюориту, що розташовані вздовж граничної системи ZrO_2 –Nd₂O₃. В гратці F-ZrO₂ розчиняється до 1 % *x*HfO₂. Попри малу протяжність, при 1500 °С вони перебувають в рівновазі з усіма утвореними фазами, за винятком твердих розчинів на основі M-HfO₂.

При зниженні температури від 1700 до 1500 °С спостерігається збільшення протяжності твердих розчинів на основі M-HfO₂, а також зміщення гетерогенної області T+M до вершини ZrO₂ трикутника.

В кристалічній гратці М-HfO₂ розчиняється до 1 % xNd₂O₃. Встановлено, що на дифрактограмі складу 15 ZrO₂–84 HfO₂–1 Nd₂O₃ поряд з дифракційними піками M-HfO₂ спостерігаються піки, що відповідають упорядкованій структурі типу пірохлору. Збільшення частки Nd₂O₃ спричиняє зменшення інтенсивності піків, що відповідають моноклінній структурі M-HfO₂. Для складу Py+M (15 ZrO₂–70 HfO₂–15 Nd₂O₃) інтенсивність дифракційного піку впорядкованої структури типу пірохлору $2\theta = 29,206^{\circ}$ (222) суттєво вища від інтенсивності піків моноклінної фази. Визначено, що кількість фази з упорядкованою кубічною структурою типу пірохлору для даного складу становить 73 %. Кількісний вміст кубічної фази в гетерогенних зразках Ру+М визначений за допомогою обчислення частки інтегральної інтенсивності піків кубічної фази від загальної дифракційної картини (*розділ 2.2, рівняння 2.1*). Дані по кількісному вмісту кубічної фази (Ру) в зразках із гетерогенної області Ру+М представлено в *табл. 4.3*.

Хімічн	ий склад	1 (x), %	<u>Фалана Халана</u>	D:	Об'єми елемента	арних комірок, нм ³
ZrO ₂	HfO ₂	Nd ₂ O ₃	Фазовии склад	BMICT PY, %	<m></m>	Ру
15	85	0	<m></m>	0	0,1377	_
15	84	1	Py+ <m></m>	6,5	0,1377	_
15	83	2	Py+ <m></m>	15,6	0,1383	1,1846
15	82	3	Py+ <m></m>	17	0,1384	1,1853
15	81	4	Py+ <m></m>	26	0,1385	1,1853
15	80	5	Py+ <m></m>	29	0,1395	1,1863
15	75	10	Py+ <m></m>	43	0,1393	1,1887
15	70	15	Py+ <m></m>	73	0,1389	1,1941
15	65	20	Py+ <m></m>	82	0,1393	1,1954

Таблиця 4.3 – Характеристика складів гетерогенної області Ру+М в системі ZrO₂– HfO₂–Nd₂O₃ при 1500 °C

Параметри елементарних комірок моноклінних твердих розчинів вздовж ізоконцентрати 15 ZrO₂ змінюються з a = 0,5100 нм, b = 0,5015 нм, c = 0,5449 нм, $\beta = 98,75^{\circ}$ для твердого розчину М (15 ZrO₂–85 HfO₂) до a = 0,5118 нм, b = 0,5216

нм, c = 0,5291 нм, $\beta = 99,56^{\circ}$ для гетерогенного складу М+Ру (15 ZrO₂–65 HfO₂–20 Nd₂O₃). Мікроструктура трифазного складу Ру+Т+М (15 ZrO₂–60 HfO₂–25 Nd₂O₃) характеризується наявністю трьох структурних складових, що чітко різняться за контрастом (*puc. 4.6 e, ж*) – матрицею є фаза з упорядкованою структурою типу пірохлору, на поверхні якої рівномірно розподілені сіра структурна складова T-ZrO₂ та світла структурна складова M-HfO₂.

Встановлено, що в області з високим вмістом ZrO_2 утворюються тверді розчини на основі тетрагональної Т-модифікації діоксиду цирконію. Розчинність оксиду неодиму в T-ZrO₂ незначна. Також слід відзначити, що тверді розчини на основі тетрагональної Т*-модифікації діоксиду цирконію не загартовуються при вибраних режимах термообробки, тому на отриманих дифрактограмах присутні характерні піки M-ZrO₂. Мікроструктуру двофазного складу Ру+Т представлено на *рис.* 4.6 *д* – матрицю становить фаза з упорядкованою структурою типу пірохлору зі значною кількістю пор, на поверхні якої рівномірно розподілені округлі зерна T-ZrO₂ різної довжини. Встановлено, що тверді розчини на основі тетрагональної модифікації присутні в двох двофазних Ру+T, F+T та двох трифазних Ру+F+T, Ру+T+M областях. Для складів 30 ZrO₂–55 HfO₂–15 Nd₂O₃ та 25 ZrO₂–60 HfO₂–15 Nd₂O₃ спостерігається часткова стабілізація структури.

4.3. Ізотермічний переріз діаграми стану системи ZrO2-HfO2-Nd2O3 при 1100 °C

Хімічний і фазовий склад, а також параметри елементарних комірок зразків після термічної обробки при 1100 °С наведено в *табл. 4.4*.

За отриманими даними побудовано ізотермічний переріз діаграми стану системи ZrO_2 –HfO₂–Nd₂O₃ (*puc. 4.8*). При зниженні до 1100 °C в даній системі відмічено зменшення кількості фазових полів внаслідок тетрагонально-моноклінного перетворення ZrO_2 . При зазначеній температурі в даній системі утворюються чотири ряди неперервних твердих розчинів на основі поліморфних модифікацій A-Nd₂O₃, M-HfO₂, T-ZrO₂, F-ZrO₂ (F-HfO₂), а також упорядкованої структури типу пірохлору Ру-Nd₂Hf₂O₇ (Py-Nd₂Zr₂O₇).

Хімічі	ний скла,	д (х), %		П	араметр	и елеме	ентарних ком	іірок, ни	Л
7.0	1100		Фазовий	<f></f>	Ру		<a> <n< th=""><th><u>/></u></th><th></th></n<>	<u>/></u>	
ZrO_2	HfO ₂	Nd_2O_3	СКЛАД	а	а	а	b	С	β,°
1	2	3	4	5	6	7	8	9	10
			промінь Nd	l ₂ O ₃ (ZrO	2-HfO2)				
47,5	47,5	5	Py+ <m></m>	_	1,0633	0,5151	0,5092	0,5371	99,01
45	45	10	Py+ <m></m>	_	1,0630	0,5162	0,5039	0,5445	99,27
42,5	42,5	15	Py+ <m></m>	_	1,0635	0,5181	0,5039	0,5459	99,36
40	40	20	Py+ <m></m>	_	1,0638	0,5164	0,5032	0,5467	98,94
37,5	37,5	25	Py+ <m></m>	_	1,0637	_	_	_	_
35	35	30	Ру	_	1,0640	_	_	_	_
32,5	32,5	35	Ру	_	1,0641	_	_	_	_
30	30	40	<a*>+Py</a*>	_	1,0648	_	_	_	_
25	25	50	<a*>+Py</a*>	_	1,0653	0,6541	<i>c/a</i> = 0,539	0,3525	_
15	15	70	<a*>+Py</a*>	_	1,0673	0,6420	<i>c/a</i> = 0,579	0,3715	_
5	5	90	<a*>+Py</a*>	_	_	0,6402	<i>c/a</i> = 0,582	0,3725	_
2,5	2,5	95	<a*>+Py</a*>	_	_	0,6416	c/a = 0,580	0,3722	_
			ізоконцен	трата 90) ZrO ₂				
90	1	9	<f>+<t**></t**></f>	0,5262	_	0,5116	0,5131	0,5458	99,13
90	2	8	<f>+<t**></t**></f>	0,5265	_	0,5112	0,5161	0,5408	99,23
90	5	5	<f>+<t**>+<m></m></t**></f>	0,5268	_	0,5175	0,5050	0,5467	99,14
90	7	3	<f>+<t**>+<m></m></t**></f>	0,5272	_	0,5176	0,5051	0,5471	99,05
90	8	2	<f>+<t**>+<m></m></t**></f>	0,5269	_	0,5160	0,5039	0,5477	98,92
90	9	1	<f>+<m></m></f>	0,5271	_	0,5356	0,4937	0,5430	99,08
		1	ізоконцент	грата 15	Nd ₂ O ₃				I
84	1	15	Py+ <f>+<m></m></f>	0,5265	1,0532	0,6610	0,5157	0,5375	86,30
83	2	15	Py+ <f>+<m></m></f>	0,5267	1,0529	0,5105	0,5133	0,5455	99,14
		1		1				t	I

0,5264 1,0533 0,5100

0,5264 1,0530 0,5229

0,5260 1,0533 0,5217

0,5263 1,0531 0,5231

0,5265 1,0533 0,5149

0,5145

0,5110

0,5109

0,5147

0,5063

0,5449 99,17

0,5378 99,67

0,5387 99,60

0,5391 100,3

0,5495 99,38

82

75

70

65

60

3

10

15

20

25

15

15

15

15

15

 $P_V + < F > + < M >$

Py+<F>+<M>

Py+<F>+<M>

 $P_V + < F > + < M >$

Py+<F>+<M>

Таблиця 4.4 – Хімічний та фазовий склад системи ZrO₂–HfO₂–Nd₂O₃ після термічної обробки при 1100 °С (за даними РФА та СЕМ)

1	2	3	4	5	6	7	8	9	10
55	30	15	Py+ <m></m>	_	1,0634	0,5175	0,5119	0,5852	99,30
50	35	15	Py+ <m></m>	_	1,0629	0,5162	0,5108	0,5381	99,09
35	50	15	Py+ <m></m>	_	1,0635	0,5163	0,5113	0,5370	99,19
30	55	15	Py+ <m></m>	_	1,0632	0,5149	0,5042	0,5450	98,99
25	60	15	Py+ <m></m>	_	1,0641	0,5139	0,5033	0,5456	98,94
20	65	15	Py+ <m></m>	_	1,0622	0,5147	0,5006	0,5452	99,09
15	70	15	Py+ <m></m>	_	1,0626	0,5131	0,5011	0,5447	98,92
15	75	15	Py+ <m></m>	_	1,0630	0,5267	0,5276	0,5454	102,3

Продовження таблиці 4.4

Примітки: <A*> – A-Nd₂O₃ гідратує до A-Nd(OH)₃; <T**> – тетрагональна модифікація не гартується за обраного режиму термообробки, тому досліджено ознаки її утворення

Рисунок 4.8 – Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂–Nd₂O₃ при 1100 °C

При зниженні температури від 1700 до 1100 °С відбувається звуження області гомогенності F-ZrO₂, що безпосередньо пов'язано з будовою граничних подвійних

систем (*розділ 1.4.2, рис. 1.14, 1.15*). Аналогічно до ізотермічних перерізів 1700 та 1500 – при 1100 °С утворюється неперервний ряд твердих розчинів на основі фази з упорядкованою структурою типу пірохлору Py-Nd₂Zr₂O₇ (Py-Nd₂Hf₂O₇). Даний ряд твердих розчинів з урахуванням гетерогенних областей охоплює більшу частину даного ізотермічного перерізу.

З урахуванням результатів [330], при 1100 °С встановлено існування вузької області гомогенності на основі F-ZrO₂, спричинене взаємодією F \leftrightarrow T + Py при 1087 °С. Наявність зазначеної області гомогенності в даному ізотермічному перерізі сприяє утворенню двох трифазних ділянок різної протяжності F+T+M та F+Py+M. Розчинність діоксиду гафнію в ґратці F-ZrO₂ складає менше 1 % *x*HfO₂. З використанням РФА встановлено, що склад 84 ZrO₂–1 HfO₂–15 Nd₂O₃ належить до трифазної області Ру+F+M – дифрактограму зразка зображено на *рис. 4.9*.

Рисунок 4.9 – Дифрактограма зразка Ру+F+M (84 ZrO₂-1 HfO₂-15 Nd₂O₃) після термообробки при 1100 °C

На даній дифрактограмі спостережено виразні дифракційні піки трьох фаз. Дифракційні піки кубічної структури типу флюориту F-ZrO₂ та впорядкованої структури типу пірохлору не перекриваються. Виявлено, що дифракційні піки фази з кубічною упорядкованою структурою типу пірохлору Ру-Nd₂Zr₂O₇ зміщені в бік менших кутів 2θ і характеризуються меншою інтенсивністю порівняно з дифракційними піками кубічних твердих розчинів зі структурою типу флюориту. Незважаючи на малі розміри області гомогенності, кубічні тверді розчини з кубічною структурою типу флюориту перебувають у рівновазі з більшістю фаз, що утворюються при заданій температурі.

Вздовж граничної подвійної системи ZrO_2 –HfO₂ утворюється неперервний ряд твердих розчинів на основі моноклінної модифікації M-HfO₂ (M-ZrO₂). Утворення даного ряду твердих розчинів пов'язане з поліморфізмом ZrO₂ та HfO₂ (*posdin 1.3*). Загальновідомо, що діоксид цирконію зазнає перетворення T-ZrO₂ \leftrightarrow M-ZrO₂ при 1050~1170 °C, температура відповідного поліморфного перетворення діоксиду гафнію становить 1820~1830 °C (*posdin 1.2, табл. 1.8*). В моноклінній ґратці (M) розчиняється менше 1 % xNd₂O₃.

Поблизу вершини ZrO₂ трикутника утворюється невелика область гомогенності тетрагональної Т-структури – її присутність в даному ізотермічному перерізі є наслідком фазового перетворення в граничній системі ZrO₂–Nd₂O₃ відповідно до реакції T \leftrightarrow M + Py з координатами (880 °C, 1 % xNd₂O₃) [270]. З використанням літературних даних було встановлено, що температура зазначеного перетворення за різними даними становить від 880 до 1053 °C (*розділ 1.4.2, табл. 1.14*). Незважаючи на значну розбіжність – всі значення нижчі за 1100 °C, а отже можна впевнено прогнозувати існування області T-ZrO₂ в досліджуваному ізотермічному перерізі. Мікроструктури, що характеризують області на основі тетрагональної модифікації представлено на *рис. 4.10 а–в*.

На *puc.* 4.10 г, ∂ представлено мікроструктури зразків, що містять упорядковану структуру типу пірохлору. Зразок гетерогенного складу Ру+М (55 ZrO₂–30 HfO₂–15 Nd₂O₃) містить дві структурні складові, що різняться за контрастом та морфологією – пориста світла відповідає впорядкованій структурі типу пірохлору, сіра – M-HfO₂. Параметр елементарних комірок *a* фази з упорядкованою структурою типу пірохлору вздовж променя Nd₂O₃(ZrO₂–HfO₂) змінюється від 1,0633 нм для двофазного складу Ру+М (47,5 ZrO₂–47,5 HfO₂–5 Nd₂O₃) до 1,0640 нм для граничного складу твердого

розчину 35 ZrO₂–35 HfO₂–30 Nd₂O₃ та до 1,0648 нм для двофазного складу Ру+A (30 ZrO₂–30 HfO₂–40 Nd₂O₃) (*puc. 4.11*).

 $a - \langle F \rangle + \langle T^{**} \rangle$ (90 ZrO₂-1 HfO₂-9 Nd₂O₃): темна $\langle F \rangle$, світла $\langle T^{**} \rangle$, чорні пори; $\delta - \langle T^{**} \rangle + \langle M \rangle$ (90 ZrO₂-9 HfO₂-1 Nd₂O₃): сіра $\langle T^{**} \rangle$, світла $\langle M \rangle$, чорні пори; $\epsilon - \langle F \rangle + \langle T^{**} \rangle + \langle M \rangle$ (90 ZrO₂-8 HfO₂-2 Nd₂O₃): сіра $\langle T^{**} \rangle$, світла $\langle M \rangle$, чорні пори; $\epsilon - Py + \langle F \rangle + \langle M \rangle$ (60 ZrO₂-25 HfO₂-15 Nd₂O₃): сіра $\langle F \rangle$, світло-сіра $\langle M \rangle$, світла Ру, чорні пори; $\delta - Py + \langle M \rangle$ (55 ZrO₂-30 HfO₂-15 Nd₂O₃): світла Ру, сіра $\langle M \rangle$, чорні пори

Рисунок 4.10 – Мікроструктури зразків системи ZrO₂–HfO₂–Nd₂O₃ після термічної обробки при 1100 °C, CEM-3PE (SEM-BSE) x400

Рисунок 4.11 – Концентраційна залежність ПЕК *а* твердих розчинів зі структурою типу пірохлору (Ру) на промені Nd₂O₃(ZrO₂–HfO₂) ізотермічного перерізу діаграми стану системи ZrO₂–HfO₂–Nd₂O₃ при 1100 °C

Для гетерогенного зразка F+T (90 ZrO₂–1 HfO₂–9 Nd₂O₃) спостережено дві структурні складові, котрі попри невеликі розбіжності контрасту мають суттєві морфологічні відмінності (*puc. 4.10 a*). Темну структурну складову з рівномірно розташованих по поверхні масивних агломератів ідентифіковано як F-ZrO₂. Інша структурна складова, зі значною кількістю утворених внаслідок тетрагональномоноклінного переходу тріщин – належить T-ZrO₂.

Мікроструктура гетерогенного зразка T+M (90 ZrO₂–9 HfO₂–1 Nd₂O₃) містить дві структурні складові, які різняться за контрастом та морфологією (*puc. 4.10 б*). Сірій структурній складовій зі значною кількістю тріщин відповідає T-ZrO₂. Світла та майже безпориста структура ідентифікована як M-HfO₂.

Наявність області гомогенності T-ZrO₂ в даному ізотермічному перерізі сприяє утворенню трифазної області F+T+M – мікроструктура зразка 90 ZrO₂–8 HfO₂–2 Nd₂O₃ містить три складові, що чітко відрізняються за контрастом або морфологією (*рис. 4.10 в*). Морфологічні відмінності F-ZrO₂ та T-ZrO₂ тотожні до
вищезазначених, водночас третя структурна складова М-HfO₂ характеризується надзвичайно світлим контрастним відтінком.

Поблизу вершини Nd₂O₃ концентраційного трикутника утворюється незначна область гомогенності на основі гексагональної модифікації Nd₂O₃. Як зазначено вище – в досліджуваній системі повинні утворюватися тверді розчини A-Nd₂O₃. Проте через здатність оксиду неодиму поглинати вологу з повітря – отримані дифрактограми містять відповідні піки гексагональної структури гідроксиду A*-Nd(OH)₃. Параметри гексагональних елементарних комірок вздовж променя Nd₂O₃(ZrO₂–HfO₂) змінюються з a = 0,6416 нм, c = 0,3722 нм з c/a = 0,580 для гетерогенного складу T+M (90 ZrO₂–9 HfO₂–1 Nd₂O₃) до a = 0,6541 нм, c = 0,3525нм з c/a = 0,539 для гетерогенного складу Ру+А (25 ZrO₂–25 HfO₂–50 Nd₂O₃). Тверді розчини на основі А-модифікації при температурі 1100 °С перебувають в рівновазі лише з упорядкованою структурою типу пірохлору. Двофазна область A+Py займає велику частину ізотермічного перерізу.

Представлений ізотермічний переріз характеризується утворенням двох трифазних (F+Py+M, F+T+M) та шести двофазних (A+Py, Py+M, Py+F, F+M, T+M, F+T) областей (*puc. 4.8*).

4.4. Висновки до четвертого розділу

Представлені в розділі експериментальні дані опубліковано в [386–391].

1. Досліджено фазові рівноваги в системі ZrO₂–HfO₂–Nd₂O₃ при 1700, 1500 та 1100 °C, а також побудовано відповідні ізотермічні перерізи. Утворення нових фаз в даній системі не встановлено.

2. Встановлено, що в даній системі при 1700, 1500 та 1100 °С утворюється неперервний ряд твердих розчинів на основі впорядкованої кубічної структури типу пірохлору. Параметри елементарних комірок твердих розчинів на основі впорядкованої структури типу пірохлору змінюються лінійно з концентрацією легуючої домішки – згідно з правилом Вегарда.

3. Встановлено, що при температурах досліджених перерізів тверді розчини з упорядкованою структурою типу пірохлору та гетерогенні суміші на їх основі займають значні частини даних ізотермічних перерізів. Побудовані ізотермічні перерізи суттєво відрізняються між собою, за винятком стабільних меж області гомогенності фази з упорядкованою структурою типу пірохлору.

4. Встановлено, що стабільність кубічних твердих розчинів зі структурою типу флюориту при зниженні температури з 1700 до 1100 °С зменшується.

5. ФАЗОВІ РІВНОВАГИ В СИСТЕМІ ZrO₂-HfO₂-Sm₂O₃

Фазові рівноваги в потрійній системі ZrO_2 –HfO₂–Sm₂O₃ досліджено після термообробки зразків на повітрі при 1500 та 1600 °C. Зразки підготовлено з інтервалом 0,5 ~ 5 % за мольною часткою вздовж променів ZrO_2 (HfO₂–Sm₂O₃), Sm₂O₃(ZrO₂–HfO₂), а також ізоконцентрат 30 ZrO₂, 80 HfO₂ концентраційного трикутника. За отриманими результатами побудовано ізотермічні перерізи діаграми стану системи ZrO₂–HfO₂–Sm₂O₃ при відповідних температурах.

5.1. Ізотермічний переріз діаграми стану системи ZrO₂-HfO₂-Sm₂O₃ при 1600 °C

Хімічний та фазовий склад, а також параметри елементарних комірок після термообробки зразків при 1600 °С наведено в *maбл. 5.1.* При цій температурі утворюються тверді розчини на основі модифікацій B-Sm₂O₃, T-ZrO₂, M-HfO₂. В досліджуваній системі спостережено утворення неперервних рядів твердих розчинів на основі кубічної структури типу флюориту F-ZrO₂ (F-HfO₂), а також упорядкованої структури типу пірохлору Py-Sm₂Hf₂O₇ (Py-Sm₂Zr₂O₇). Утворення двох областей гомогенності твердих розчинів зі структурою типу флюориту обумовлено розривом розчинності внаслідок упорядкування структури типу пірохлору. Область гомогенності твердих розчинів зі структурою типу флюориту, що розташована поблизу вершини Sm₂O₃ – вздовж променя Sm₂O₃(ZrO₂-HfO₂) звужена відносно граничних систем ZrO₂-Sm₂O₃ та HfO₂-Sm₂O₃ (*puc. 5.1*). Утворення нових фаз не встановлено.

Побудований ізотермічний переріз (*рис. 5.1*) характеризується утворенням шести однофазних (B, двох F, Py, T, M), шести двофазних (B+F, двох F+Py, F+T, F+M, T+M) та однієї трифазної F+T+M областей. Для визначення меж фазових полів використовували концентраційні залежності параметрів елементарних комірок (*рис. 5.2, 5.3*).

Хімічний склад (х), %				Параметри елементарних комірок, нм						
7:0		G ()	Фазовий склад	<f></f>	Ру		 	<m></m>		
ZrO_2	HIO_2	Sm_2O_3		а	a	а	b	С	β,°	
1	2	3	4	5	6	7	8	9	10	
			промінь ZrO	2(HfO2-S	Sm_2O_3)					
0	50	50	<f>+Py</f>	0,5350	1,0595	_	_	_	_	
5	47,5	47,5	<f>+Py</f>	0,5349	1,0593	_	_	_	_	
10	45	45	<f>+Py</f>	0,5289	1,0592	_	_	_	_	
15	42,5	42,5	<f>+Py</f>	_	1,0584	_	_	_	_	
20	40	40	Ру	_	1,0576	_	_	_	_	
25	37,5	37,5	Ру	_	1,0560	_	_	_	_	
30	35	35	Ру	_	1,0542	_	_	_	_	
35	32,5	32,5	Ру	_	1,0526	_	_	_	_	
40	30	30	Py+ <f></f>	0,5246	1,0492	_	_	_	_	
45	27,5	27,5	Py+ <f></f>	0,5233	1,0464	_	_	_	_	
50	25	25	Py+ <f></f>	0,5211	1,0428	_	_	_	_	
55	22,5	22,5	<f></f>	0,5200	-	_	_	_	_	
60	20	20	<f></f>	0,5188	-	_	_	_	_	
65	17,5	17,5	<f></f>	0,5176	_	_	_	_	_	
70	15	15	<f>+<t*></t*></f>	0,5168	_	_	_	_	_	
75	12,5	12,5	<f>+<t*></t*></f>	0,5164	_	_	_	_	_	
80	10	10	<f>+<t*></t*></f>	0,5162	_	0,5156	0,5333	0,5036	99,90	
85	7,5	7,5	<f>+<t*></t*></f>	0,5158	_	0,5203	0,5230	0,5243	99,01	
90	5	5	<f>+<t*></t*></f>	0,5156	-	0,5155	0,5271	0,5230	99,85	
95	2,5	2,5	<f>+<t*></t*></f>	0,5154	-	0,5154	0,5270	0,5231	99,84	
97	1,5	1,5	<f>+<t*></t*></f>	0,5151	-	0,5150	0,5275	0,5231	99,92	
99	0,5	0,5	<t*></t*>	_	-	0,5146	0,5268	0,5235	99,77	
промінь Sm ₂ O ₃ (ZrO ₂ -HfO ₂)										
50	50	0	<t*></t*>	_	_	0,5273	0,5242	0,5190	97,28	
47,5	47,5	5	<f>+<t*></t*></f>	0,5150	_	0,5124	0,5242	0,5221	98,92	
45	45	10	<f>+<t*></t*></f>	0,5154	_	0,5151	0,4885	0,6496	94,17	
42,5	42,5	15	<f></f>	0,5175	_	_	_	_	_	

Таблиця 5.1 – Хімічний та фазовий склад системи ZrO₂–HfO₂–Sm₂O₃ після термічної обробки при 1600 °С (за даними РФА та СЕМ)

	Г		1		1	1			
1	2	3	4	5	6	7	8	9	10
40	40	20	<f></f>	0,5188	_	_	_	_	_
37,5	37,5	25	Py+ <f></f>	0,5208	1,0424	_	_	_	_
35	35	30	Py+ <f></f>	0,5238	1,0477	_	_	_	_
32,5	32,5	35	Ру	_	1,0537	_	_	_	_
30	30	40	Ру	_	1,0596	_	_	_	_
27,5	27,5	45	<f>+Py</f>	0,5335	1,0611	_	_	_	_
25	25	50	<f>+Py</f>	0,5344	1,0628	_	_	_	_
22,5	22,5	55	<f>+Py</f>	0,5349	1,0699	_	_	_	_
20	20	60	+<f></f>	0,5350	_	_	_	_	_
17,5	17,5	65	+<f></f>	0,5351	_	_	_	_	_
15	15	70	+<f></f>	0,5353	_	_	_	_	_
12,5	12,5	75	+<f></f>	0,5358	_	1,4488	0,3237	0,9122	70,89
10	10	80	+<f></f>	0,5364	_	1,4500	0,3302	0,9090	73,31
5	5	90	+<f></f>	0,5366	_	1,4650	0,3235	0,9124	71,35
2,5	2,5	95	+<f></f>	0,5372	_	1,4735	0,3226	0,9125	71,19
2	2	96	+<f></f>	_	_	1,4729	0,3154	0,9228	70,36
1,5	1,5	97	+<f></f>	_	_	1,4693	0,3231	0,9121	71,16
1	1	98	+<f></f>	_	_	1,4695	0,3234	0,9118	71,14
0,5	0,5	99		_	_	1,4701	0,3221	0,9121	70,82
			i	зоконцент	рата 30 Zr	O ₂			
30	69	1	<m></m>	_	_	0,5049	0,5093	0,5463	95,44
30	67	3	<f>+<t*>+<m></m></t*></f>	0,5143	_	0,5055	0,5105	0,5464	95,55
30	65	5	<f>+<t*>+<m></m></t*></f>	0,5143	_	0,5040	0,5116	0,5464	95,62
30	63	7	<f>+<t*></t*></f>	0,5147	-	0,5069	0,4668	0,4742	87,32
30	60	10	<f></f>	0,5158	-	_	_	_	_

Продовження таблиці 5.1

Примітка: <T*> – оскільки при вибраному режимі термообробки тетрагональна модифікація не загартовується, досліджували ознаки її утворення

Рисунок 5.1 – Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂– Sm₂O₃ при 1600 °C

Рисунок 5.2 – Концентраційна залежність ПЕК *а* твердих розчинів зі структурою типу пірохлору на промені ZrO₂(HfO₂–Sm₂O₃) ізотермічного перерізу діаграми стану системи ZrO₂–HfO₂–Sm₂O₃ при 1600 °C

114

Рисунок 5.3 – Концентраційні залежності ПЕК *а* твердих розчинів зі структурою типу флюориту (F) вздовж променів ZrO₂(HfO₂–Sm₂O₃) (*a*) та Sm₂O₃(ZrO₂–HfO₂) (*б*) діаграми стану системи ZrO₂–HfO₂–Sm₂O₃ при 1600 °C

Параметр елементарних комірок *а* твердих розчинів зі структурою типу флюориту вздовж променя $Sm_2O_3(ZrO_2-HfO_2)$ змінюється від 0,5150 нм для гетерогенного складу F+T (47,5 $ZrO_2-47,5$ HfO_2-5 Sm_2O_3) до 0,5175 нм для граничного складу твердого розчину 42,5 $ZrO_2-42,5$ HfO_2-15 Sm_2O_3 до 0,5208 нм для гетерогенного складу Py+F (37,5 $ZrO_2-37,5$ HfO_2-25 Sm_2O_3); а також від 0,5335 нм для гетерогенного складу F+Py (27,5 $ZrO_2-27,5$ HfO_2-45 Sm_2O_3) до 0,5350 нм для гетерогенного складу B+F (20 ZrO_2-20 HfO_2-60 Sm_2O_3). Отримані результати мікроструктурних досліджень (*puc. 5.4*) узгоджуються з результатами РФА (*табл. 5.1, puc. 5.2, 5.3*).

a – x400, <F>+<T*> (70 ZrO₂–15 HfO₂–15 Sm₂O₃); *б* – x2000, <F>+<T*> (95 ZrO₂–2,5 HfO₂–2,5 Sm₂O₃); *в* – x400, <F>+<T*> (97 ZrO₂–1,5 HfO₂–1,5 Sm₂O₃); світла <F>, темна <T*>; *г* – x400, <T*> (99 ZrO₂–0,5 HfO₂–0,5 Sm₂O₃); *r* – x2000, <F>+<T*>+<M> (30 ZrO₂–64 HfO₂–6 Sm₂O₃); *д* – x400, <F>+<T*>+<M> (30 ZrO₂–64 HfO₂–6 Sm₂O₃): світла <M>, сіра <F>, світло-сіра <T*>*e* – x2000, <F>++ Ру (22,5 ZrO₂–22,5 HfO₂–55 Sm₂O₃): світла <F> (15 ZrO₂–15 HfO₂–70 Sm₂O₃): світла , сіра

<F>; *ж* – x2000, <F> (65 ZrO₂–17 HfO₂–17 Sm₂O₃); чорні пори Рисунок 5.4 – Мікроструктури зразків системи ZrO₂–HfO₂–Sm₂O₃ після термічної обробки при 1600 °C, CEM-3PE (SEM-BSE)

Рисунок 5.4, аркуш 2

Параметр елементарних комірок *а* твердих розчинів зі структурою типу флюориту вздовж променя $ZrO_2(HfO_2-Sm_2O_3)$ змінюється від 0,5246 нм для гетерогенного складу Ру+F (40 ZrO_2-30 HfO_2-30 Sm_2O_3) до 0,5200 нм для граничного складу твердого розчину 55 $ZrO_2-22,5$ $HfO_2-22,5$ Sm_2O_3 та 0,5168 нм для гетерогенного складу F+T (70 ZrO_2-15 HfO_2-15 Sm_2O_3).

Мікроструктуру, характерну для твердих розчинів із кубічною структурою типу флюориту представлено на *рис. 5.4 к*. Мікроструктура зразка з двофазної області F+Py характеризується двома структурними складовими, які чітко різняться за контрастом – світла матриця – F-ZrO₂, рівномірно розподілена по матриці темна ідентифікована як структура типу пірохлору (*рис. 5.4 ж*).

Поблизу вершини Sm₂O₃ утворюється незначна область гомогенності на основі моноклінної модифікації оксиду самарію, що має меншу протяжність на

промені Sm₂O₃(ZrO₂–HfO₂) відносно фазових полів B-Sm₂O₃ граничних систем ZrO₂–Sm₂O₃ і HfO₂–Sm₂O₃ (*poзділ 1.4.3*) – сукупна розчинність в ґратці B-Sm₂O₃ не перевищує 0,5 % *x*ZrO₂ (*x*HfO₂). Параметри елементарних комірок B-Sm₂O₃ змінюються з a = 1,4701 нм, b = 0,3221 нм, c = 0,9121 нм, $\beta = 70,82^{\circ}$ для граничного складу твердого розчину 0,5 ZrO₂–0,5 HfO₂–99 Sm₂O₃ до a = 1,4695 нм, b = 0,3234 нм, c = 0,9118 нм, $\beta = 71,14^{\circ}$ для гетерогенного складу B+F (1 ZrO₂–1 HfO₂–98 Sm₂O₃). Мікроструктура двофазного зразка B+F характеризується двома структурними складовими, що чітко різняться за контрастом (*puc. 5.4 u*) – матрицю становить темна фаза кубічного твердого розчину зі структурою типу флюориту, на поверхні якої рівномірно розподілені світлі зерна B-Sm₂O₃.

При температурі 1600 °C утворюється неперервний ряд твердих розчинів на основі фази з упорядкованою структурою типу пірохлору. Протяжність області гомогенності Ру майже незмінна відносно граничних систем (*posdin 1.4.3*) – її межі встановлено за РФА однофазних Ру (20 ZrO₂–40 HfO₂–40 Sm₂O₃, 35 ZrO₂–32,5 HfO₂–32,5 Sm₂O₃, 32,5 ZrO₂–32,5 HfO₂–35 Sm₂O₃, 30 ZrO₂–30 HfO₂–40 Sm₂O₃) та двофазних Ру+F (15 ZrO₂–42,5 HfO₂–42,5 Sm₂O₃, 40 ZrO₂–30 HfO₂–30 Sm₂O₃, 35 ZrO₂–35 HfO₂–35 HfO₂–30 Sm₂O₃, 27,5 ZrO₂–27,5 HfO₂–45 Sm₂O₃) складів (*maбл. 5.1*).

Параметр елементарних комірок *а* твердих розчинів зі структурою типу пірохлору змінюється від 1,0595 нм для гетерогенного складу Ру+F (50 HfO₂–50 Sm₂O₃) до 1,0576 нм для граничного складу твердого розчину 20 ZrO₂–40 HfO₂–40 Sm₂O₃ та до 1,0492 нм для двофазного складу Ру+F (40 ZrO₂–30 HfO₂–30 Sm₂O₃) за променем ZrO₂(HfO₂–Sm₂O₃) та від 1,0424 нм для двофазного складу Ру+F (37,5 ZrO₂–37,5 HfO₂–25 Sm₂O₃) до 1,0537 нм для граничного складу твердого розчину 32,5 ZrO₂–32,5 HfO₂–35 Sm₂O₃ та до 1,0611 нм для двофазного складу Ру+F (27,5 ZrO₂–27,5 HfO₂–45 Sm₂O₃) вздовж променя Sm₂O₃(ZrO₂–HfO₂).

Утворення в даній системі твердих розчинів зі структурою типу пірохлору вірогідно пов'язано із заміщенням Hf^{4+} на Zr^{4+} , оскільки енергетичні затрати на компенсацію заряду при ізоморфному заміщенні майже відсутні. Впорядкування можливе за умови відношення катіонних радіусів $r(Ln^{3+}_{KY=8})/r(M^{4+}_{KY=6}) \ge 1,46$ (*розділ 1.4*). Заміщення в катіонній підґратці Zr^{4+} (Hf^{4+}) на Sm^{3+} супроводжується утворенням кисневих вакансій та відповідною іонно-електронною компенсацією.

Область гомогенності твердих розчинів тетрагональної структури за формою витягнута вздовж граничної подвійної системи ZrO_2 –HfO₂. Тверді розчини на основі T-ZrO₂ при обраному режимі термообробки не гартуються – внаслідок чого дифрактограми містять піки, що характерні для моноклінної модифікації M-ZrO₂. Розчинність оксиду самарію в тетрагональній ґратці незначна. Мікроструктури зразків двофазної області F+T представлено на *рис. 5.4 а*–*в*. Структурні складові чітко різняться за контрастом та морфологією: тетрагональний твердий розчин утворює темну матрицю, світлу структурну складову ідентифіковано як структуру типу флюориту. Частка кубічної фази (F) зростає зі збільшенням вмісту HfO₂.

Зі сторони граничної системи ZrO_2 –HfO₂ утворюється незначна область гомогенності на основі M-HfO₂. В моноклінній кристалічній гратці розчиняється близько 1 % xSm_2O_3 . Тверді розчини на основі моноклінної структури виявлено в двофазній F+M та трифазній F+T+M областях. Оскільки отримані дифрактограми не містять піків, належних тетрагональній структурі – межі трифазної області F+T+M визначено за допомогою мікроструктурних досліджень (*puc. 5.4 д, e*). Зазначені мікроструктури демонструють три структурні складові, що чітко різняться за морфологією та контрастом – сіра матриця належить до кубічних твердих розчинів типу флюориту, світла фаза ідентифікована як твердий розчин M-HfO₂, сіра – T*-ZrO₂.

5.2. Ізотермічний переріз діаграми стану системи ZrO₂-HfO₂-Sm₂O₃ при 1500 °C

Хімічний та фазовий склад, а також параметри елементарних комірок після термообробки зразків при 1500 °C представлено в *табл. 5.2.* Ізотермічні перерізи при 1600 та 1500 °C мають схожу будову, відмінність якої зумовлена переходом $T-ZrO_2 \rightarrow M-ZrO_2$ – внаслідок чого протяжність області гомогенності M-HfO₂ збільшується, водночас трифазна область F+T+M зміщується до вершини ZrO₂ трикутника.

Хіміч	ний скла	ад (х), %		Параметри елементарних комірок, нм						
7-0	UI00	Sec. O	Фазовий склад	<f></f>	Ру			<m></m>		
ZrO_2	HIO ₂	Sm_2O_3		а	а	а	b	С	β,°	
1	2	3	4	5	6	7	8	9	10	
			промінь ZrO ₂	(HfO ₂ –S	$m_2O_3)$					
0	50	50	Py + <f></f>	0,5344	1,0606	_	_	_	_	
5	47,5	47,5	Py + <f></f>	0,5335	1,0599	_	_	_	_	
10	45	45	Py + <f></f>	0,5303	1,0592	_	_	_	_	
15	42,5	42,5	Py + <f></f>	0,5296	1,0594	_	_	_	_	
20	40	40	Ру	_	1,0582	_		_	_	
25	37,5	37,5	Ру	_	1,0568	_	_	_	_	
30	35	35	Ру	_	1,0549	_	_	_	_	
35	32,5	32,5	Ру	_	1,0514	_	_	_	_	
40	30	30	Ру	_	1,0506	_	_	_	_	
45	27,5	27,5	Py + <f></f>	0,5229	1,0489	_	_	_	_	
55	22,5	22,5	Py + <f></f>	0,5207	1,0414	_	_	_	_	
60	20	20	Py+ <f></f>	0,5198	1,0397	_	_	_	_	
65	17,5	17,5	<f></f>	0,5184	_	_	_	_	_	
70	15	15	<f>+<t*></t*></f>	0,5183	_	_	_	_	_	
75	12,5	12,5	<f>+<t*></t*></f>	0,5172	_	_		_	_	
80	10	10	<f>+<t*></t*></f>	0,5159	_	_	_	_	_	
85	7,5	7,5	<f>+<t*></t*></f>	0,5158	_	0,5153	0,5042	0,5479	99,42	
90	5	5	<f>+<t*></t*></f>	0,5154	_	0,5150	0,5053	0,5478	99,27	
95	2,5	2,5	<f>+<t*></t*></f>	0,5153	_	0,5149	0,5058	0,5480	99,34	
97	1,5	1,5	<f>+<t*></t*></f>	0,5070		0,5150	0,5065	0,5478	99,45	
99	0,5	0,5	<t*></t*>	_	_	0,5144	0,5055	0,5477	99,24	
			промінь Sm ₂ C	$D_3(ZrO_2-$	HfO ₂)					
50	50	0	<t*>+<m></m></t*>	_	_	0,5208	0,5191	0,5448	98,62	
	1	1	1	L	1	1		1	1	

Таблиця 5.2 – Хімічний та фазовий склад системи ZrO₂–HfO₂–Sm₂O₃ після

термічної обробки при 1500 °С (за даними РФА та СЕМ)

	промінь $Sin_2O_3(ZIO_2-HIO_2)$									
50	50	0	<t*>+<m></m></t*>	_	_	0,5208	0,5191	0,5448	98,62	
47,5	47,5	5	<f>+<t*>+<m></m></t*></f>	0,5150	_	0,5220	0,5197	0,5458	94,33	
45	45	10	<f>+<t*>+<m></m></t*></f>	0,5151	_	_	_	_	_	
42,5	42,5	15	<f></f>	0,5168	_	_	_	_	_	
40	40	20	<f></f>	0,5188	_	_	_	_	_	

Продовження таблиці 5.2

1	2	3	4	5	6	7	8	9	10
37,5	37,5	25	Py+ <f></f>	0,5216	1,0430	_	_	_	_
35	35	30	Ру	_	1,0484	_	_	_	_
32,5	32,5	35	Ру	_	1,0549	_	_	_	_
30	30	40	Ру	_	1,0585	_	_	_	_
27,5	27,5	45	Py+ <f></f>	0,5303	1,0755	_	_	_	_
25	25	50	Py+ <f></f>	0,5334	1,0619	_	_	_	_
22,5	22,5	55	Py+ <f></f>	0,5344	1,0688	_	_	_	_
20	20	60	<f>+</f>	0,5350	_	_	_	_	_
17,5	17,5	65	<f>+</f>	0,5359	_	_	_	_	_
15	15	70	<f>+</f>	0,5362	_	1,4678	0,3520	0,8737	97,31
12,5	12,5	75	<f>+</f>	0,5364	_	1,4697	0,3705	0,8681	99,47
10	10	80	<f>+</f>	0,5368	_	1,4025	0,3305	0,9071	86,44
7,5	7,5	85	<f>+</f>	0,5372	_	1,4683	0,3622	0,8548	97,83
5	5	90	<f>+</f>	0,5377	_	1,4455	0,3506	0,8841	91,07
2,5	2,5	95	<f>+</f>	0,5382	_	1,4689	0,3497	0,8762	95,69
2	2	96	<f>+</f>	_	_	1,4882	0,3376	0,8965	87,90
1,5	1,5	97	<f>+</f>	_	_	1,4854	0,3367	0,8946	87,98
1	1	98	<f>+</f>	_	_	1,4418	0,3422	0,8996	89,73
0,5	0,5	99	<f>+</f>	_	_	1,4161	0,3420	0,9159	88,26
0	0	100		_	_	1,4177	0,3619	0,8847	99,96
			ізоко	нцентрат	a 80 HfO2	2			
20	80	0	<m></m>	_	_	0,5030	0,5176	0,5456	87,77
19	80	1	<f>+<m></m></f>	0,5165	_	0,5065	0,5195	0,5425	85,35
18	80	2	<f>+<m></m></f>	0,5168	_	0,5068	0,5109	0,5466	85,23
17	80	3	<f>+<m></m></f>	0,5172	_	0,5075	0,5124	0,5463	85,50

Примітка: <t*> – оскільки при вибраному режимі термообробки тетрагональна модифікація</t*>
не загартовується, досліджували ознаки її утворення

При даній температурі утворюються тверді розчини на основі поліморфних модифікацій B-Sm₂O₃, T-ZrO₂, M-HfO₂, F-ZrO₂ (F-HfO₂), впорядкованої кубічної структури типу пірохлору Py-Gd₂Hf₂O₇ (Py-Gd₂Zr₂O₇). В ізотермічному перерізі

системи при 1500 °C утворюються шість однофазних (В, Ру, Т, М, дві F), шість двофазних (В+F, F+T, F+M, T+M, дві F+Py) і трифазна F+T+M області (*puc. 5.5*).

Рисунок 5.5 – Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂– Sm₂O₃ при 1500 °C

В області з підвищеним вмістом ZrO₂ утворюються тверді розчини на основі тетрагональної модифікації діоксиду цирконію, в яких розчиняється до 1 % xSm₂O₃, що підтверджується РФА. Тверді розчини на основі T-ZrO₂ при використаному режимі термообробки не гартуються, внаслідок чого на дифрактограмах присутні піки, характерні для моноклінної модифікації M-ZrO₂. Тверді розчини на основі T-ZrO₂ виявлені в двофазній F+T та трифазній F+T+M областях. Границі області гомогенності твердих розчинів на основі тетрагональної структури підтверджено за допомогою РФА двокомпонентного однофазного складу T (80 ZrO₂–20 HfO₂), однофазного складу T (99 ZrO₂–0,5 HfO₂–0,5 Sm₂O₃) та двофазного складу F+T (97 ZrO₂–1,5 HfO₂–1,5 Sm₂O₃, 80 ZrO₂–19 HfO₂–1 Sm₂O₃).

Для визначення границь фазових полів разом із даними про фазовий склад зразків використано концентраційні залежності параметру елементарних комірок *а* кубічних твердих розчинів (*puc. 5.6, 5.7*). Дифрактограми, що характеризують фазові області вздовж променя ZrO₂(HfO₂–Sm₂O₃) представлено на *puc. 5.8*.

Рисунок 5.6 – Концентраційні залежності ПЕК *а* структур типу: пірохлору (*a*) та флюориту (*б*) на промені ZrO₂(HfO₂–Sm₂O₃) ізотермічного перерізу діаграми стану системи ZrO₂–HfO₂–Sm₂O₃ при 1500 °C

Рисунок 5.7 – Концентраційна залежність ПЕК *а* твердих розчинів зі структурою типу флюориту (F) на промені Sm₂O₃(ZrO₂–HfO₂) ізотермічного перерізу діаграми стану системи ZrO₂–HfO₂–Sm₂O₃ при 1500 °C

 $a - T^{*} (99 \text{ ZrO}_{2}-0,5 \text{ HfO}_{2}-0,5 \text{ Sm}_{2}\text{O}_{3}); \mathbf{\hat{o}} - T^{*}+F (97 \text{ ZrO}_{2}-1,5 \text{ HfO}_{2}-1,5 \text{ Sm}_{2}\text{O}_{3}); \mathbf{\hat{o}} - T^{*}+F (70 \text{ ZrO}_{2}-15 \text{ HfO}_{2}-15 \text{ Sm}_{2}\text{O}_{3}); \mathbf{\hat{o}} - F + 65 \text{ ZrO}_{2}-17,5 \text{ HfO}_{2}-17,5 \text{ Sm}_{2}\text{O}_{3}); \mathbf{\hat{o}} - F + Py (45 \text{ ZrO}_{2}-27,5 \text{ HfO}_{2}-27,5 \text{ Sm}_{2}\text{O}_{3}); \mathbf{\hat{o}} - F + Py (45 \text{ ZrO}_{2}-30 \text{ HfO}_{2}-30 \text{ Sm}_{2}\text{O}_{3}); \mathbf{\hat{o}} - F + Py (15 \text{ ZrO}_{2}-42,5 \text{ HfO}_{2}-42,5 \text{ Sm}_{2}\text{O}_{3}); \mathbf{\hat{o}} - F + Py (50 \text{ HfO}_{2}-50 \text{ Sm}_{2}\text{O}_{3})$

Рисунок 5.8 – Дифрактограми зразків вздовж променя ZrO₂(HfO₂–Sm₂O₃) ізотермічного перерізу діаграми стану системи ZrO₂–HfO₂–Sm₂O₃ після їх термообробки при 1500 °C

Твердий розчин на основі кубічної структури типу флюориту перебуває в рівновазі з усіма утвореними фазами даної системи. Упорядкування структури типу пірохлору спричиняє розрив розчинності з утворенням двох областей гомогенності. Область гомогенності твердих розчинів із кубічною структурою типу флюориту, що знаходиться ближче до вершини Sm_2O_3 трикутника вздовж променя $Sm_2O_3(ZrO_2-HfO_2)$ вужча відносно власної протяжності в граничних системах $ZrO_2-Sm_2O_3$ та $HfO_2-Sm_2O_3$. Параметри елементарних комірок твердих розчинів із кубічною структурою типу флюориту вздовж променя $ZrO_2(HfO_2-Sm_2O_3)$ змінюються від 0,5229 нм для двофазного складу Ру+F (45 $ZrO_2-27,5 HfO_2-27,5 Sm_2O_3)$ до 0,5184 нм для граничного складу Tepдoro розчину 65 $ZrO_2-17,5 HfO_2-17,5 Sm_2O_3$ та до 0,5070 нм для двофазного складу F+T (97 $ZrO_2-1,5 HfO_2-1,5 Sm_2O_3$).

Параметри елементарних комірок *а* твердих розчинів із кубічною структурою типу флюориту вздовж променя $Sm_2O_3(ZrO_2-HfO_2)$ змінюються від 0,5151 нм для трифазного складу F+T+M (47,5 $ZrO_2-47,5$ HfO_2-5 Sm_2O_3) до 0,5168 нм для граничного складу твердого розчину 42,5 $ZrO_2-42,5$ HfO_2-15 Sm_2O_3 та до 0,5216 нм для двофазного складу F+Py (37,5 $ZrO_2-37,5$ HfO_2-25 Sm_2O_3), а також від 0,5303 нм для двофазного складу Py+F (27,5 $ZrO_2-27,5$ HfO_2-45 Sm_2O_3) та до 0,5350 нм для двофазного складу B+F (20 ZrO_2-20 HfO_2-60 Sm_2O_3) (*puc. 5.7*).

Загальновідомо, що упорядкована структура типу пірохлору є надструктурою, похідною від кубічної структури типу флюориту (*розділ 1.4*). Тому при проведенні рентгенофазового аналізу зразків, що містять ці обидві фази, можна спостерегти перекриття характерних піків, яке в підсумку ускладнює їх ідентифікацію. При зменшенні вмісту ZrO₂ спостережено поступовий зсув піків у бік менших кутів 2 θ для структури типу флюориту (*рис. 5.8 д*). Аналогічно – виявлено чіткий розподіл структур F-HfO₂ і Py-Sm₂Hf₂O₇, що дозволяє провести ретельнішу ідентифікацію. Мікроструктура зразка з гетерогенної області Ру+F характеризується наявністю двох структурних складових, що чітко відрізняються за контрастом – темна структурна складова ідентифікована як фаза з упорядкованою структурою типу пірохлору (Ру), світла – F-HfO₂ (*рис. 5.9 а*).

a – x2000, Py+<F> (50 HfO₂–50 Sm₂O₃): світла <F>, темна Ру, чорні пори; *б* – x400, Py (40 ZrO₂–30 HfO₂–30 Sm₂O₃); *в* – x400, Py+<F> (45 ZrO₂–27,5 HfO₂–27,5 Sm₂O₃); *г* – x400, <F>++<T*> (85 ZrO₂–7,5 HfO₂–7,5 Sm₂O₃); *δ* – x400, <F>++<T*> (95 ZrO₂–2,5 HfO₂–2,5 Sm₂O₃); *c* – x400, <F>++<T*> (95 ZrO₂–2,5 HfO₂–2,5 Sm₂O₃); *c* – x400, <F>++<T*> (97 ZrO₂–0,5 HfO₂–0,5 Sm₂O₃); *b* – x400, <T*> (98 ZrO₂–0,5 HfO₂–0,5 Sm₂O₃); *b* – x400, <F>++<T*>+<M> (47,5 ZrO₂–47,5 HfO₂–5 Sm₂O₃); *u* – x2000, <F>++<T*>+<M> (47,5 ZrO₂–47,5 HfO₂–5 Sm₂O₃): cвітла <M>, сіра <F>, світло-сіра <T*>, чорні пори; *κ* – x400, <F> (42,5 ZrO₂–42,5 HfO₂–15 Sm₂O₃); *π* – 400, <F>+Py (37,5 ZrO₂–37,5 HfO₂–25 Sm₂O₃); *m* – x400, +<F> (7,5 ZrO₂–7,5 HfO₂–85 Sm₂O₃); *n* – 400, +<F> (1,5 ZrO₂–1,5 HfO₂–97 Sm₂O₃); *p* – x400, (0,5 ZrO₂–0,5 HfO₂–99 Sm₂O₃)

Рисунок 5.9 – Мікроструктури зразків системи ZrO₂–HfO₂–Sm₂O₃ після термічної обробки при 1500 °C, CEM-3PE (SEM-BSE)

Рисунок 5.9, аркуш 2

Рисунок 5.9, аркуш 3

Характерну мікроструктуру фази з упорядкованою структурою типу пірохлору показано на *рис. 5.9 б.* Протяжність області гомогенності фази з упорядкованою структурою типу пірохлору практично незмінна відносно граничних систем – її межі підтверджено за допомогою РФА зразків однофазного (20 ZrO₂–40 HfO₂– 40 Sm₂O₃, 40 ZrO₂–30 HfO₂–30 Sm₂O₃, 35 ZrO₂–35 HfO₂–30 Sm₂O₃, 30 ZrO₂–30 HfO₂–40 Sm₂O₃) та двофазного Ру+F (15 ZrO₂–42,5 HfO₂–42,5 Sm₂O₃), F+Py (45 ZrO₂–27,5 HfO₂–27,5 Sm₂O₃, 37,5 ZrO₂–37,5 HfO₂–25 Sm₂O₃, 27,5 ZrO₂–27,5 HfO₂–45 Sm₂O₃) складу.

Параметр елементарних комірок *а* твердих розчинів зі структурою типу пірохлору вздовж променя $ZrO_2(HfO_2-Sm_2O_3)$ (*рис. 5.6 а*) змінюється від 1,0606 нм для двофазного складу Ру+F (50 HfO₂-50 Sm₂O₃) до 1,0582 нм для граничного

складу твердого розчину 20 ZrO₂–40 HfO₂–40 Sm₂O₃ та до 1,0489 нм для двофазного складу Py+F (45 ZrO₂–27,5 HfO₂–27,5 Sm₂O₃). Також вздовж променя Sm₂O₃(ZrO₂–HfO₂) – від 1,0430 нм для двофазного складу Py+F (37,5 ZrO₂–37,5 HfO₂–25 Sm₂O₃) до 1,0484 нм для граничного складу твердого розчину 35 ZrO₂–35 HfO₂–30 Sm₂O₃ та до 1,0755 нм для двофазного складу Py+F (27,5 ZrO₂–27,5 HfO₂–45 Sm₂O₃).

Поблизу вершини Sm_2O_3 утворюється невелика область гомогенності на основі моноклінної В-модифікації оксиду самарію. Гранична розчинність в кристалічній гратці твердого розчину на основі $B-Sm_2O_3$ менша порівняно з граничними подвійними системами та складає до 0,5 % ZrO_2 (HfO₂) за мольною часткою. Моноклінна модифікація Sm_2O_3 перебуває в рівновазі лише з твердими розчинами кубічної структури типу флюориту. Разом вони утворюють спільну гетерогенну область B+F, мікроструктури з якої представлено на *рис* 5.9 *м*–*n*. Зазначена спільна область вирізняється наявністю двох структурних складових, які чітко відрізняються за контрастом. Пористу темну фазу ідентифіковано як структуру типу флюориту (F), світлу – B-Sm₂O₃. Характерну мікроструктуру моноклінних твердих розчинів на основі B-Sm₂O₃ представлено на *рис* 5.9 *p*.

Зі сторони граничної системи ZrO_2 –HfO₂ утворюється незначна область гомогенності на основі моноклінної модифікації HfO₂. В даній кристалічній гратці розчиняється менше 1 % xSm_2O_3 . Межі області гомогенності M-HfO₂ підтверджено за допомогою РФА зразків однофазного T (20 ZrO_2 –80 HfO₂) та двофазного F+T (19 ZrO_2 –80 HfO₂–1 Sm_2O_3) складу. Мікроструктури трифазної області F+T+M характеризуються наявністю трьох структурних складових, що чітко відрізняються за контрастом та морфологією (*рис. 5.9 ж, и*).

5.3. Висновки до п'ятого розділу

Представлені в розділі експериментальні дані опубліковано в [392–396].

1. Досліджено фазові рівноваги в системі ZrO₂–HfO₂–Sm₂O₃ та побудовано відповідні ізотермічні перерізи при 1600 та 1500 °C. Встановлено, що в даній системі при 1600 та 1500 °C утворюються тверді розчини на основі поліморфних модифікацій вихідних компонентів та фази з упорядкованою кубічною структурою типу пірохлору.

2. Утворення нових фаз в даній системі не встановлено.

6. ФАЗОВІ РІВНОВАГИ В СИСТЕМІ ZrO₂-HfO₂-Eu₂O₃

Фазові рівноваги в потрійній системі ZrO_2 – HfO_2 – Eu_2O_3 досліджено після термообробки зразків на повітрі при температурах 1100, 1500 та 1700 °C. Зразки приготовано з інтервалом 1~10 % за мольною часткою вздовж променя $Eu_2O_3(45 ZrO_2-55 HfO_2)$ та ізоконцентрат 5 та 80 Eu_2O_3 на концентраційному трикутнику. За отриманими результатами побудовано ізотермічні перерізи діаграми стану системи ZrO_2 – HfO_2 – Eu_2O_3 при зазначених температурах.

6.1. Ізотермічний переріз діаграми стану системи ZrO₂-HfO₂-Eu₂O₃ при 1700 °C

Хімічний та фазовий склад, а також параметри елементарних комірок після термообробки зразків при 1700 °С наведено в *табл. 6.1*. При даній температурі утворюються тверді розчини на основі поліморфних модифікацій B-Eu₂O₃, T-ZrO₂, M-HfO₂, F-ZrO₂ (F-HfO₂) та фази з упорядкованою кубічною структурою типу пірохлору Py-Eu₂Hf₂O₇ (Py-Eu₂Zr₂O₇).

В системі ZrO_2 –HfO₂–Eu₂O₃ при 1700 °C утворюються три ряди неперервних твердих розчинів з кубічною структурою. Утворення двох окремих рядів твердих розчинів на основі структури типу флюориту F-ZrO₂ (F-HfO₂) зумовлено розривом розчинності внаслідок упорядкування фази з кубічною структурою типу пірохлору Py-Eu₂Hf₂O₇ (Py-Eu₂Zr₂O₇).

Побудований ізотермічний переріз даної системи при 1700 °С (*рис. 6.1*) характеризується наявністю шести однофазних (В, Ру, Т, М, двох F), шести двофазних (В+F, F+T, F+M, T+M, двох F+Py) та однієї трифазної (F+T+M) областей.

Окрім даних щодо фазового складу зразків, для визначення меж фазових полів використовували концентраційну залежність параметру елементарних комірок твердих розчинів з кубічною структурою типу флюориту (*puc. 6.2*).

Хіміч	ний скла	ид (<i>x</i>), %		Пар	аметри	елемента	арних ко	мірок, н	IM
7.0			Фазовий склад	<f></f>	Ру		 	<m></m>	
ZrO_2	HfO ₂	Eu_2O_3	CKIUA	a	а	а	b	С	β,°
1	2	3	4	5	6	7	8	9	10
			промінь Еи2О3(4	45 ZrO ₂ –5	5 HfO ₂)	-			
1,8	2,2	96		_	_	1,4375	0,3584	0,9904	91,30
4,5	5,5	90	+<f></f>	0,5345	_	1,4407	0,3592	0,9776	91,50
9	11	80	+<f></f>	0,5342	_	1,4351	0,3591	0,9887	91,33
15,75	19,25	65	+<f></f>	0,5336	_	1,4341	0,3595	0,9961	91,13
20,25	24,75	55	+<f></f>	0,5334	_	_	_	_	_
22,5	27,5	50	<f></f>	0,5326	_	_	_	_	_
24,75	30,25	45	<f></f>	0,5312	_	_	_	_	_
27	33	40	<f></f>	0,5300	_	_	_	_	_
29,25	35,75	35	<f>+Py</f>	0,5267	1,0540	_	_	_	_
30,375	37,125	32,5	<f>+Py</f>	0,5258	1,0516	_	_	_	_
31,5	38,5	30	Ру	-	1,0477	_	_	_	_
33,75	41,25	25	Py+ <f></f>	0,5219	1,0438	_	_	_	_
36	44	20	Py+ <f></f>	0,5194	1,0390	_	_	_	_
38,25	46,75	15	<f></f>	0,5166	_	_	_	_	_
40,5	49,5	10	<f></f>	0,5144	_	_	_	_	_
42,75	52,25	5	<f>+<t*></t*></f>	0,5141	_	0,5089	0,4744	0,5461	95,20
43,875	53,625	2,5	<f>+<t*></t*></f>	0,5137	_	0,5092	0,4744	0,5470	95,08
44,55	54,45	1	<f>+<t*></t*></f>	0,5132	_	0,5086	0,4746	0,5466	95,17
			ізоконцент	рата 5 Еи	$_{2}O_{3}$				
10	85	5	<f>+<t*>+<m></m></t*></f>	0,5137	_	0,5079	0,4749	0,5447	95,41
15	80	5	<f>+<t*>+<m></m></t*></f>	0,5139	_	0,5061	0,4672	0,5452	94,27
17,5	77,5	5	<f>+<t*>+<m></m></t*></f>	0,5137	_	0,5097	0,4739	0,5464	95,06
20	75	5	<f>+<t*></t*></f>	0,5140	_	0,5102	0,4959	0,5459	97,88
35	60	5	<f>+<t*></t*></f>	0,5142	_	0,5120	0,4969	0,5467	98,04

Таблиця 6.1 – Хімічний та фазовий склад системи ZrO₂–HfO₂–Eu₂O₃ після термічної обробки при 1700 °С (за даними РФА та СЕМ)

1	2	3	4	5	6	7	8	9	10
40	55	5	<f>+<t*></t*></f>	0,5143	_	0,5081	0,4716	0,5471	94,85
50	45	5	<f>+<t*></t*></f>	0,5138	_	0,5085	0,4737	0,5474	95,06
55	40	5	<f>+<t*></t*></f>	0,5145	_	0,5093	0,4754	0,5470	95
70	25	5	<f>+<t*></t*></f>	0,5143	_	0,5097	0,4736	0,5482	95,01
75	20	5	<f>+<t*></t*></f>	0,5143	_	0,5085	0,4567	0,5482	92,62
80	15	5	<f>+<t*></t*></f>	0,5147	_	0,5100	0,4723	0,5481	94,53
90	5	5	<f>+<t*></t*></f>	0,5149	_	0,5103	0,4791	0,5463	95,40

Продовження таблиці 6.1

Примітка: <T*> – оскільки при вибраному режимі термообробки тетрагональна модифікація не загартовується, досліджували ознаки її утворення

Рисунок 6.1 – Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂–Eu₂O₃ при 1700 °C

Рисунок 6.2 – Концентраційна залежність ПЕК *а* твердих розчинів зі структурою типу флюориту (F) на промені Eu₂O₃(45 ZrO₂–55 HfO₂) ізотермічного перерізу діаграми стану системи ZrO₂–HfO₂–Eu₂O₃ при 1700 °C

Встановлено, що параметр елементарних комірок *а* твердих розчинів зі структурою типу флюориту вздовж променя Eu₂O₃(45 ZrO₂–55 HfO₂) змінюється з 0,5345 нм для двофазного складу B+F (4,5 ZrO₂–5,5 HfO₂–90 Eu₂O₃) до 0,5326 нм для граничного складу твердого розчину 22,5 ZrO₂–27,5 HfO₂–90 Eu₂O₃) до 0,5267 нм для двофазного складу Py+F (29,25 ZrO₂–35,75 HfO₂–35 Eu₂O₃), а також з 0,5219 нм для двофазного складу Py+F (33,75 ZrO₂–41,25 HfO₂–25 Eu₂O₃) до 0,5166 нм для граничного складу твердого розчину 38,25 ZrO₂–46,75 HfO₂–15 Eu₂O₃ та до 0,5166 нм для граничного складу твердого розчину 38,25 ZrO₂–46,75 HfO₂–15 Eu₂O₃ та до 0,5141 нм для двофазного складу F+T (42,5 ZrO₂–52,25 HfO₂–5 Eu₂O₃). Отримані дані свідчать про те, що зі зниженням вмісту оксиду європію параметр елементарних комірок *а* зменшується – це пов'язано з тим, що при утворенні даного твердого розчину відбувається заміщення іонів Eu³⁺ на іони меншого розміру Hf⁴⁺ та Zr⁴⁺. Зміни меж існування твердих розчинів типу флюориту відносно меж в граничних подвійних системах HfO₂–Eu₂O₃ та ZrO₂–Eu₂O₃ не спостережено. Слід зазначити, що тверді розчини на основі структури типу флюориту при 1700 °C перебувають в рівновазі з

усіма утвореними в даній системі фазами. З урахуванням гетерогенних областей вони займають більшу частину даного ізотермічного перерізу.

На *рис. 6.3* представлено мікроструктури зразків, що характеризують різні фазові області дослідженої системи після термообробки зразків при 1700 °C.

З використанням досліджень мікроструктури (*puc. 6.3 a, б*) та РФА (*puc. 6.4 e,* \mathcal{H}), межі двофазної області B+F на промені Eu₂O₃(45 ZrO₂–55 HfO₂) визначено в інтервалі 54~95 % xEu₂O₃. Мікроструктури зразків зі складом 4,5 ZrO₂–5,5 HfO₂–90 Eu₂O₃ та 20,25 ZrO₂–24,75 HfO₂–55 Eu₂O₃ характеризуються двома структурними складовими, що чітко відрізняються за контрастом: світла являє собою B-Eu₂O₃, темна – твердий розчин зі структурою типу флюориту). Наведені мікроструктури демонструють різноманітність морфології B-Eu₂O₃ в межах однієї фазової області – в зразку зі складом 4,5 ZrO₂–5,5 HfO₂–90 Eu₂O₃ у вигляді світлих стовпчастих зерен (*puc. 6.3 a*) та у вигляді заокруглених дендритів в зразку зі складом 20,25 ZrO₂–24,75 HfO₂–55 Eu₂O₃ (*puc. 6.3 б*).

 $a - \langle B \rangle + \langle F \rangle$ (4,5 ZrO₂-5,5 HfO₂-90 Eu₂O₃); $\delta - \langle B \rangle + \langle F \rangle$ (20,25 ZrO₂-24,75 HfO₂-55 Eu₂O₃): світла $\langle B$ -Eu₂O₃ \rangle , темна $\langle F \rangle$, чорні пори; $e - \langle F \rangle + Py$ (29,25 ZrO₂-35,7 HfO₂-35 Eu₂O₃): світла $\langle F \rangle$, темна Ру, чорні пори; $e - \langle F \rangle$ (38,25 ZrO₂-46,75 HfO₂-15 Eu₂O₃); $\delta - \langle F \rangle + \langle T \rangle (42,75 ZrO_2 - 52,25 HfO_2 - 5 Eu₂O_3)$: світла $\langle T \rangle$; e - Py (30,375 ZrO₂-37,125 HfO₂-32,5 Eu₂O₃); $\mu - \langle F \rangle + \langle T \rangle + \langle M \rangle (17,5 ZrO_2 - 77,5 HfO_2 - 5 Eu₂O_3)$; $u - \langle F \rangle + \langle T \rangle + \langle M \rangle (50 ZrO_2 - 45 HfO_2 - 5 Eu_2O_3)$

Рисунок 6.3 – Мікроструктури зразків системи ZrO₂–HfO₂–Eu₂O₃ після термічної обробки при 1700 °C, CEM-3PE (SEM-BSE)

Рисунок 6.3, аркуш 2

ж

На *рис. 6.3 в* показана мікроструктура гетерогенного зразка Ру+F. Матрицю становить світла структурна складова, ідентифікована як твердий розчин з кубічною структурою типу флюориту, по поверхні якої рівномірно розташовується сіра фаза з упорядкованою структурою типу пірохлору Ру-Eu₂Hf₂O₇ (Ру-Eu₂Zr₂O₇).

и

Утворення неперервного ряду твердих розчинів на основі упорядкованої структури типу пірохлору пояснюється близькими розмірами іонів Zr^{4+} та Hf^{4+} , а також схожістю будови граничних подвійних систем HfO_2 —Eu₂O₃ та ZrO_2 —Eu₂O₃. Мікроструктура фази з упорядкованою кубічною структурою типу пірохлору (Ру) вирізняється значною пористістю (*рис. 6.3 е*). Фаза з упорядкованою структурою типу пірохлору в даному ізотермічному перерізі перебуває в рівновазі виключно з кубічними твердими розчинами на основі структури типу флюориту (F).

На *рис. 6.3 г* представлено мікроструктуру, характерну для твердого розчину зі структурою типу флюориту. Аналогічно до впорядкованої структури типу пірохлору – мікроструктури твердих розчинів із кубічною структурою типу флюориту демонструють значну кількість пор. Слід зазначити, що характерна для представлених структур значна пористість спричинена вибраним режимом термообробки. Отримання безпористої структури потребує особливої методики термообробки та є окремим завданням, що не є метою даної роботи.

Вузька область гомогенності на основі тетрагональної модифікації діоксиду цирконію утворюється вздовж граничної подвійної системи ZrO₂-HfO₂. Варто зазначити, що при вибраному режимі термообробки тетрагональна структура не гартується – тому на дифрактограмах присутні піки, що належать моноклінній модифікації M-ZrO₂ (*puc.* 6.4 a, δ). За результатами рентгенофазового аналізу встановлено, що зразки зі складом 44,55 ZrO₂-54,45 HfO₂-1 Eu₂O₃, 43,875 ZrO₂-53,625 HfO₂-2,5 Eu₂O₃ та 42,75 ZrO₂-52,25 HfO₂-5 Eu₂O₃ містять дифракційні піки, що відповідають структурам F та M. Кількісний вміст кубічної фази в гетерогенних зразках F+M визначено за допомогою обчислення частки інтегральної інтенсивності піків кубічної фази від загальної інтенсивності двох фаз (розділ 2.2, рівняння 2.1). Встановлено, що при концентрації 1 % xEu_2O_3 утворюється ~ 7 % кубічного твердого розчину зі структурою типу флюориту, однак при збільшенні вмісту до 5 % xEu₂O₃, кількість кубічної фази становить ~ 66 %. Мікроструктура двофазного зразка F+T (42,75 ZrO₂-52,25 HfO₂–5 Eu₂O₃) містить дві структурні складові, що чітко різняться за контрастом. Матрицю становить твердий розчин зі структурою типу флюориту F, що містить незначні вкраплення світлої структурної складової Т*-ZrO₂ (*puc. 6.3 d*).

 $a - F+T* (44,55 ZrO_2-54,45 HfO_2-1 Eu_2O_3); \delta - F+T* (42,75 ZrO_2-52,25 HfO_2-5 Eu_2O_3);$ $s - F (40,5 ZrO_2-49,5 HfO_2-10 Eu_2O_3); z - F+Py (29,25 ZrO_2-33,75 HfO_2-35 Eu_2O_3);$ $\delta - B+F (15,75 ZrO_2-19,25 HfO_2-65 Eu_2O_3); e - B+F (4,5 ZrO_2-5,5 HfO_2-90 Eu_2O_3);$ $HC - B (1,8 ZrO_2-2,2 HfO_2-96 Eu_2O_3)$

Рисунок 6.4 – Дифрактограми зразків системи ZrO₂–HfO₂–Eu₂O₃ після термічної обробки при 1700°C

Рисунок 6.4, аркуш 2

139

Рисунок 6.4, аркуш 3

Біля вершини Eu₂O₃ концентраційного трикутника утворюється невелика область гомогенності твердих розчинів на основі моноклінної В-модифікації Eu₂O₃ – параметри елементарних комірок B-Eu₂O₃ вздовж променя Eu₂O₃(45 ZrO₂-55 HfO₂) змінюються з a = 1,4375 нм, b = 0,3584 нм, c = 0,9904 нм, $\beta = 91,30^{\circ}$ для граничного складу твердого розчину до a = 1,4407 нм, b = 0,3592 нм, c = 0,9776 нм, $\beta = 91,50^{\circ}$ для двофазного складу B+F (4,5 ZrO₂-5,5 HfO₂-90 Eu₂O₃).

Область гомогенності на основі моноклінної модифікації діоксиду гафнію вздовж граничної подвійної системи ZrO₂–HfO₂ простягається 0–14,5 % *x*ZrO₂. Існування зазначеної області спричиняє утворення трифазної області F+T+M.

140

Мікроструктури зразків трифазної області F+T+M представлено на рис. 6.3 ж, и.

Встановлено, що ізотермічний переріз дослідженої системи при 1700 °С характеризується наявністю однієї трифазної F+T+M та шести двофазних (F+B, F+T, F+M, T+M, двох F+Py) областей.

6.2. Ізотермічний переріз діаграми стану системи ZrO₂-HfO₂-Eu₂O₃ при 1500 °C

Ізотермічний переріз (*puc.6.5*) вирізняється утворенням чотирьох неперервних рядів твердих розчинів – В-Еu₂O₃, двох із кубічною структурою типу флюориту, а також на основі фази з упорядкованою структурою типу пірохлору.

Рисунок 6.5 – Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂–Eu₂O₃ при 1500 °C

Хімічний та фазовий склад, а також параметри елементарних комірок після термообробки зразків при 1500 °С наведено в *табл. 6.2*.

Хімічн	ий склад	(x), %		Параметри елементарних комірок, нм						
	1100		Фазовий склад	<f></f>	Py <c></c>		 	<m></m>		
ZrO_2	HfO ₂	Eu_2O_3		a	a	a	b	с	β,°	
1	2	3	4	5	6	7	8	9	10	
			промінь Еи2О3	(45 ZrO ₂ -	-55 HfO ₂)					
0,9	1,1	98		_	_	1,4399	0,3584	0,9877	91,76	
1,8	2,2	96	+<f></f>	0,5350	_	1,4349	0,3585	0,9907	91,57	
2,25	2,75	95	+<f></f>	0,5347	_	1,4343	0,3586	0,9904	91,37	
4,5	5,5	90	+<f></f>	0,5345	_	1,4340	0,3588	0,9912	91,37	
6,75	8,25	85	+<f></f>	0,5342	_	1,4351	0,3591	0,9887	91,33	
11,25	13,75	75	+<f></f>	0,5341	_	1,4342	0,3596	0,9963	90,80	
13,5	16,55	70	+<f></f>	0,5338	_	1,4368	0,3597	0,9943	90,98	
15,75	19,25	65	+<f></f>	0,5336	_	1,4341	0,3595	0,9961	91,13	
18	22	60	+<f></f>	0,5337	_	_	_	_	_	
20,25	24,75	55	<f></f>	0,5332	_	_	_	_	_	
22,5	27,5	50	<f></f>	0,5326	_	_	_	_	_	
24,75	30,25	45	<f></f>	0,5312	_	_	_	_	_	
27	33	40	Ру	_	1,0567	_	_	_	_	
28,125	34,375	37,5	Ру	_	1,0563	_	_	_	_	
29,25	35,75	35	Py+ <f></f>	0,5277	1,0542	_	_	_	_	
30,375	37,125	32,5	Py+ <f></f>	0,5257	1,0514	-	-	_	_	
31,5	38,5	30	<f></f>	0,52	_	-	-	_	_	
33,75	41,25	25	<f></f>	0,5219	_	_	-	_	_	
36	44	20	<f></f>	0,5194	_	_	_	_	_	
38,25	46,75	15	<f></f>	0,5172	_	_	_	_	_	
40,5	49,5	10	<f>+<t*>+<m></m></t*></f>	0,5148	_	_	_	_	_	
42,75	52,25	5	<f>+<t*>+<m></m></t*></f>	0,5146	_	0,5134	0,5256	0,5216	99,04	
44,55	54,45	1	<f>+<t*>+<m></m></t*></f>	0,5147	_	0,5133	0,5254	0,5209	98,96	
			ізоконцент	грата 80 I	Eu ₂ O ₃					
2,5	17,5	80	+<f></f>	0,5332	_	1,4369	0,3591	0,9900	91,31	

Таблиця 6.2 – Хімічний та фазовий склад системи ZrO₂–HfO₂–Eu₂O₃ після термічної обробки при 1500 °C (за даними РФА та СЕМ)

Продовження таблиці 6.2

1	2	3	4	5	6	7	8	9	10
5	15	80	+<f></f>	0,5333	_	1,4330	0,3589	0,9957	91,27
7,5	12,5	80	+<f></f>	0,5334	_	1,4306	0,3592	0,9952	91,28
16	4	80	+<c>+<f></f></c>	0,5340	1,0776	_	_	_	_
17	3	80	+<c>+<f></f></c>	0,5340	1,0784	_	_	_	_
18	2	80	<f>+<c></c></f>	_	1,0778	_	_	_	_
19	1	80	<c></c>	_	1,0759	_	_	_	_
			ізоконцен	трата 5 Е	u_2O_3				
10	85	5	<f>+<m></m></f>	0,5134	_	0,5110	0,5246	0,5198	98,96
15	80	5	<f>+<m></m></f>	0,5136	_	0,5096	0,5245	0,5196	98,98
17,5	77,5	5	<f>+<m></m></f>	0,5138	_	0,5120	0,5183	0,5219	98,75
20	75	5	<f>+<m></m></f>	0,5139	_	0,5108	0,5256	0,5190	98,60
35	60	5	<f>+<m></m></f>	0,5140	_	0,5111	0,5243	0,5190	98,85
40	55	5	<f>+<t*>+<m></m></t*></f>	0,5144	_	0,5138	0,5249	0,5203	98,90
50	45	5	<f>+<t*>+<m></m></t*></f>	0,51443	_	0,5149	0,5253	0,5217	98,91
55	40	5	<f>+<t*></t*></f>	0,5145	_	0,5139	0,5284	0,5197	98,96
70	25	5	<f>+<t*></t*></f>	0,5146	_	0,5143	0,5286	0,5203	99,03
75	20	5	<f>+<t*></t*></f>	0,5149	_	0,5193	0,5612	0,4937	100,0
80	15	5	<f>+<t*></t*></f>	0,5147	_	0,5187	0,5644	0,4928	99,95
85	10	5	<f>+<t*></t*></f>	0,5148	_	0,5206	0,5658	0,4923	100,1
90	5	5	<f>+<t*></t*></f>	0,5149	_	0,5212	0,5656	0,4928	100,2

Примітка: <T*> – оскільки при вибраному режимі термообробки тетрагональна модифікація не загартовується, досліджували ознаки її утворення

В даному перерізі утворюються два неперервні ряди твердих розчинів зі структурою типу флюориту, що спричинено розривом її розчинності внаслідок упорядкування фази з кубічною структурою типу пірохлору. Вздовж променя $Eu_2O_3(45 ZrO_2-55 HfO_2)$ параметр елементарних комірок кубічних твердих розчинів зі структурою типу флюориту змінюється з 0,5147 нм для трифазного складу F+T+M (44,55 ZrO₂-54,45 HfO₂-1 Eu₂O₃) до 0,5172 нм для граничного

складу твердого розчину 38,25 ZrO₂–46,75 HfO₂–15 Eu₂O₃ та до 0,5257 нм для двофазного складу F+Py (30,375 ZrO₂–37,125 HfO₂–32,5 Eu₂O₃), а також від 0,5312 нм для граничного складу твердого розчину 24,75 ZrO₂–30,25 HfO₂–45 Eu₂O₃ до 0,5337 нм для двофазного складу B+F (18 ZrO₂–22 HfO₂–60 Eu₂O₃). На *рис. 6.6* показано концентраційну залежність параметру елементарних комірок *а* кубічних твердих розчинів зі структурою типу флюориту. Представлені дані свідчать про збільшення ПЕК *а* при збільшенні вмісту Eu₂O₃. Це пояснюється тим, що найбільшими катіонами, що беруть участь у фазоутворенні є Eu³⁺. Параметр елементарних комірок *а* вздовж двох ізоконцентрат 5 та 80 Eu₂O₃ майже не змінюється. Ймовірно це обумовлено тим, що за даним напрямком переважно відбувається ізоморфне заміщення іонів Zr⁴⁺ та Hf⁴⁺ (*розділ 1.4*). Варто зазначити, що тверді розчини зі структурою типу флюориту займають більшу частину ізотермічного перерізу та перебувають в рівновазі з усіма утвореними при його температурі фазами.

Рисунок 6.6 – Концентраційна залежність ПЕК *а* твердих розчинів зі структурою типу флюориту (F) на промені Eu₂O₃(45 ZrO₂–55 HfO₂) ізотермічного перерізу діаграми стану системи ZrO₂–HfO₂–Eu₂O₃ при 1500 °C
В представленому ізотермічному перерізі, як і при 1700 °С, утворюється неперервний ряд твердих розчинів на основі фази з упорядкованою структурою типу пірохлору Ру-Еu₂Hf₂O₇ (Ру-Eu₂Zr₂O₇). Область гомогенності зазначеної фази з упорядкованою структурою типу пірохлору збільшується з підвищенням вмісту діоксиду гафнію, що пов'язано з будовою граничної системи HfO₂–Eu₂O₃. Мікроструктуру зразка з області гомогенності фази з упорядкованою типу пірохлору (Ру) представлено на *рис. 6.7 д*.

a – x2000, (0,9 ZrO₂–1,1 HfO₂–98 Eu₂O₃); *б* – x2000, +<F> (2,25 ZrO₂–2,75 HfO₂–95 Eu₂O₃); *в* – x2000, +<F> (15,75 ZrO₂–19,25 HfO₂–65 Eu₂O₃): світла <B-Eu₂O₃>, темна <F>, чорні пори; *г* – x2000, <F> (20,25 ZrO₂–24,75 HfO₂–55 Eu₂O₃); *δ* – x400, Py (28,125 ZrO₂–34,375 HfO₂–37,5 Eu₂O₃); *e* – x400, +<C>+<F> (17 ZrO₂–3 HfO₂–80 Eu₂O₃): світла <B-Eu₂O₃>, сіра <C-Eu₂O₃>, темна <F>; *ж* – x400, +<F> (10 ZrO₂–10 HfO₂–80 Eu₂O₃): світла <B-Eu₂O₃>, темна <F>; *ж* – x400, +<F> (10 ZrO₂–10 HfO₂–80 Eu₂O₃): світла <B-Eu₂O₃>, темна <F>; *ж* – x400, +<F> (10 ZrO₂–10 HfO₂–80 Eu₂O₃): світла <B-Eu₂O₃>, темна <F>, чорні пори; *и* – x2000, <F>+<M> (17,5 ZrO₂–77,5 HfO₂–5 Eu₂O₃): світла <M-HfO₂>, сіра <F>, чорні пори; *κ* – x400, <F>+<T*> (90 ZrO₂–5 HfO₂–5 Eu₂O₃): зерна – <T*-ZrO₂>, "гладенька" <F>, чорні пори; *м* – x400, <F>+<T*>+(40 ZrO₂–55 HfO₂–5 Eu₂O₃): зерна – <T*-ZrO₂>, сіра <F>, чорні пори; *н* – x400, Py+<F> (32,625 ZrO₂–39,875 HfO₂–27,5 Eu₂O₃): "гладенька" <F>, чорні пори; *н* – x400, Py+<F> (32,625 ZrO₂–39,875 HfO₂–27,5 Eu₂O₃): "гладенька" <F>, чорні пори; *н* – x400, Py+<F> (32,625 ZrO₂–39,875 HfO₂–27,5 Eu₂O₃): "гладенька" <F>, чорні пори; *н* – x400, Py+<F> (32,625 ZrO₂–39,875 HfO₂–27,5 Eu₂O₃): "гладенька" <F>, чорні пори; *н* – x400, Py+<F> (32,625 ZrO₂–

Рисунок 6.7 – Мікроструктури зразків системи ZrO₂–HfO₂–Eu₂O₃ після термічної обробки при 1500 °C, CEM-3PE (SEM-BSE)

A2687_202

Л

IIII

Рисунок 6.7, аркуш 2

к

A2686_401

Рисунок 6.7, аркуш 3

На *рис. 6.7 б–г, е–н* представлено мікроструктури зразків з гетерогенних областей, які містять структурну складову твердого розчину з кубічною структурою типу флюориту. Мікроструктуру зразка з області гомогенності F представлено на *рис. 6.7 г.* Мікроструктура зразка Ру+F (32,625 ZrO₂–39,875 HfO₂–27,5 Eu₂O₃) характеризується двома структурними складовими, що відрізняються за морфологією (*рис. 6.7 н*): "гладенькі" ділянки відповідають твердому розчину із кубічною структурою типу флюориту, "розрихлені" – фазі з упорядкованою структурою типу пірохлору.

Представлені на *рис. 6.7 б, в, ж* мікроструктури двофазних зразків B+F містять дві структурні складові, що чітко відрізняються за контрастом та морфологією – світлу фазу ідентифіковано як твердий розчин на основі B-Eu₂O₃, темна фаза зі значною пористістю відповідає твердому розчину зі структурою типу флюориту.

Значний науковий інтерес викликають матеріали з флюоритоподібною структурою на основі діоксидів цирконію і гафнію [94–100]. Утворення даної структури при температурах, нижчих за температуру існування відповідних поліморфних модифікацій, можливе лише при легуванні діоксидів цирконію і гафнію оксидами лужноземельних або рідкісноземельних елементів [274]. Для створення матеріалів функціонального та конструкційного призначення на основі структури типу флюориту необхідні відомості про концентраційні

147

та температурні інтервали існування твердих розчинів на основі структури типу флюориту. В дослідженій системі при 1500 °C утворюються протяжні області твердих розчинів з кубічною структурою типу флюориту. Збереження структурної складової в широкому діапазоні існування надає можливість для варіативності властивостей та універсальності нових матеріалів [95].

Варто зазначити, що при пониженні температури від 1700 до 1500 °С ізотермічний переріз досліджуваної системи ускладнюється в результаті стабілізації кубічних твердих розчинів С-типу. Оскільки перетворення С-Eu₂O₃ \leftrightarrow B-Eu₂O₃ відбувається при 1077 °С (*розділ 1.1, табл. 1.4*), в даному ізотермічному перерізі утворення структури С-типу нехарактерне. Проте легування зазначеної структури підвищує температуру її існування [274]. В гратці С-Eu₂O₃ при 1500 °С розчиняється менше 2 % *х*HfO₂. Дифрактограми (*рис. 6.8 а–б*) показують, що для зразка зі складом 19 ZrO₂–1 HfO₂–80 Eu₂O₃ характерне утворення дифракційних піків лише кубічної структури С-типу, водночас збільшення молярної частки діоксиду гафнію до 2 % спричиняє появу піків, які відповідають кубічній структурі типу флюориту.

Рисунок 6.8, аркуш 2

149

Тверді розчини з кубічною структурою С-типу перебувають у рівновазі з твердими розчинами на основі моноклінної модифікації В-Eu₂O₃, а також з твердими розчинами з кубічною структурою типу флюориту (F). Наявність в даному ізотермічному перерізі області гомогенності C-Eu₂O₃ призводить до утворення трифазної області B+C+F. Мікроструктура зразка складу 17 ZrO₂–3 HfO₂–80 Eu₂O₃, що відповідає зазначеній трифазній області, вирізняється наявністю трьох структурних складових, що різняться за морфологією та контрастом. Світлу складову у формі витягнутих зерен ідентифіковано як В-Eu₂O₃, темнішу матрицю – як твердий розчин кубічної структури (*рис. 6.7 е*).

Поблизу вершини Eu₂O₃ трикутника утворюється область гомогенності моноклінної модифікації, межі якої простягаються з відповідних інтервалів граничних систем ZrO_2 -Eu₂O₃ (0-4 % $xZrO_2$) та HfO₂-Eu₂O₃ (0-6 % $xHfO_2$). Встановлено, що в досліджуваній потрійній системі розчинність діоксидів цирконію та гафнію в гратці В-Еи₂O₃ зменшується порівняно з граничними подвійними системами ZrO₂-Eu₂O₃ [274] та HfO₂-Eu₂O₃ [185,275]. Параметри елементарних комірок твердих розчинів моноклінної структури B-Eu₂O₃ змінюються від *a* = 1,4399 нм, *b* = 0,3584 нм, *c* = 0,9877, *β* = 91,76° для граничного складу твердого розчину 0,9 $ZrO_2-1,1$ HfO₂-98 Eu₂O₃ до a = 1,4349нм, b = 0.3585 нм, c = 0.9907, $\beta = 91.57^{\circ}$ для гетерогенного складу B+F (1.8 ZrO₂-2,2 HfO₂-96 Eu₂O₃) на промені Eu₂O₃(45 ZrO₂-55 HfO₂) та від a = 1,4369нм, b = 0.3591 нм, c = 0.9900, $\beta = 91.31^{\circ}$ для двофазного складу B+F (2.5 ZrO₂-17,5 HfO₂-80 Eu₂O₃) до *a* = 1,4205 нм, *b* = 0,3587 нм, c= 1,0196, *β* = 91,24° для трифазного складу B+C+F (12,5 $ZrO_2-7,5$ HfO_2-80 Eu_2O_3) на ізоконцентраті 80 Eu₂O₃ (*табл. 6.2*). При температурі даного ізотермічного перерізу тверді розчини з моноклінною структурою (В) перебувають в рівновазі з твердими розчинами кубічної зі структурою С-типу, а також типу флюориту.

Вздовж граничної подвійної системи ZrO₂–HfO₂ простягається область гомогенності на основі твердих розчинів Т-модифікації діоксиду цирконію. Загальновідомо, що тетрагональна структура діоксидів цирконію та гафнію

при охолодженні зазнає впливу мартенситного переходу $T \rightarrow M$ (*poзділ 1.2*). При використаному режимі термообробки на дифрактограмах досліджених зразків спостережено піки, що належать моноклінній (M) структурі – тому при визначенні меж фазових полів F+T, F+M та F+T+M враховували дані мікроструктурних досліджень. Мікроструктури зі структурною складовою T* представлено на *puc. 6.7 к, л.* Мікроструктури двофазного зразка F+T характеризується утворенням двох структурних складових, що чітко різняться за морфологією (*puc. 6.7 к–м*). Внаслідок перетворення T \rightarrow M, що спричиняє розтріскування зразків – тетрагональний твердий розчин T*-ZrO₂ проявлений у вигляді зерен, а гладенькі ділянки поверхні належать твердому розчину зі структурою типу флюориту. Водночас для двофазного складу F+M не спостережено утворення подібних зерен. Мікроструктура даного зразка вирізняється двома структурними складовими, що чітко відрізняються за контрастом: світлу структурну складову ідентифіковано як M-HfO₂, сіру – тверді розчини з кубічною структурою типу флюориту.

Параметри елементарних комірок M-HfO₂ змінюються з a = 0,5110 нм, b = 0,5246 нм, c = 0,5198, $\beta = 98,96^{\circ}$ для двофазного складу M+F (10 ZrO₂-85 HfO₂-5 Eu₂O₃) до a = 0,5138 нм, b = 0,5249 нм, c = 0,5203, $\beta = 98,90^{\circ}$ для трифазного складу F+T+M (50 ZrO₂-45 HfO₂-5 Eu₂O₃) на ізоконцентраті 5 Eu₂O₃. Мікроструктура трифазного складу F+T+M характеризується трьома структурними складовими, що чітко різняться за контрастом і морфологією (*puc. 6.7 л*). Структурна складова у вигляді зерен відноситься до T*-ZrO₂, світлу гладеньку структурну складову ідентифіковано як M-HfO₂, сіру – як твердий розчин з кубічної структурою типу флюориту F-ZrO₂ (F-HfO₂).

Встановлено, що ізотермічний переріз дослідженої системи при 1500 °С характеризується утворенням двох трифазних (F+T+M, B+C+F) та восьми двофазних (B+C, B+F, C+F, F+T, F+M, T+M, двох F+Py) областей.

6.3. Ізотермічний переріз діаграми стану системи ZrO₂-HfO₂-Eu₂O₃ при 1100 °C

За отриманими результатами побудовано ізотермічний переріз діаграми стану потрійної системи ZrO_2 –HfO₂–Eu₂O₃ при 1100 °C (*puc. 6.9*). При його температурі утворюються тверді розчини на основі модифікацій B-Eu₂O₃, C-Eu₂O₃, T-ZrO₂, M-HfO₂, F-ZrO₂ (F-HfO₂) та фази з упорядкованою кубічною структурою типу пірохлору Py-Eu₂Hf₂O₇ (Py-Eu₂Zr₂O₇). Даний Ізотермічний переріз характеризується наявністю семи однофазних (B, C, Py, T, M, двох F), семи двофазних (B+C, C+F, F+T, F+M, T+M, двох F+Py) та однієї трифазної (F+T+M) областей.

Рисунок 6.9 – Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂–Eu₂O₃ при 1100 °C

Хімічний та фазовий склад, а також параметри елементарних комірок після термообробки зразків при 1100 °С наведено в *табл. 6.3*.

Хімічн	ий склад ((x), %		Параметри елементарних комірок, нм					М
7.0	11.00		Фазовий склад	<f></f>	Py <c></c>		< <u>N</u>	[>	
ZrO_2	HfO_2	Eu_2O_3		а	а	а	b	с	β,°
1	2	3	4	5	6	7	8	9	10
			промінь Eu ₂ O	3(45 ZrO2	–55 HfO ₂)				
0,9	1,1	98	<c></c>	_	1,0841	_	_	_	_
1,8	2,2	96	<c></c>	_	1,0838	_	_	_	_
2,25	2,75	95	<c></c>	_	1,0827	_	_	_	_
4,5	5,5	90	<c>+<f></f></c>	_	1,0806	_	_	_	_
6,75	8,25	85	<c>+<f></f></c>	0,5393	1,0813	_	_	_	_
11,25	13,75	75	<c>+<f></f></c>	0,5296	1,0819	_	_	_	_
13,5	16,55	70	<c>+<f></f></c>	0,5291	1,0805	_	_	_	_
15,75	19,25	65	<c>+<f></f></c>	0,5294	1,0816	_	_	_	_
18	22	60	<c>+<f></f></c>	0,5294	1,0808	_	_	_	_
20,25	24,75	55	<c>+<f></f></c>	0,5297	1,0808	_	_	_	_
22,5	27,5	50	<c>+<f></f></c>	0,5300	1,0803	_	_	_	_
24,75	30,25	45	<c>+<f></f></c>	0,5292	1,0804	_	_	_	_
27	33	40	<f></f>	0,5283	_	_	_	_	_
28,125	34,375	37,5	<f></f>	0,5276	_	_	_	_	_
29,25	35,75	35	<f>+Py</f>	0,5275	1,0551	_	_	_	_
30,375	37,125	32,5	<f>+Py</f>	0,5264	1,0529	_	_	_	_
31,5	38,5	30	Ру	_	1,0505	_	_	_	_
32,625	39,875	27,5	Py+ <f></f>	0,5232	1,0463				
33,75	41,25	25	<f></f>	0,5218	_	_	_	_	_
36	44	20	<f></f>	0,5186	_	_	_	_	_
38,25	46,75	15	<f></f>	0,5177	_	0,5094	0,4839	0,5567	90,45
40,5	49,5	10	<f>+<m></m></f>	0,5188	_	0,5124	0,5092	0,5293	97,81
42,75	52,25	5	<f>+<m></m></f>	0,5180	_	0,5106	0,5070	0,5282	97,73
43,875	53,625	2,5	<f>+<m></m></f>	0,5186	_	0,5123	0,5099	0,5279	97,95
44,55	54,45	1	<f>+<m></m></f>	_	_	0,5127	0,5092	0,5292	97,86

Таблиця 6.3 – Хімічний та фазовий склад системи ZrO₂–HfO₂–Eu₂O₃ після термічної обробки при 1100 °C (за даними РФА та СЕМ)

1	2	3	4	5	6	7	8	9	10
		-	Ізо	концентра	ата 5 Eu ₂ C	D ₃	-	-	
10	85	5	<f>+<m></m></f>	0,5190	_	0,5102	0,5223	0,5198	98,83
15	80	5	<f>+<m></m></f>	0,5185	_	0,5096	0,5215	0,5196	98,67
17,5	77,5	5	<f>+<m></m></f>	0,5186	_	0,5112	0,5233	0,5191	98,83
20	75	5	<f>+<m></m></f>	0,5185	Ι	0,5101	0,5226	0,5201	98,75
35	60	5	<f>+<m></m></f>	0,5177	_	0,5095	0,5227	0,5203	98,71
40	55	5	<f>+<m></m></f>	0,5178	_	0,5113	0,5228	0,5207	98,73
50	45	5	<f>+<m></m></f>	0,5179	_	0,5108	0,5228	0,5210	98,72
55	40	5	<f>+<m></m></f>	0,5184	Ι	0,5117	0,5240	0,5218	98,79
70	25	5	<f>+<m></m></f>	0,5178	-	0,5119	0,5235	0,5225	98,78
75	20	5	<f>+<m></m></f>	0,5179	Ι	0,5126	0,5234	0,5224	98,77
80	15	5	<f>+<m></m></f>	0,5174	_	0,5115	0,5233	0,5225	98,66
85	10	5	<f>+<m></m></f>	0,5173	_	0,5129	0,5244	0,5218	98,78

Продовження таблиці 6.3

Встановлено, що в дослідженій системі при 1100 °С утворюються шість неперервних рядів твердих розчинів, серед яких чотири з кубічною структурою. Існування двох областей гомогенності твердих розчинів на основі структури типу флюориту (F) обумовлено розривом розчинності даної області внаслідок утворення фази з упорядкованою структурою типу пірохлору (Ру).

Параметр елементарних комірок твердих розчинів з кубічною структурою типу флюориту вздовж променя Eu₂O₃(45 ZrO₂–55 HfO₂) змінюється з 0,5305 нм для гетерогенного складу C+F (6,75 ZrO₂–8,25 HfO₂–85 Eu₂O₃) до 0,5283 нм для граничного складу твердого розчину 27 ZrO₂–33 HfO₂–40 Eu₂O₃ та до 0,5275 нм для гетерогенного складу Py+F (29,25 ZrO₂–35,75 HfO₂–35 Eu₂O₃), а також від 0,5232 нм для гетерогенного складу Py+F (32,625 ZrO₂–39,875 HfO₂–27,5 Eu₂O₃) до 0,5218 нм для граничного складу твердого розчину 33,75 ZrO₂–41,25 HfO₂–25 Eu₂O₃ та 0,5176 нм для двофазного складу F+M (40,5 ZrO₂–49,5 HfO₂–10 Eu₂O₃). Тверді розчини з кубічною структурою типу флюориту перебувають в рівновазі з усіма фазами, що утворюються при температурі даного перерізу. Окрім даних про фазовий склад зразків, для визначення меж фазових полів використовували концентраційну залежність параметру елементарних комірок *а* твердих розчинів з кубічною структурою типу флюориту (*puc. 6.10*).

Рисунок 6.10 – Концентраційна залежність ПЕК *а* твердих розчинів зі структурою типу флюориту (F) на промені Eu₂O₃(45 ZrO₂–55 HfO₂) ізотермічного перерізу діаграми стану системи ZrO₂–HfO₂–Eu₂O₃ при 1100 °C

Фаза з упорядкованою структурою типу пірохлору в даному ізотермічному перерізі утворює неперервний ряд твердих розчинів. Параметр елементарних комірок Ру змінюється з 1,0551 нм для гетерогенного зразка Ру+F (29,25 ZrO₂– 35,75 HfO₂–35 Eu₂O₃) до 1,0505 нм для граничного складу твердого розчину.

Вздовж граничної подвійної системи ZrO_2 –HfO₂ утворюється неперервний ряд твердих розчинів на основі моноклінної модифікації M-HfO₂ (M-ZrO₂). Утворення зазначеного ряду при температурі даного ізотермічного перерізу зумовлено поліморфізмом діоксиду цирконію (*розділ 1.2*). Встановлено, що в моноклінній ґратці розчиняється менше 1 % *x*Eu₂O₃. З використанням даних рентгенофазового аналізу встановлено, що склад 44,55 ZrO₂–54,45 HfO₂–15 Eu₂O₃ розташовується в гетерогенній області F+M. Встановлено, що в даному

складі частка фази з кубічною структурою типу флюориту сягає 6 % (*puc. 6.11*). Вміст фази зі структурою типу флюориту в зразках гетерогенного складу F+M визначено шляхом обчислення частки інтегральної інтенсивності даної фази від загальної інтенсивності двох фаз.

Рисунок 6.11 – Дифрактограма зразка F+M (44,55 ZrO₂–54,45 HfO₂–15 Eu₂O₃) після термообробки при 1100 °C

З огляду на температуру поліморфного перетворення B-Eu₂O₃ \rightarrow C-Eu₂O₃, яка становить ~ 1075 °C (*розділ 1.1, табл. 1.4*), біля вершини Eu₂O₃ трикутника має утворюватися область гомогенності моноклінної B-модифікації, межі якої простягаються з відповідних інтервалів в граничних системах ZrO₂–Eu₂O₃ (0– 0,25 % *x*ZrO₂) і HfO₂–Eu₂O₃ (0~1 % *x*HfO₂). Експериментальні зразки для визначення фазового складу в зазначеному концентраційному інтервалі відсутні. Тверді розчини на основі моноклінної модифікації Eu₂O₃ вздовж променя Eu₂O₃(45ZrO₂–55HfO₂) зазначеного ізотермічного перерізу не виявлені. Зразок зі складом 0,9 ZrO₂–1,1 HfO₂–98 Eu₂O₃ відповідає області гомогенності твердих розчинів з кубічною структурою C-типу.

Зазначена область C-Eu₂O₃ вздовж променя Eu₂O₃(45 ZrO₂-55 HfO₂) дещо звужується порівняно з граничними подвійними системами HfO₂-Eu₂O₃ i ZrO₂-

Eu₂O₃. Параметр елементарних комірок твердих розчинів C-типу зменшується з 1,0841 нм для складу 0,9 ZrO₂–1,1 HfO₂–98 Eu₂O₃ до 1,0806 нм для гетерогенного складу C+F (4,5 ZrO₂–5,5 HfO₂–90 Eu₂O₃) на промені Eu₂O₃(45 ZrO₂–55 HfO₂).

Внаслідок утворення вузької області гомогенності Т-модифікації діоксиду цирконію вздовж граничної системи ZrO₂–Eu₂O₃ (*розділ 1.4.4*) в зазначеному ізотермічному перерізі утворюватиметься трифазна область F+T+M. Оскільки експериментальні зразки для визначення фазового складу в необхідному концентраційному інтервалі відсутні – область позначено пунктирною лінією (*рис. 6.9*), а точне встановлення її меж потребує подальших досліджень.

6.3. Висновки до шостого розділу

Представлені в розділі експериментальні дані опубліковано в [397-400].

1. Досліджено фазові рівноваги в системі ZrO_2 –HfO₂–La₂O₃ при 1700, 1500 та 1100 °C, а також побудовано відповідні ізотермічні перерізи. Встановлено, що в дослідженій системі утворюються тверді розчини на основі кубічної структури типу флюориту F-ZrO₂ (F-HfO₂), тетрагональної (T-ZrO₂), моноклінних (M-HfO₂ та B-Eu₂O₃), кубічної (C-Eu₂O₃) поліморфних модифікацій, а також проміжної фази з упорядкованою кубічною структурою типу пірохлору Py-Eu₂Hf₂O₇ (Py-Eu₂Zr₂O₇). Області гомогенності даних твердих розчинів розділені значними гетерогенними областями. Утворення нових фаз в даній системі не встановлено.

2. Встановлено, що при зниженні температури з 1700 до 1500 °С відбувається ускладнення будови ізотермічного перерізу зі зміщенням трифазної області F+T+M до вершини ZrO₂ трикутника за рахунок стабілізації твердих розчинів кубічної структури С-типу. Дані явища спричинені поліморфізмом компонентів даної системи та будовою граничних подвійних систем.

3. Встановлено, що для дослідженої системи характерним є розрив розчинності твердих розчинів зі структурою типу флюориту внаслідок упорядкування структури типу пірохлору. Протяжність області гомогенності з упорядкованою структурою типу пірохлору при зниженні температури від 1700 до 1100 °C зменшується несуттєво.

7. ФАЗОВІ РІВНОВАГИ В СИСТЕМІ ZrO₂-HfO₂-Gd₂O₃

Літературні відомості щодо дослідження фазових взаємодій в граничній системі HfO₂–Gd₂O₃ демонструють невідповідність [345,355,365] і відсутність експериментальних даних для температур нижче 1750 °C (*розділ 1.4.5*). Хімічний та фазовий склад граничної подвійної системи HfO₂–Gd₂O₃ після термообробки при температурах 1100 та 1500 °C представлено в *табл. 7.1*.

Хімічний	склад (х), %	Фазови	й склад
HfO ₂	Gd ₂ O ₃	1500 °C	1100 °C
2	98	+<c></c>	<c></c>
10	90	+<c></c>	<c></c>
15	85	<c>+<f></f></c>	<c></c>
20	80	<c>+<f></f></c>	<c>+Py</c>
25	75	<c>+<f></f></c>	<c>+Py</c>
30	70	<c>+<f></f></c>	<c>+Py</c>
35	65	<c>+<f></f></c>	<c>+Py</c>
55	45	<f></f>	<c>+Py</c>
60	40	<f>+Py</f>	<c>+Py</c>
65	35	Ру	Ру
70	30	Ру	Py+ <f></f>
75	25	Py+ <f></f>	Py+ <f></f>
80	20	<f></f>	<f></f>
85	15	<f>+<m></m></f>	<f>+<m></m></f>
90	10	<f>+<m></m></f>	<f>+<m></m></f>
99	1	<f>+<m></m></f>	<f>+<m></m></f>

Таблиця 7.1 – Хімічний та фазовий склад системи HfO₂–Gd₂O₃ після термічної обробки при 1500 та 1100 °С (за даними РФА)

Фазові рівноваги в потрійній системі ZrO₂–HfO₂–Gd₂O₃ досліджено після термообробки зразків на повітрі при температурах 1100, 1500 та 1600 °C. Зразки

приготовано з інтервалом 1~5 % за мольною часткою вздовж променя $Gd_2O_3(45 ZrO_2-55 HfO_2)$ та двох ізоконцентрат 15 і 33 Gd_2O_3 . За отриманими результатами побудовано ізотермічні перерізи діаграми стану системи ZrO_2 -HfO₂-Eu₂O₃ при зазначених температурах.

7.1. Ізотермічний переріз діаграми стану системи ZrO₂-HfO₂-Gd₂O₃ при 1600 °C

В даному ізотермічному перерізі утворюються шість однофазних (В, С, F, Ру, Т, М), шість двофазних (В+С, С+F, F+Ру, F+T, F+M, T+M) та одна трифазна F+T+M області (*puc. 7.1*).

Рисунок 7.1 – Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂– Gd₂O₃ при 1600 °C

Хімічний та фазовий склад, а також параметри елементарних комірок після термообробки зразків при 1600 °С наведено в *табл.* 7.2.

Хімічн	ий склад (.	x), %		Параметри елементарних комірок, нм					
7.0	1100	C10	Фазовий склал	<f></f>	<c> Py</c>		 	<m></m>	
ZrO_2	HIO_2	Gd_2O_3	Склад	a	а	a	b	С	β, °
1	2	3	4	5	6	7	8	9	10
			промінь G	d ₂ O ₃ (45 Z	ZrO ₂ –55 HfC	D ₂)			
0,45	0,55	99		-	_	1,4360	0,3567	0,8797	91,75
1,35	1,65	97	+<c></c>	_	_	1,4330	0,3555	0,8778	92,04
2,25	2,75	95	+<c></c>	_	_	1,4343	0,3500	0,8819	93,57
4,5	5,5	90	+<c></c>	_	1,0752	_	_	_	_
6,75	8,25	85	<c></c>		1,0751	_	_	_	_
9	11	80	<c>+<f></f></c>	0,5373	1,0745	_	_	_	_
11,25	13,75	75	<c>+<f></f></c>	0,5314	1,0745	_	_	_	_
13,5	16,5	70	<c>+<f></f></c>	0,5309	1,0738	_	_	_	_
15,75	19,25	65	<c>+<f></f></c>	0,5316	1,0725	_	_	_	_
18	22	60	<c>+<f></f></c>	0,5311	1,0613	_	_	_	_
20,25	24,75	55	<c>+<f></f></c>	0,5307		_	_	_	_
22,5	27,5	50	<f></f>	0,5303	_	_	_	_	_
24,75	30,25	45	<f></f>	0,5286	_	_	_	_	_
27	33	40	<f></f>	0,5276	_	_	_	_	_
29,25	37,75	35	<f>+Py</f>	0,5254	_	_	_	_	_
31,5	38,5	30	<f>+Py</f>	0,5242	_	_	_	_	_
33,75	41,25	25	<f>+Py</f>	0,5210	_	_	_	_	_
36	44	20	<f></f>	0,5181	_	_	_	_	_
39,375	48,125	12,5	<f></f>	0,5151	_	_	_	_	_
40,5	49,5	10	<f></f>	0,5141	_	_	_	_	_
42,75	52,25	5	<f>+<t*></t*></f>	0,5136	_	0,4979	0,5202	0,5218	94,93
43,65	53,35	3	<f>+<t*></t*></f>	0,5136	_	0,4955	0,5212	0,5215	95,14
44,1	53,9	2	<f>+<t*></t*></f>	0,5107	_	0,5011	0,5220	0,5212	95,93
44,55	54,45	1	<t*></t*>	_	_	0,5006	0,5221	0,5213	95,97
			ізокон	центрата	a 15 ZrO ₂				
15	84	1	<f>+<m></m></f>	_	_	0,5179	0,4976	0,5451	98,06
15	83	2	<f>+<m></m></f>	0,5135	_	0,5081	0,4977	0,5456	97,93

Таблиця 7.2 – Хімічний та фазовий склад системи ZrO₂–HfO₂–Gd₂O₃ після термообробки при 1600 °C (за даними РФА та СЕМ)

1	2	3	4	5	6	7	8	9	10	
15	82	3	<f>+<m></m></f>	0,5130	_	0,5146	0,4957	0,5452	101,9	
15	80	5	<f>+<m></m></f>	0,5144	_	0,5082	0,4974	0,5448	98,12	
15	77,5	7,5	<f>+<m></m></f>	0,5141	_	0,5085	0,4974	0,5449	98,21	
15	75	10	<f>+<m></m></f>	0,5142	_	_	_	_	_	
15	72,5	12,5	<f>+<m></m></f>	0,5147	_	_	_	_	_	
15	70	15	<f></f>	0,5155	_	_	_	_	_	
Ізоконцентрата 33 Gd ₂ O ₃										
2,5	64,5	33	Ру	_	1,0491	_	_	_	_	
5	62	33	Ру	_	1,0493	_	_	_	_	
7,5	59,5	33	Ру	_	1,0494	_	_	_	_	
12,5	54,5	33	Ру	_	1,0495	_	_	_	_	
15	52	33	Ру	_	1,0497	_	_	_	_	
17,5	49,5	33	Ру	_	1,0498	_	_	_	_	
20	47	33	Ру	_	1,0500	_	_	_	_	
25	42	33	Py+ <f></f>	0,5249	1,0504	_	_	_	-	
30	37	33	Py+ <f></f>	0,5253	1,0508	_	_	_	_	
35	32	33	Py+ <f></f>	0,5256	1,0513	_	_	_	_	
40	27	33	Py+ <f></f>	0,5258	1,0516	_	_	_	_	
50	17	33	Py+ <f></f>	0,5262	1,0525	_	_	_	_	
55	12	33	<f></f>	0,5264	_	_	_	_	_	
60	7	33	<f></f>	0,5266			_	_	_	

Продовження таблиці 7.2

Примітка: <T*> – оскільки при вибраному режимі термообробки тетрагональна модифікація не загартовується, досліджували ознаки її утворення

При температурі даного перерізу в системі утворюються тверді розчини на основі поліморфних модифікацій B-Gd₂O₃, C-Gd₂O₃, T-ZrO₂, M-HfO₂, F-ZrO₂ (F-HfO₂) та фази з упорядкованою кубічною структурою типу пірохлору Py-Gd₂Hf₂O₇ (Py-Gd₂Zr₂O₇). Встановлено, що область гомогенності на основі твердих розчинів з кубічною структурою типу флюориту зазнає розриву розчинності внаслідок упорядкування до структури типу пірохлору. Зазначений розрив розчинності з протяжністю 62~70 % *x*HfO₂ виникає зі сторони граничної подвійної системи HfO₂–Gd₂O₃. Зі сторони граничної подвійної системи ZrO₂–Gd₂O₃ утворюються виключно

тверді розчини з кубічною структурою типу флюориту. Цирконат гадолінію зазнає переходу типу "порядок–безлад" при ~1550 °C, водночас перехід Ру-Gd₂Hf₂O₇ \rightarrow F-Gd₂O₃·HfO₂ відбувається лише при 2350 °C (*розділ 1.4.5, табл. 1.20, 1.21*).

Для визначення меж фазових полів, крім даних про фазовий склад зразків використовували концентраційну залежність параметрів елементарних комірок *а* твердих розчинів із кубічною структурою типу флюориту (*puc. 7.2*).

Рисунок 7.2 – Концентраційна залежність ПЕК *а* твердих розчинів зі структурою типу флюориту (F) на промені Gd₂O₃(45 ZrO₂–55 HfO₂) ізотермічного перерізу діаграми стану системи ZrO₂–HfO₂–Gd₂O₃ при 1600 °C

Параметр елементарних комірок *а* твердих розчинів з кубічною структурою типу флюориту вздовж променя Gd₂O₃(45 ZrO₂–55 HfO₂) змінюється (*puc. 7.2*) від 0,5107 нм для двофазного складу F+T (44,1 ZrO₂–53,9 HfO₂–2 Gd₂O₃) до 0,5141 нм для граничного складу твердого розчину 40,5 ZrO₂–49,5 HfO₂–10 Gd₂O₃, до 0,5210 нм для двофазного складу Ру+F (33,75 ZrO₂–41,25 HfO₂–25 Gd₂O₃), до 0,5276 нм для граничного складу твердого розчину 27 ZrO₂–33 HfO₂–40 Gd₂O₃ та 0,5307 нм для гетерогенного складу C+F (20,25 ZrO₂–24,75 HfO₂–55 Gd₂O₃). Представлені дані демонструють збільшення параметру елементарних комірок *a* в твердих розчинах з кубічною структурою типу флюориту при збільшенні частки легуючої домішки, внаслідок заміщення Zr⁴⁺ і Hf⁴⁺ на іони з більшим радіусом Gd³⁺. Мікроструктуру

зразка з області гомогенності твердих розчинів зі структурою типу флюориту (F) представлено на *рис.* 7.3 *а*.

a – x400, <F> (39,375 ZrO₂–48,125 HfO₂–12,5 Gd₂O₃); *б* – x2000, <F>+<M> (15 ZrO₂– 82 HfO₂–3 Gd₂O₃): світла <M>, темна <F>, чорні пори; *в* – x400, <F>+<C> (11,25 ZrO₂– 13,75 HfO₂–75 Gd₂O₃): світла <C>, темна <F>, чорні пори; *г* – x2000, +<C> (1,35 ZrO₂–1,65 HfO₂–97 Gd₂O₃): світла , сіра <C>, чорні пори

Рисунок 7.3 – Мікроструктури зразків системи ZrO₂–HfO₂–Gd₂O₃ після термічної обробки при 1600 °C, CEM-3PE (SEM-BSE)

Встановлено, що область гомогенності фази з упорядкованою структурою типу пірохлору орієнтована в сторону граничної системи $ZrO_2-Gd_2O_3$ (*puc. 7.1*). Можна припустити, що утворення в зазначеній області гомогенності неперервного ряду твердих розчинів спричинене ізометричним заміщенням катіонів Hf^{4+} на Zr^{4+} .

Параметр елементарних комірок а упорядкованої структури типу пірохлору

вздовж ізоконцентрати 33 Gd₂O₃ змінюється з 1,0491 нм для однофазного складу (2,5 ZrO₂-64,5 HfO₂-33 Gd₂O₃) до 1,0504 нм для двофазного складу Py+F (25 ZrO₂-42 HfO₂-33 Gd₂O₃).

Поблизу вершини Gd₂O₃ трикутника утворюються тверді розчини на основі моноклінної В-модифікації. Протяжність даної області гомогенності невелика. За результатами рентгенофазового аналізу встановлено, що на дифрактограмі зразка зі складом 1,35 ZrO₂–1,65 HfO₂–97 Gd₂O₃ присутні дифракційні піки, що належать В-Gd₂O₃ та C-Gd₂O₃ (*puc. 7.3 г*). Тверді розчини С-модифікації оксиду гадолінію утворюють неперервний ряд в інтервалі концентрацій 89~82 % xGd₂O₃ вздовж променя Gd₂O₃(45 ZrO₂–55 HfO₂). На *puc. 7.3 в* представлено мікроструктуру зразка з гетерогенної області F+C. Зазначена мікроструктура характеризується двома структурними складовими, що відрізняються за контрастом – світлу ідентифіковано як C-Gd₂O₃, темна являє собою твердий розчин зі структурою типу флюориту.

Вздовж граничної системи ZrO₂–HfO₂ формуються області гомогенності на основі твердих розчинів T-ZrO₂ та M-HfO₂. Встановлено, що в моноклінній та тетрагональній структурах розчиняється менше 1 та 2,5 % xGd₂O₃, відповідно. Параметри елементарних комірок твердих розчинів моноклінної структури вздовж ізоконцентрати 15 ZrO₂ змінюються з a = 0,5179 нм, b = 0,4976 нм, c = 0,5451 нм, $\beta = 98,06^{\circ}$ для складу 15 ZrO₂–84 HfO₂–1 Gd₂O₃ до a = 0,5085 нм, b = 0,4974 нм, c = 0,5449 нм, $\beta = 98,21^{\circ}$ для складу 15 ZrO₂–77,5 HfO₂–77,5 Gd₂O₃. Представлена на *рис.* 7.3 б мікроструктура двофазного зразка F+M (15 ZrO₂–82 HfO₂–3 Gd₂O₃) вирізняється присутністю двох структурних складових, що чітко різняться за контрастом: світла структурна складова – M-HfO₂, темна – твердий розчин кубічної структури типу флюориту F-HfO₂ (F-ZrO₂).

7.2. Ізотермічний переріз діаграми стану системи ZrO₂-HfO₂-Gd₂O₃ при 1500 °C

Хімічний та фазовий склад, а також параметри елементарних комірок після термообробки зразків при 1500 °С наведено в *табл. 7.3*.

Таблиця 7.3 –	Хімічний та	фазовий	склад системи	a ZrO ₂ -	-HfO ₂	Gd_2O_3	після

термічної обробки при 1500 °С (за даними РФА та СЕМ)

Хімічн	ний склад	ι (x), %		Параметри елементарних комірок, ни				М	
7:0	UFO	C10	Фазовий склал	<f></f>	<c> Py</c>		 	<m></m>	
ΣIO_2	HIO ₂	Gd_2O_3	onorag	а	а	а	b	с	β,°
1	2	3	4	5	6	7	8	9	10
			промінь Gd ₂ O ₃	(45 ZrO_2)	-55 HfO ₂)				
0,45	0,55	99		-	_	1,6407	0,3646	0,8694	99,13
1,35	1,65	97	+<c></c>	_	1,0752	1,6349	0,3610	0,8712	98,44
2,25	2,75	95	+<c></c>	_	1,0776	1,6351	0,3626	0,8787	98,34
4,5	5,5	90	+<c></c>	_	1,0753	_	_	_	_
6,75	8,25	85	<c></c>	_	1,0743	_	_	_	_
9	11	80	<c>+<f></f></c>	0,5323	1,0748	_	_	_	_
13,5	16,5	70	<c>+<f></f></c>	0,5312	1,0733	_	_	_	_
15,75	19,25	65	<c>+<f></f></c>	0,5318	1,0740	_	_	_	_
18	22	60	<c>+<f></f></c>	0,5315	1,0735	_	_	_	_
20,25	24,75	55	<c>+<f></f></c>	0,5313	_	_	_	-	_
22,5	27,5	50	<f></f>	0,5305	_	_	_	_	_
24,75	30,25	45	<f>+Py</f>	0,5291	1,0583	_	_	_	_
29,25	37,75	35	Ру	_	1,0511	_	_	_	_
31,5	38,5	30	Py+ <f></f>	0,5246	1,0493	_	_	_	_
33,75	41,25	25	Py+ <f></f>	0,5216	1,0412	_	_	_	_
36	44	20	<f></f>	0,5180	_	_	_	_	_
38,25	46,75	15	<f></f>						
39,375	48,125	12,5	<f></f>	0,5154	_	_	_	_	_
40,5	49,5	10	<f></f>	0,5140	_	_	_	_	_
42,75	52,25	5	<f>+<t*>+<m></m></t*></f>	0,5137	_	0,5007	0,5616	0,4586	95,12
43,65	53,35	3	<f>+<t*>+<m></m></t*></f>	0,5137	_	0,5107	0,5555	0,4642	95,25
44,1	53,9	2	<f>+<t*>+<m></m></t*></f>	0,5138	_	0,5010	0,5535	0,4667	95,33
44,55	54,45	1	<f>+<t*>+<m></m></t*></f>	0,5137	_	0,5009	0,5509	0,4708	95,38
			ізоконцент	грата 15	ZrO ₂				
15	84	1	<f>+<m></m></f>	0,5134	_	0,5078	0,5036	0,5331	98,11

1	2	3	4	5	6	7	8	9	10
15	83	2	<f>+<m></m></f>	0,5142	_	0,5081	0,5040	0,5322	98,03
15	82	3	<f>+<m></m></f>	0,5144	_	0,5081	0,5042	0,5308	98,02
15	80	5	<f>+<m></m></f>	0,5152	_	0,5079	0,5007	0,5408	98,12
15	77,5	7,5	<f>+<m></m></f>	0,5148	_	0,5082	0,5314	0,5047	98,41
15	75	10	<f>+<m></m></f>	0,5147	_	0,5052	0,4947	0,5235	96,67
15	72,5	12,5	<f></f>	0,5154	_	_	_	_	_
15	70	15	<f></f>	0,5150	_	_	_	_	_

Продовження таблиці 7.3

Примітка: <T*> – оскільки при вибраному режимі термообробки тетрагональна модифікація не загартовується, досліджували ознаки її утворення

В зазначеній системі утворюються тверді розчини на основі поліморфних модифікацій та фази з упорядкованою структурою типу пірохлору. В даному ізотермічному перерізі утворюються сім однофазних (В, С, Ру, Т, М, дві F), сім двофазних (В+C, C+F, F+T, F+M, T+M двох F+Py) та одна трифазна F+T+M області (*рис. 7.4*). Для визначення границь фазових полів разом із даними про фазовий склад використовували концентраційні залежності параметру елементарних комірок а твердих розчинів кубічної структур типу флюориту (F, *puc.7.5*). Утворення двох областей гомогенності для структури типу флюориту спричинене розривом розчинності внаслідок упорядкування структури типу пірохлору.

Параметр елементарних комірок *а* твердих розчинів зі структурою типу флюориту вздовж променя $Gd_2O_3(45 \text{ ZrO}_2-55 \text{ HfO}_2)$ змінюється від 0,5323 нм для гетерогенного складу C+F (9 ZrO₂-11 HfO₂-80 Gd₂O₃) до 0,5305 нм для граничного складу твердого розчину 22,5 ZrO₂-27,5 HfO₂-50 Gd₂O₃, та до 0,5291 нм для гетерогенного складу F+Py (24,75 ZrO₂-30,25 HfO₂-45 Gd₂O₃), також від 0,5235 нм для двофазного складу F+Py (31,5 ZrO₂-38,5 HfO₂-30 Gd₂O₃) до 0,5180 нм для граничного складу твердого розчину 36 ZrO₂-44 HfO₂-20 Gd₂O₃ та до 0,5137 нм для

Рисунок 7.4 – Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂–Gd₂O₃ при 1500 °C

Рисунок 7.5 – Концентраційна залежність ПЕК а кубічних твердих розчинів типу флюориту (F) на промені Gd₂O₃(45 ZrO₂-55 HfO₂) ізотермічного перерізу діаграми стану системи ZrO₂-HfO₂-Gd₂O₃ при 1500 °C

На *рис.* 7.6 представлено мікроструктури зразків після термообробки при температурі 1500 °С. Мікроструктуру зразка, що характеризує тверді розчини з кубічною структурою типу флюориту (F) представлено на *рис.* 7.6 г.

a – x400, <F>+<T*>+<M> (44,1 ZrO₂–53,9 HfO₂–Gd₂O₃); *б* – x2000, <F>+<T*>+<M> (44,1 ZrO₂–53,9 HfO₂–2 Gd₂O₃); *в* – x400, <F>+<T*>+<M> (42,75 ZrO₂–52,25 HfO₂–5 Gd₂O₃): світла <F>, темна <M>, зерна – <T>, чорні пори; *г* – x2000, <F> (40,5 ZrO₂–49,5 HfO₂–10 Gd₂O₃); *ð* – x2000, Py+<F> (33,75 ZrO₂–41,25 HfO₂–25 Gd₂O₃): світла Py, сіра <F>, чорні пори; *e* – x400, Py (29,25 ZrO₂–35,75 HfO₂–35 Gd₂O₃); *ж* – x400, <C>+<F> (20,25 ZrO₂–24,75 HfO₂–55 Gd₂O₃); *u* – x400, <C>+<F> (18 ZrO₂–22 HfO₂–60 Gd₂O₃): світла <C>, сіра <F>, чорні пори; *к* – x2000, +<C> (1,35 ZrO₂–1,65 HfO₂–97 Gd₂O₃); *n* – x2000, +<C> (4,5 ZrO₂–5,5 HfO₂–90 Gd₂O₃): світла , сіра <C>, чорні пори; *м* – x2000, (0,45 ZrO₂–0,55 HfO₂–99 Gd₂O₃); *н* – x400, <F>+<M> (15 ZrO₂–75 HfO₂–10 Gd₂O₃): світла <F>, сіра <M-HfO₂>, чорні пори

Рисунок 7.6 – Мікроструктури зразків системи ZrO₂–HfO₂–Gd₂O₃ після термічної обробки при 1500 °C, CEM-3PE (SEM-BSE)

Рисунок 7.6, аркуш 2

Вздовж ізоконцентрати 15 ZrO_2 параметр елементарних комірок *а* твердих розчинів з кубічною структурою типу флюориту (F) змінюється від 0,5134 нм для гетерогенного складу F+M (15 ZrO_2 -84 HfO₂-1 Gd₂O₃) до 0,5150 нм для граничного складу твердого розчину 15 ZrO_2 -70 HfO₂-15 Gd₂O₃.

Область гомогенності фази з упорядкованою кубічною структурою типу пірохлору вздовж променя Gd₂O₃(45 ZrO₂–55 HfO₂) заходиться в концентраційному інтервалі 32~38 % xGd₂O₃. Встановлено, що параметр елементарних комірок *a* упорядкованої кубічної структури типу пірохлору змінюється від 1,0583 нм для гетерогенного складу F+Py (24,75 ZrO₂–30,25 HfO₂–45 Gd₂O₃) до 1,0511 нм для граничного складу твердого розчину 29,25 ZrO₂–37,75 HfO₂–35 Gd₂O₃ та 1,0493 нм для двофазного складу F+Py (33,75 ZrO₂–41,25 HfO₂–25 Gd₂O₃). Мікроструктура зразка 29,25 ZrO₂–37,75 HfO₂–35 Gd₂O₃ області гомогенності фази з упорядкованою структурою типу пірохлору характеризується суттєвою пористістю (*puc. 7.6 e*). Підтверджено, що зі зниженням частки оксиду гадолінію параметр елементарних комірок *a* кубічної структури типу пірохлору зменшується.

В даному ізотермічному перерізі існують чотири неперервні ряди твердих розчинів кубічної структури на основі: фази з упорядкованою структурою типу пірохлору, двох – зі структурою типу флюориту, а також C-Gd₂O₃. Оскільки кубічна модифікація C-Gd₂O₃ утворюється нижче ~ 1200 ± 20 °C (*рис. 1.2, табл. 1.4*), її існування при 1500 °C можливе лише за умови легування оксиду гадолінію іонами Hf⁴⁺ та Zr⁴⁺. Встановлено, що параметр елементарних комірок *а* твердих розчинів з кубічною структурою C-типу вздовж променя Gd₂O₃(45 ZrO₂–55 HfO₂) змінюється від 1,0752 нм для гетерогенного складу B+C (1,35 ZrO₂–1,65 HfO₂–97 Gd₂O₃) до 1,0743 нм для граничного складу твердого розчину 6,75 ZrO₂–8,25 HfO₂–85 Gd₂O₃ та до 1,0735 нм для двофазного складу C+F (18 ZrO₂–22 HfO₂–60 Gd₂O₃).

Поблизу вершини Gd_2O_3 утворюється область гомогенності В-модифікації оксиду гадолінію. За допомогою рентгенофазового та мікроструктурного аналізів виявлено, що зразок зі складом 0,45 ZrO_2 –0,55 HfO_2 –99 Gd_2O_3 належить до даної області (*puc. 7.6 м, puc. 7.7 a*). Дифрактограма зразка зі складом 1,35 ZrO_2 –1,65 HfO_2 –97 Gd_2O_3 містить дифракційні піки B- Gd_2O_3 та C- Gd_2O_3 (*puc. 7.7 б*).

a – В (0,45 ZrO₂–0,55 HfO₂–99 Gd₂O₃); *б* – В+С (1,35 ZrO₂–1,65 HfO₂–97 Gd₂O₃) Рисунок 7.7 – Дифрактограми зразків системи ZrO₂–HfO₂–Gd₂O₃ після термічної обробки при 1500°С

Параметри елементарних комірок B-Gd₂O₃ змінюються від a = 1,6407 нм, b = 0,3646 нм, c = 0,8694 нм, $\beta = 99,13^{\circ}$ для граничного складу твердого розчину 0,45 ZrO₂–0,55 HfO₂–99 Gd₂O₃ до a = 1,6349 нм, b = 0,3610 нм, c = 0,8712 нм, $\beta = 98,44^{\circ}$ для гетерогенного складу B+C (1,35 ZrO₂–1,65 HfO₂–97 Gd₂O₃). Мікроструктури зразків двофазної області B+C містять дві структурні складові, що чітко різняться за контрастом і морфологією – світлі зерна характерної округлої форми ідентифіковано як твердий розчин моноклінної B-модифікації оксиду гадолінію, набагато менша за кількістю темна структурна складова належить до твердого розчину кубічної Смодифікації оксиду гадолінію (*puc.* 7.6 к, л).

Область гомогенності на основі моноклінної модифікації діоксиду гафнію простягається вздовж граничної подвійної системи ZrO_2 –HfO₂. В гратці M-HfO₂ розчиняється менше 1 % xGd_2O_3 . Крім дифракційних піків, що належать M-HfO₂, дифрактограма зразка зі складом 15 ZrO_2 –84 HfO₂–1 Gd₂O₃ містить піки кубічної структури типу флюориту.

Досліджений ізотермічний переріз характеризується утворенням трифазної області F+T+M, мікроструктура якої представлена на *рис. 7.6 а–в.* Мікроструктура зразка зі складом 44,1 ZrO₂–53,9 HfO₂–2 Gd₂O₃ характеризується наявністю трьох структурних складових, що різняться за контрастом та морфологією (*рис. 7.6 а, б*). Світла структурна складова ідентифікована як твердий розчин зі структурою типу флюориту, сіра – твердий розчин на основі моноклінної модифікації оксиду гафнію (M-HfO₂). Структурна складова у вигляді зерен належить до твердих розчинів на основі тетрагональної модифікації оксиду цирконію (T*-ZrO₂). Слід зауважити, що наявність трифазної області F+T+M встановлено лише за допомогою досліджень мікроструктури, оскільки при вибраному режимі термічної обробки тетрагональна модифікація не загартовується (*розділ 1.2*).

7.3. Ізотермічний переріз діаграми стану системи ZrO2-HfO2-Gd2O3 при 1100 °C

Хімічний та фазовий склад, а також параметри елементарних комірок після термообробки зразків при 1100 °С наведено в *табл. 7.4*. При зниженні температури до 1100 °С в даній системі відбувається зменшення числа фазових полів внаслідок перетворення B-Gd₂O₃ \rightarrow C-Gd₂O₃ (*puc. 1.2, табл. 1.4*). При даній температурі утворюються тверді розчини на основі поліморфних модифікацій C-Gd₂O₃, T-ZrO₂, M-HfO₂, F-ZrO₂ (F-HfO₂) та упорядкованої кубічної структури типу пірохлору Ру-Gd₂Hf₂O₇ (Py-Gd₂Zr₂O₇). В ізотермічному перерізі системи ZrO₂–HfO₂–Gd₂O₃ при 1100 °С утворюються п'ять однофазних (B, C, Py, F, T, M), п'ять двофазних (C+Py, Py+F, F+T, T+M, F+M) та одна трифазна F+T+M області (*puc. 7.8*).

Хімічі	ний склад	τ (x), %		Пара	метри ел	тементар	ментарних комірок, нм a b c β 7 8 9 1 — — — 6 — — — 6 — — — 6 — — — 6 — — — 6 — — — 6 — — — 6 — — — 6 — — — 6 — — — 6 — — — 6 — — — 6 — — — 6 — — — 6 — — — 6 — — — 6 — — — 6 — — — — — — — 6		
7.0		C10	Фазовий склал	<f> <c></c></f>	Ру		< <u>N</u>	[>	
ZrO_2	HIO ₂	Gd_2O_3	Склад	a	а	а	b	с	β, °
1	2	3	4	5	6	7	8	9	10
	1		Промінь (Gd ₂ O ₃ (45 ZrO	₂ /55 HfO	2)			
0,45	0,55	99	<c></c>	1,0786	-	_	_	-	_
1,35	1,65	97	<c></c>	1,0778	_	_	_	_	_
2,25	2,75	95	<c></c>	1,0777	_	_	_	_	_
4,5	5,5	90	<c></c>	1,0767	_	_	_	_	_
9	11	80	<c>+Py</c>	1,0748	_	_	_	-	_
11,25	13,75	75	<c>+Py</c>	1,0746	1,0592				
13,5	16,5	70	<c>+Py</c>	1,0744	1,0583	_	-	-	-
15,75	19,25	65	<c>+Py</c>	1,0740	1,0582	_	-	-	-
18	22	60	<c>+Py</c>	1,0743	1,0581	_	_	_	_
20,25	24,75	55	<c>+Py</c>	1,0736	1,0572	_	_	-	_
22,5	27,5	50	<c>+Py</c>	1,0735	1,0584				
24,75	30,25	45	<c>+Py</c>	1,0726	1,0560	_	-	-	_
27	33	40	Ру	_	1,0546				
29,25	37,75	35	Py+ <f></f>	_	1,0518	_	-	-	-
31,5	38,5	30	Py+ <f></f>	0,5186	1,0504	_	-	-	_
33,75	41,25	25	Py+ <f></f>	0,5184	1,0490	_	-	-	_
36	44	20	<f></f>	0,5180	_	_	_	_	_
38,25	46,75	15	<f>+<m></m></f>	0,5174	_	_	_	_	_
39,37	48,12	12,5	<f>+<m></m></f>	0,5172	_	0,5064	0,5165	0,5218	90,47
40,5	49,5	10	<f>+<m></m></f>	0,5170	-	0,5073	0,5264	0,5206	92,90
42,75	52,25	5	<f>+<m></m></f>	0,5168	_	0,5071	0,5165	0,5225	89,83
43,65	53,35	3	<f>+<m></m></f>	_	_	0,5076	0,5160	0,5231	89,68
44,1	53,9	2	<f>+<m></m></f>	_	_	0,5075	0,5083	0,5232	86,82
44,55	54,45	1	<f>+<m></m></f>		_	0,5072	0,5136	0,5229	91,79

Таблиця 7.4 – Хімічний та фазовий склад системи ZrO₂–HfO₂–Gd₂O₃ після термічної обробки при 1100 °С (за даними РФА та СЕМ)

Рисунок 7.8 – Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂– Gd₂O₃ при 1100 °C

Область гомогенності на основі фази з упорядкованою структурою типу пірохлору опукло увігнута зі сторони граничної системи ZrO_2 –HfO₂. Параметр елементарних комірок *a* кубічних твердих розчинів з кубічною структурою типу пірохлору змінюється з 1,0592 нм для гетерогенного складу C+Py (11,25 ZrO_2 – 13,75 HfO₂–75 Gd₂O₃) до 1,0546 нм для граничного складу твердого розчину 27 ZrO_2 –33 HfO₂–40 Gd₂O₃ та до 1,0518 нм для двофазного складу Ру+F (38,25 ZrO_2 – 46,75 HfO₂–15 Gd₂O₃). Використовуючи графік концентраційної залежності параметру елементарних комірок *a* твердих розчинів на основі фази з кубічною структурою типу пірохлору (*puc. 7.9*) встановлено, що області гомогенності упорядкованої структури типу пірохлору відповідає концентраційний інтервал 36~42 % xGd₂O₃. З наведених даних слідує, що зі збільшенням в гратці вмісту катіонів Gd³⁺, розмір елементарних комірок також збільшується. Це зумовлено заміщенням іонів Zr⁴⁺ та Hf⁴⁺ на іони Gd³⁺. Фаза з упорядкованою структурою типу пірохлору перебуває в рівновазі з твердими розчинами кубічної структури, утвореними в даній системі – зі структурою типу C-Gd₂O₃ та зі структурою типу флюориту (F).

Рисунок 7.9 – Концентраційна залежність параметру ПЕК *а* структури типу пірохлору (Ру) на промені Gd₂O₃(45 ZrO₂–55 HfO₂) ізотермічного перерізу діаграми стану системи ZrO₂–HfO₂–Gd₂O₃ при 1100 °C

Встановлено, що параметр елементарних комірок *а* кубічних твердих розчинів C-Gd₂O₃ змінюється з 1,0786 нм для граничного складу (0,45 ZrO₂–0,55 HfO₂–99 Gd₂O₃) до 1,0748 нм для двофазного складу C+Py (9 ZrO₂–11 HfO₂–80 Gd₂O₃). Тверді розчини на основі кубічної С-модифікації перебувають в рівновазі виключно з фазою з упорядкованою кубічною структурою типу пірохлору (Ру).

В досліджуваній системі при температурі 1100 °С поблизу вершини Gd_2O_3 трикутника утворюються тверді розчини на основі C-Gd₂O₃. Тверді розчини з кубічною структурою типу флюориту (F) при зазначеній температурі перебувають в рівновазі з усіма утвореними в системі фазами за винятком C-Gd₂O₃. Параметр елементарних комірок *а* твердих розчинів з кубічною структурою типу флюориту змінюється від 0,5186 нм для двофазного складу Ру+F (31,5 ZrO₂–38,5 HfO₂–30 Gd₂O₃) до 0,5180 нм для граничного складу твердого розчину 36 ZrO₂–44 HfO₂–20 Gd₂O₃ та до 0,5174 нм для двофазного складу F+M (38,25 ZrO₂–46,75 HfO₂–15 Gd₂O₃). На відміну від вищерозглянутих ізотермічних перерізів систем ZrO₂–HfO₂–Ln₂O₃ (*Ln* = La, Nd, Eu) при 1100 °C, при пониженні температури в даній системі зменшується кількість областей на основі кубічних твердих розчинів типу флюориту (F). Єдина область гомогенності розташована зі сторони граничної подвійної системи ZrO₂–HfO₂–Ln₂O₃ (*Ln* = HfO₂. За евтектоїдною реакцією F \rightarrow Py+C (*розділ 1.4.5, табл. 7.1*) утворюється спільна гетерогенна область кубічних структур типу пірохлору (Ру) та C-Gd₂O₃.

Евтектоїдна реакція $T \rightarrow M + F$ в граничній системі $ZrO_2-Gd_2O_3$ за різними даними проходить при температурі від 1036 до 1142 °C (*розділ 1.4.5*). Вірогідно, в ізотермічному перерізі системи $ZrO_2-HfO_2-Gd_2O_3$ при 1100 °C існуватиме вузька область гомогенності на основі тетрагональної модифікації оксиду цирконію (T) – внаслідок чого в системі також утворяться двофазна T+M та трифазна F+T+M області. Оскільки у визначеному інтервалі концентрацій експериментальні зразки відсутні – зазначені області відмічені пунктирною лінією, а встановлення їхніх меж потребує подальших досліджень.

7.4. Висновки до сьомого розділу

1. Досліджено фазові рівноваги в системі ZrO_2 –HfO₂–Gd₂O₃ при 1600, 1500 та 1100 °C, а також побудовано відповідні ізотермічні перерізи. Встановлено, що в дослідженій системі утворюються тверді розчини на основі кубічної структури типу флюориту F-ZrO₂ (F-HfO₂), тетрагональної (T-ZrO₂), моноклінних (M-HfO₂ та B-Eu₂O₃), кубічної (C-Eu₂O₃) поліморфних модифікацій, а також проміжної фази з упорядкованою кубічною структурою типу пірохлору Py-Gd₂Hf₂O₇ (Py-Gd₂Zr₂O₇). Області гомогенності даних твердих розчинів розділені значними гетерогенними областями. Утворення нових фаз в даній системі не встановлено.

2. Встановлено, що в зазначеній системі при 1500 та 1100 °С утворюються неперервні ряди твердих розчинів на основі впорядкованої кубічної структури типу пірохлору через розрив розчинності структури типу флюориту. Натомість, внаслідок перетворення цирконату гадолінію Py-Gd₂Zr₂O₇ на твердий розчин зі структурою типу флюориту при ~1550 °C в граничній системі ZrO_2 -Gd₂O₃ – на ізотермічному перерізі системи ZrO_2 -HfO₂-Gd₂O₃ при 1600 °C утворюється лише граничний твердий розчин на основі даної фази (Ру).

3. Встановлено, що при зниженні до температури 1100 °C в системі ZrO_2 –HfO₂– Gd₂O₃ внаслідок перитектичної взаємодії $Py + C \leftrightarrow F$ залишається єдина область гомогенності твердих розчинів зі структурою типу флюориту.

4. Встановлено, що з пониженням температури від 1600 до 1100 °С стабільність твердих розчинів на основі С-модифікації збільшується, що пов'язано з відповідним поліморфним перетворенням оксиду гадолінію.

8. ЗАКОНОМІРНОСТІ БУДОВИ ПОТРІЙНИХ СИСТЕМ ZrO_2 -HfO₂- Ln_2O_3 (Ln = La - Yb)

Як вже було зазначено вище, матеріали на основі діоксидів цирконію та гафнію, леговані РЗО, мають обширне та різнобічне застосування [94–123]. Особливо зацікавлення привертають матеріали на основі фази з упорядкованою структурою типу пірохлору Ру- $Ln_2M_2O_7$. Нещодавні дослідження показали, що матеріали на основі упорядкованої кубічної структури типу пірохлору, де в позиції M чергуються Hf⁴⁺ та Zr⁴⁺, мають нижчу теплопровідність порівняно з Ln_2 Hf₂O₇ і Ln_2 Zr₂O₇ (Ln =Nd, Gd) [112]. Графіки теплопровідності відповідних матеріалів представлено на *рис. 8.1*.

Рисунок 8.1 – Теплопровідність Nd₂Hf₂O₇ (*a*), Nd₂Zr₂O₇ (*б*), Nd₂ZrHfO₇ (*в*), Gd₂Hf₂O₇ (*г*), Gd₂Zr₂O₇ (*d*), Gd₂ZrHfO₇ (*e*) [112]

Стабільність фази з упорядкованою кубічною структурою типу пірохлору в широкому концентраційному та температурному інтервалах є перевагою при розробці нових матеріалів функціонального та конструкційного призначення. Отже – досліджені відомості з представленої роботи про фазові рівноваги в потрійних системах є важливими даними для проектування нових матеріалів з покращеними властивостями.

На основі отриманих даних встановлено, що для систем дослідженого ряду з оксидами лантаноїдів церієвої підгрупи характерне утворення неперервного ряду

твердих розчинів на основі фази з упорядкованою структурою типу пірохлору. На підставі отриманих результатів, а також ретельного аналізу інформації щодо граничних подвійних систем в літературних джерелах [185,278–280,285,345] побудовано прогноз ізотермічних перерізів при 1500 °C для недосліджених діаграм стану зазначеного ряду ZrO_2 –HfO₂–Dy₂O₃ та ZrO_2 –HfO₂–Yb₂O₃, а також ZrO_2 –HfO₂–Y₂O₃ (*puc. 8.2 е–ж*).

Рисунок 8.2 – Ізотермічні перерізи діаграм стану систем ZrO_2 –HfO₂– RE_2O_3 (*RE* = La, Nd, Sm, Eu, Gd, Dy, Yb, Y) при 1500 °C за даними експерименту (*a*– ∂) та прогнозу (*e*–*u*)

Рисунок 8.2, аркуш 2

Вище відзначено, що матеріали на основі упорядкованої структури типу пірохлору $Py-Ln_2Zr_xHf_{2-x}O_7 \in$ перспективними для створення нових матеріалів. Утворення неперервного ряду твердих розчинів на основі зазначеної фази, а також його існування в широкому температурному інтервалі, надає можливості з варіативності хімічного складу при збереженні фазового складу, що важливо для розробки нових матеріалів [76].

Водночас для систем досліджуваного ряду з РЗО групи ітрію (RE = Tb-Lu, Y) внаслідок недотримання умови $rRE^{3+}_{KY=8}/rM^{4+} \ge 1,46$, а також спрощення координаційного поліедра для іонів РЗЕ³⁺ – упорядкування кубічної структури типу пірохлору не спостережено (*розділ 1.4*). В даних системах утворюються

181

широкі області гомогенності на основі кубічних твердих розчинів зі структурою типу флюориту (F).

Будова ізотермічного перерізу діаграми стану системи ZrO_2 –HfO₂–Yb₂O₃ ускладнюватиметься за рахунок утворення упорядкованої фази δ-Zr₃Yb₄O₁₂ (*puc.* 8.2 ж). Зазначена фаза в потрійній системі ZrO_2 –HfO₂–Y₂O₃ теж буде присутня, але при нижчій температурі – оскільки утворення δ-фази в граничній подвійній системі ZrO_2 –Y₂O₃ можливо лише до температури 1382 °C (*puc.* 8.2 *u*) [185]. Встановлено, що зі зменшенням *rRE*³⁺ протяжність гомогенної області на основі кубічних твердих розчинів С-типу збільшуватиметься (*puc.* 8.2 *c*–*u*).

Використовуючи літературні дані про будову граничних подвійних систем, побудовано прогноз ізотермічних перерізів діаграм стану ZrO_2 –HfO₂– Ln_2O_3 (*Ln* = La, Nd, Sm, Eu, Gd) при 1900 (*puc. 8.3*) та 2100 °C (*puc. 8.4*). У представленому ізотермічному перерізі діаграми стану системи ZrO_2 –HfO₂–Gd₂O₃ при температурі 1900, як і при 1600 °C (*poзділ 7.1, puc. 7.1*), утворюватиметься граничний твердий розчин на основі фази з упорядкованою структурою типу пірохлору (*puc. 8.3 д*). Водночас в системах ZrO_2 –HfO₂– Ln_2O_3 (*Ln* = La, Nd, Sm, Eu) утворюватиметься неперервний ряд твердих розчинів на основі впорядкованої структури типу пірохлору (*puc. 8.3 a–2*).

Рисунок 8.3 – Прогноз ізотермічних перерізів діаграм стану систем ZrO_2 –HfO₂– Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) при 1900 °C

Рисунок 8.3, аркуш 2

Утворення граничних твердих розчинів зі структурою типу пірохлору при підвищенні температури до 2100 °C буде характерним для систем ZrO_2 –HfO₂– Ln_2O_3 (Ln = Sm, Eu, Gd). При зазначеній температурі всі наведені ізотермічні перерізи характеризуються твердофазною взаємодією (*рис. 8.4 б*–*д*), за винятком системи ZrO_2 –HfO₂–La₂O₃ – в інтервалі концентрацій 60–70 % xLa_2O_3 вздовж лінії еквімолярного співвідношення діоксидів цирконію та гафнію на її ізотермічному перерізі формуватиметься область гомогенності рідкої фази (L, *puc. 8.4 a*).

Прогноз топології проекцій поверхонь ліквідусу (*puc.* 8.4) діаграм стану потрійних систем ZrO_2 –HfO₂– Ln_2O_3 (*Ln* = La, Nd, Sm, Eu, Gd) виконано з урахуванням будови їхніх граничних подвійних систем (*posdinu* 1.3, 1.4).

Рисунок 8.4 – Прогноз ізотермічних перерізів діаграм стану систем ZrO_2 – HfO_2 – Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) при 2100 °C

Термодинамічна стабільність упорядкованої структури типу пірохлору в системах $ZrO_2(HfO_2)-Ln_2O_3$ (де Ln – лантаноїд церієвої підгрупи) дає підстави припустити для діаграм стану цих систем існування квазібінарного перерізу $Ln_2Zr_2O_7-Ln_2Hf_2O_7$ з повною чи частковою розчинністю даної структури. Для системи з дистектикою ZrO_2 -HfO_2-La₂O₃ розчинність, отже і квазібінарність – повна. В системах ZrO_2 -HfO_2-Nd₂O₃ та ZrO_2 -HfO_2-Sm₂O₃ для впорядкованої структури типу пірохлору утворюватимуться області первинної кристалізації (*рис.* 8.5 *б*, *в*). Поверхні ліквідусу систем ZrO_2 -HfO₂-Eu₂O₃ і ZrO_2 -HfO₂-Gd₂O₃ не містять полів первинної кристалізації для фаз з упорядкованою структурою типу пірохлору (*рис.* 8.5 *с*, *д*)

Рисунок 8.5 – Топологія проекцій поверхонь ліквідусу діаграм стану систем ZrO_2 – HfO_2 – Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd)

Рисунок 8.5, аркуш 2

8.1. Висновки до восьмого розділу

1. Проведено прогноз ізотермічних перерізів діаграм стану недосліджених систем ZrO₂–HfO₂–Dy₂O₃, ZrO₂–HfO₂–Yb₂O₃ та ZrO₂–HfO₂–Y₂O₃ при 1500 °C з використанням отриманих в даній роботі результатів, а також суб'єктивного аналізу інформації щодо граничних подвійних систем з літературних джерел.

2. Встановлено, що будову ізотермічних перерізів діаграм стану потрійних систем ZrO_2 —HfO₂— Ln_2O_3 (Ln = La—Yb) при 1500 °C визначають термодинамічна стабільність твердих розчинів на основі поліморфних модифікацій компонентів та утворених в них проміжних фаз. Утворення нових фаз в даних системах не встановлено.

3. Встановлено, що в системах ZrO_2 –HfO₂– Ln_2O_3 (Ln = La, Nd, Sm, Eu) при температурі 1900 °C утворюється неперервний ряд твердих розчинів на основі фази з упорядкованою кубічною структурою типу пірохлору. Водночас в системі ZrO_2 –HfO₂–Gd₂O₃ при 1900 °C утворюється відповідний граничний твердий розчин.

4. Встановлено, що при підвищенні до температури 2100 °C граничний твердий розчин зі структурою типу пірохлору утворюється в системах ZrO_2 -HfO₂- Ln_2O_3 (Ln = Sm, Eu, Gd).

5. Встановлено, що топологію представлених проекцій поверхонь ліквідусу діаграм стану систем ZrO_2 –HfO₂– Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) визначають тверді розчини зі структурою типу флюориту (F), а також високотемпературна кристалічна модифікація X- Ln_2O_3 .

ЗАГАЛЬНІ ВИСНОВКИ

В представленій роботі вперше проведено комплексне дослідження фазових рівноваг в потрійних системах ZrO_2 – HfO_2 – Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) із застосуванням методів рентгенофазового аналізу та електронної мікроскопії. Побудовано ізотермічні перерізи п'яти діаграм стану потрійних систем. Показано загальні закономірності фазових взаємодій в досліджених системах в твердому та рідкому станах в залежності від іонного радіуса лантаноїду. В роботі вперше:

1. Вивчено фазові рівноваги в потрійних системах ZrO_2 –HfO₂– Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd) при температурах 1700, 1600, 1500, 1250 та 1100 °C в повному інтервалі концентрацій. Побудовано відповідні ізотермічні перерізи. Визначено, що для досліджених систем характерне утворення твердих розчинів на основі різних поліморфних модифікацій вихідних компонентів та фази з упорядкованою структурою типу пірохлору Ру- Ln_2 Hf₂O₇ (Py- Ln_2 Zr₂O₇).

2. Встановлено, що в системах ZrO_2 –HfO₂– Ln_2O_3 (Ln = La, Nd, Sm, Eu) в температурному інтервалі 1700 – 1100 °С утворюються неперервні ряди твердих розчинів на основі фази з упорядкованою структурою типу пірохлору (Ру).

3. Встановлено, що в досліджених системах при пониженні до температури 1100 °С утворюються неперервні ряди твердих розчинів на основі моноклінної структури M-HfO₂ (M-ZrO₂).

4. Встановлено, що в системах ZrO_2 –HfO₂– Ln_2O_3 (Ln = La, Nd, Sm, Eu) при температурі 1900 °C утворюються неперервні ряди твердих розчинів на основі фази з упорядкованою структурою типу пірохлору, водночас в системі ZrO_2 –HfO₂–Gd₂O₃ утворюється відповідний граничний твердий розчин. Також встановлено, що при підвищенні температури до 2100 °C, граничні тверді розчини фаз зі структурою типу пірохлору утворюються в системах ZrO_2 –HfO₂– Ln_2O_3 (Ln = Sm, Eu, Gd).

5. Представлено проекції поверхонь ліквідусу діаграм стану систем ZrO_2 – HfO_2 – Ln_2O_3 (Ln = La, Nd, Sm, Eu, Gd). Встановлено, що топологію проекцій визначають тверді розчини з кубічною структурою типу флюориту, а також високотемпературна кристалічна модифікація X- Ln_2O_3 .

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- **1.** Gadolin, J. (1794). *Kungl. Vetensk. Akad. Handl.*, 15, 137–155; (1796). *Creel's Ann.*, I, 313–329.
- **2.** Eckeberg, A. G. Fernere Untersuchung der schwarzen Steinart von Ytterby und der, in derselben gefundenen eigenen Erde. (1797). *Kungl. Vetensk. Akad. Handl.*, 18, 156–164; (1799). *Crell's Ann.*, II, 187–195.
- **3.** Berzelius, J. J. (1839). Lantan, ein neues Metall. *Ann. Phys.*, 122(4), 648–649. DOI: 10.1002/andp.18391220415
- **4.** Trifonov, D. N. (1963). The Rare-Earth Elements. *New York: The MacMillan Company.*
- **5.** Trifonov, D. N., Trifonov, V. D. (1982). Chemical elements. how they were discovered. *Moscow: Mir Publishers*, 264 p. ISBN:9785030007786
- **6.** Thyssen, P., Binnemans, K. (2011). Accommodation of the Rare Earths in the Periodic Table: A Historical Analysis. Handbook on the Physics and Chemistry of Rare Earths, 41(248), 1–93. DOI:10.1016/B978-0-444-53590-0.00001-7
- 7. Emsley, J. (2011). Nature's Building Blocks: An A–Z Guide to the Elements. *Oxord: OUP*. ISBN:9780192570468
- **8.** Weeks, M. E., Dains, F. B. (2013). The discovery of the elements. *Literary Licensing, LLC*. ISBN:9781258854447.
- **9.** Greinacher, E. (1981). History of Rare Earth applications, Rare Earth market today. *In: Industrial Applications of Rare Earth Elements.*, 3–17. DOI:10.1021/bk-1981-0164.ch001

10. Von Welsbach, C. A. (1887). Gas-Incandescent (U.S. Patent No. 359,524). U.S. *Patent and Trademark Office*. URL: ppubs.uspto.gov/dirsearch-public/print/download Pdf/0359524

11. Von Welsbach, C. A. (1889). Incandescent device (U.S. Patent No. 399,174). U.S. *Patent and Trademark Office*. URL: ppubs.uspto.gov/dirsearch-public/print/downoad Pdf/0399174

12. Klaproth, M. H. (1789). Crell's Ann., 1, 7.

13. Nernst, W. (1901). Material for electric lamp glowers (U.S. Patent No. 685,730). *U.S. Patent and Trademark Office*. URL: ppubs.uspto.gov/dirsearch-public/print/dow nloadPdf/0685730

14. Gmelin, L. (1958). Zirkonium. Teil 42. *Gmelin Handbuch der anorganischen Chemie, Springer Berlin Heidelberg (8th ed.)*. DOI:10.1007/978-3-662-13466-5

15. Nielsen, R. H., Wilfing, G. (2010). Zirconium and zirconium compounds. *In: Ullmann's Encyclopedia of Industrial Chemistry (Wiley)*, 752–776. DOI:10.1002/1435 6007.a28_543.pub2

16. Hevesy, G. (1925). The discovery and properties of hafnium. *Chem. Rev.*, 2(1), 1–41. DOI:10.1021/cr60005a001

17. Earnshaw, A. (1997). Chemistry of the Elements (2nd ed.). *Butterworth-Heinemann*, 1364p. ISBN:9780080379418

18. Keller, H. W., Shallenberger, J. M., Hollein, D. A., Hott, A. C. (1982). Development of hafnium and comparison with other pressurized water reactor control rod materials. *Nucl. Technol.*, 59(3), 476–482. DOI:10.13182/NT82-A33005

19. Chu, S. (ed.) (2011). Critical Materials Strategy, U.S. Department of Energy, Washington, DC, DOE/PI-0009. URL: www.energy.gov/sites/prod/files/DOE_CMS20 11_FINAL_Full.pdf

20. Råde, I., Andersson, B. A. (2001). Requirement for metals of electric vehicle batteries. *J. Power Sources*, 93(1–2), 55–71. DOI:10.1016/S0378-7753(00)00547-4

21. Lannou, M. I., Hélion, F., Namy, J. L. (2003). Some uses of mischmetall in organic synthesis. *Tetrahedron*, 59(52), 10551–10565. DOI:10.1016/j.tet.2003.07.017

22. Ojima, T., Tomizawa, S., Yoneyama, T., Hori, T. (1977). Magnetic properties of a new type of rare-earth cobalt magnets Sm₂(Co,Cu,Fe,*M*)₁₇. *IEEE Trans. Magn.*, 13(5), 1317–1319. DOI:10.1109/TMAG.1977.1059703

23. Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H., Matsuura, Y. (1984). New material for permanent magnets on a base of Nd and Fe (invited). *J. Appl. Phys.*, 55(6), 2083–2087. DOI:10.1063/1.333572

24. Tang, X., Li, J., Sepehri-Amin, H., Bolyachkin, A., Martin-Cid, A., Kobayashi, S., Kotani, Y., Suzuki, M., Terasawa, A., Gohda, Y., Ohkubo, T., Nakamura, T., Hono, K.

(2023). Unveiling the origin of the large coercivity in (Nd, Dy)-Fe-B sintered magnets. *NPG Asia Mater.*, 15(1). DOI:10.1038/s41427-023-00498-5

25. Swiler, D. R., Detrie, T. J., Axtell, E. A. (2003). Rare earth-transition metal oxide pigments (U.S. Patent No. 6,582,814). U.S. Patent and Trademark Office. URL: ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6582814

26. Maslennikova, G. N., Pishch, I. V., Radion, E. V., Gvozdeva, N. A. (2007). Synthesis of neodymium-containing pigments. *Glass Ceram.*, 64(9-10), 305–306. DOI:10.1007/s10717-007-0076-6

27. Sreeram, K. J., Aby, C. P., Nair, B. U., Ramasami, T. (2008). Colored cool colorants based on rare earth metal ions. *Sol. Energy Mater. Sol. Cells*, 92(11), 1462–1467. DOI:10.1016/j.solmat.2008.06.008

28. Sreeram, K. J., Kumeresan, S., Radhika, S., Sundar, V. J., Muralidharan, C., Nair, B. U., Ramasami, T. (2008). Use of mixed rare earth oxides as environmentally benign pigments. *Dyes Pigments*, 76(1), 243–248. DOI:10.1016/j.dyepig.2006.08.036

29. Xiao, Y., Feng, L., Huang, B., Chen, J., Xie, W., Sun, X. (2021). Synthesis and characterization of multi-colored pigments of $\text{Li}RE(\text{MoO}_{4+\delta})_2$ (*RE* = Ce, Pr, Nd, Er) with high near-infrared reflectance. *Ceram. Int.*, 47(21), 29856–29863. DOI:10.1016/ j.ceramint.2021.07.158

30. Watson, A. D. (1994). The use of gadolinium and dysprosium chelate complexes as contrast agents for magnetic resonance imaging. *J. Alloys Compd.*, 207–208(C), 14–19. DOI:10.1016/0925-8388(94)90168-6

31. Buchanan, R. A., Wickersheim, K. A. (1968). Rare earth phosphors and scintillators. *IEEE Trans. Nucl. Sci.*, 15(3), 95–101. DOI:10.1109/TNS.1968.4324921

32. Zhang, Q. Y., Huang, X. Y. (2010). Recent progress in quantum cutting phosphors. *Prog. Mater. Sci.*, 55(5), 353–427. DOI:10.1016/j.pmatsci.2009.10.001

33. Lauria, A., Villa, I., Fasoli, M., Niederberger, M., Vedda, A. (2013). Multifunctional role of rare earth doping in optical materials: Nonaqueous sol-gel synthesis of stabilized cubic HfO₂ luminescent nanoparticles. *ACS Nano*, 7 (8), 7041–7052. DOI: 10.1021/nn402357s

34. Cunha, C. D. S., Ferrari, J. L., Ribeiro, S. J. L., Ferrari, M., Gonçalves, R. R. (2015).

Tailoring the structure and luminescence of nanostructured Er³⁺ and Er³⁺/Yb³⁺-activated hafnia-based systems. *J. Am. Ceram. Soc.*, 98 (10), 3136–3144. DOI:10.1111/jace. 13689

35. Gupta, S. K., Zuniga, J. P., Abdou, M., Thomas, M. P., De Alwis Goonatilleke, M., Guiton, B. S., Mao, Y. (2020). Lanthanide-doped lanthanum hafnate nanoparticles as multicolor phosphors for warm white lighting and scintillators. *Chem. Eng. J.*, 379(July 2019), 122314. DOI:10.1016/j.cej.2019.122314

36. Yoshikawa, A., Yanagida, T., Yokota, Y., Kamada, K., Kawaguchi, N., Fukuda, K., Yamazaki, A., Watanabe, K., Uritani, A., Iguchi, T., Boulon, G., Nikl, M. (2011). Development of novel rare earth doped fluoride and oxide scintillators for two-dimensional imaging. *J. Rare Earths*, 29(12), 1178–1182. DOI:10.1016/S1002-0721 (10)60621-7

37. Lüthy, W., Weber, H. P. (1991). The 3 μm Erbium laser. *Infrared Phys.*, 32(C), 283–290. DOI:10.1016/0020-0891(91)90117-X

38. Feng, T., Clarke, D. R., Jiang, D., Xia, J., Shi, J. (2011). Neodymium zirconate (Nd₂Zr₂O₇) transparent ceramics as a solid state laser material. *Appl. Phys. Lett.*, 98(15), 1063–1066. DOI:10.1063/1.3579526

39. Fois, M., Cox, T., Ratcliffe, N., de Lacy Costello, B. (2021). Rare earth doped metal oxide sensor for the multimodal detection of volatile organic compounds (VOCs). *Sens. Actuators B Chem.*, 330(December 2020), 129264. DOI:10.1016/j.snb.2020. 129264

40. Hossain, M. Kh., Ahmed, M. H., Khan, M. I., Miah, M. S., Hossain, S. (2021). Recent progress of rare earth oxides for sensor, detector, and electronic device applications: A Review. *ACS Appl. Electron. Mater.*, 3, 4255–4283. DOI:10.1021/acs aelm.1c00703

41. Patil, A. S., Patil, A. V., Dighavkar, C. G., Adole, V. A., Tupe, U. J. (2022) Synthesis techniques and applications of rare earth metal oxides semiconductors: A review. *Chem. Phys. Lett.*, 796, 139555. DOI:10.1016/j.cplett.2022.139555

42. Akiyama, J., Sato, Y., Taira, T. (2010). Laser ceramics with rare-earth-doped anisotropic materials. *Opt. Lett.*, 35(21), 3598. DOI:10.1364/ol.35.003598

43. Kolesnichenko, V., Yurchenko, Yu., Kornienko, O., Zamula, M., Samelyuk, A.,

Shyrokov, O., Tomila, T., Ragulya, A., Kotko, A. (2024). Spark plasma sintering of a ceramic material with a LaLuO₃ perovskite-type structure. *Nano Hybrids Compos.*, 43, 1–11. DOI:10.4028/p-dngz2b

44. Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., Chu, C. W. (1987). Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. *Phys. Rev. Lett.*, 58(9), 908–910. DOI:10.1103/PhysRevLett.58.908

45. Dos santos-García, A. J., Alario-Franco, M. Á., Sáez-Puche, R. (2012). Lanthanides: Superconducting Materials. *In: Encyclopedia of Inorganic and Bioinorganic Chemistry*. DOI:10.1002/9781119951438.eibc2039

46. Greenwood, R. (1978). Collective and two-quasiparticle states in ¹⁵⁸Gd observed through study of radiative neutron capture in ¹⁵⁷Gd. *Nucl. Phys. A*, 304(2), 327–428. DOI:10.1016/0375-9474(78)90242-7

47. Kopecky, J. (1997). Atlas of neutron capture cross sections. *Int. Nucl. Data Sect.*, 1–389. URL: www-nds.iaea.org/publications/indc/indc-nds-0362.pdf

48. Rafiuddin, M. R., Donato, G., McCaugherty, S., Mesbah, A., Grosvenor, A. P. (2022). Review of rare-earth phosphate materials for nuclear waste sequestration applications. *ACS Omega*, 7(44), 39482–39490. DOI:10.1021/acsomega.2c03271

49. Zakaly, H. M. H., Rammah, Y. S., Tekin, H. O., Ene, A., Badawi, A., Issa, S. A. M. (2022). Nuclear shielding performances of borate/sodium/potassium glasses doped with Sm³⁺ ions. *J. Mater. Res. Technol.*, 18(March), 1424–1435. DOI:10.1016/j.jmrt. 2022.03.030

50. Wang, K., Ma, L., Yang, C., Bian, Z., Zhang, D., Cui, S., Wang, M., Chen, Z., Li, X. (2023). Recent progress in Gd-Containing materials for neutron shielding applications: A Review. *Mater.*, 16(12). DOI:10.3390/ma16124305

51. Williamson, J.-P. H., Moilliet, J. L. (1984). Polishing process for mineral and organic materials (EP 0 031 204 B1). *European Patent Office*. URL: data.epo.org/ publication-server/document/pdf/0031204/B1/1984-06-06

52. Hedrick, J. B., Sinha, S. P. (1994). Cerium-based polishing compounds: discovery to manufacture. *J. Alloys Compd.*, 207–208(C), 377–382. DOI:10.1016/0925-8388(94)

90243-7

53. Komiya, H., et al. (2006). Method for evaluating the quality of abrasive grains, polishing method and abrasive for polishing glass (U.S. Patent No. 7,025,796). *U.S. Patent and Trademark Office*. URL: ppubs.uspto.gov/dirsearch-public/print/download Pdf/7025796

54. Cao, X., Vassen, R., Fischer, W., Tietz, F., Jungen, W., Stöver, D. (2003). Lanthanum-cerium oxide as a Thermal Barrier-Coating material for high-temperature applications. *Adv. Mater.*, 15(17), 1438–1442. DOI:10.1002/adma.200304132

55. Colussi, S., De Leitenburg, C., Dolcetti, G., Trovarelli, A. (2004). The role of rare earth oxides as promoters and stabilizers in combustion catalysts. *J. Alloys Compd.*, 374(1–2), 387–392. DOI:10.1016/j.jallcom.2003.11.028

56. Zhu, J., Li, H., Zhong, L., Xiao, P., Xu, X., Yang, X., Zhao, Z., Li, J. (2014). Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. *ACS Catal.*, 4(9), 2917–2940. DOI:10.1021/cs500606g

57. Wang, Q., Cheng, X., Li, J., Jin, H. (2016). Hydrothermal synthesis and photocatalytic properties of pyrochlore Sm₂Zr₂O₇ nanoparticles. *J. Photochem. Photobiol. A*, 321, 48–54. DOI:10.1016/j.jphotochem.2016.01.011

58. Feng, J., Zhang, X., Wang, J., Ju, X., Liu, L., Chen, P. (2021). Applications of rare earth oxides in catalytic ammonia synthesis and decomposition. *Catal. Sci. Technol.*, 11, 6330–6343. DOI:10.1039/D1CY01156A

59. Jiang, Y., Fu, H., Liang, Zh., Zhang, Q., Du, Y. (2024). Rare earth oxide based electrocatalysts: synthesis, properties and applications. *Chem. Soc. Rev.*, 53, 714–763. DOI:10.1039/D3CS00708A

60. Xia, X., Li, J., Chen, C. et al. (2022). Collaborative influence of morphology tuning and *RE* (La, Y, and Sm) doping on photocatalytic performance of nanoceria. *Environ. Sci. Pollut. Res.*, 29, 88866–88881. DOI:10.1007/s11356-022-21787-6

61. Ma, Y., Guo, H., Xiong, J., Xu, L., Wei, Y. (2024). Research Advances in rare earth oxide-based catalysts for soot combustion. *ChemCatChem*, 16, e202301317. DOI:10. 1002/cctc.202301317

62. Zhang, C., Ahmad, I., Ahmed, S., Ben Ali, M. D., Karim, M. R., Bayahia, H.,

Khasawneh, M. A. (2024). A review of rare earth oxides-based photocatalysts: Design strategies and mechanisms. *J. Water Process Eng.*, 63, 105548. DOI:10.1016/J.JWPE. 2024.105548

63. Sickafus, K. E., Minervini, L., Grimes, R. W., Valdez, J. A., Ishimaru, M., Li, F., McClellan, K. J., Hartmann, T. (2000). Radiation tolerance of complex oxides. *Science*, 289(5480), 748–751. DOI:10.1126/science.289.5480.748

64. Degueldre, C., Hellwig, C. (2003). Study of a zirconia based inert matrix fuel under irradiation. *J. Nucl. Mater.*, 320(1–2), 96–105. DOI:10.1016/S0022-3115(03)00 17 5-2

65. Manicone, P. F., Rossi Iommetti, P., Raffaelli, L. (2007). An overview of zirconia ceramics: basic properties and clinical applications. *J. Dent.*, 35(11), 819–826. DOI: 10.1016/j.jdent.2007.07.008

66. Kelly, J. R., Denry, I. (2008). Stabilized zirconia as a structural ceramic: An overview. *Dent. Mater.*, 24(3), 289–298. DOI:10.1016/j.dental.2007.05.005

67. Bocanegra-Bernal, M. H., de la Torre, S. D. (2002). Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics. *J. Mater. Sci.* 37, 4947–4971. DOI:10.1023/A:1021099308957

68. Boch, P. J., Niepce, J. (Eds.) (2007). *Ceramic Materials. Wiley*, 199–230. ISBN: 9781905209231 DOI:10.1002/9780470612415

69. Schulz, U., Leyens, C., Fritscher, K., Peters, M., Saruhan-Brings, B., Lavigne, O., Dorvaux, J. M., Poulain, M., Mévrel, R., Caliez, M. (2003). Some recent trends in research and technology of advanced Thermal Barrier Coatings. *Aerosp. Sci. Technol.*, 7(1), 73–80. DOI:10.1016/S1270-9638(02)00003-2

70. Clarke, D. R., Phillpot, S. R. (2005). Thermal Barrier Coating materials. *Mater. Today*, 8(6), 22–29. DOI:10.1016/S1369-7021(05)70934-2

71. Haggerty, R. P., Sarin, P., Apostolov, Z. D., Driemeyer, P. E., Kriven, W. M. (2014). Thermal expansion of HfO₂ and ZrO₂. *J. Am. Ceram. Soc.*, 97(7), 2213–2222. DOI: 10.1111/jace.12975

72. Ibégazène, H., Alpérine, S., Diot, C. (1995). Yttria-stabilized hafnia–zirconia thermal barrier coatings: The influence of hafnia addition on TBC structure and high-temperature behaviour. *J. Mater. Sci.*, 30(4), 938–951. DOI:10.1007/BF01178428

73. Belichko, D. R., Konstantinova, T. E., Maletsky, A. V., Volkova, G. K., Doroshkevich, A. S., Lakusta, M. V., Kulik, M., Tatarinova, A. A., Mardare, D., Mita, C., Cornei, N. (2021). Influence of hafnium oxide on the structure and properties of powders and ceramics of the YSZ–HfO₂ composition. *Ceram. Int.*, 47(3), 3142–3148. DOI:10.1016/j.ceramint.2020.09.151

74. Lakiza, S. M., Hrechanyuk, M. I., Red'ko, V. P., Ruban, O. K., Tyshchenko, J. S., Makudera, A. O., Dudnik, O. V. (2021). The role of hafnium in modern Thermal Barrier Coatings. *Powder Metall. Met. Ceram.*, 60 (1–2), 78–89. DOI:10.1007/s1110 6-021-00217-1

75. Julian-Jankowiak, A., Sévin, L., Razafindramanana, V., Audouard, L., Justin, J.-F., Bertrand, P., Langlade, C., Garcia, M. (2022). Manufacturing and characterisations of hafnia-based materials for aerospace applications. *9th European Conference for Aeronautics and Space Sciences (EUCASS-3AF, Jun 2022, Lille, France)*. DOI: 10.13009/EUCASS2022-6082

76. Wilk, G. D., Wallace, R. M., Anthony, J. M. (2001). High-κ gate dielectrics: Current status and materials properties considerations. *J. Appl. Phys.*, 89(10), 5243–5275. DOI: 10.1063/1.1361065

77. Choi, J. H., Mao, Y., Chang, J. P. (2011). Development of hafnium based high-k materials - A review. *Mater. Sci. Eng. R Rep.*, 72(6), 97–136. DOI:10.1016/j.mser.20 10.12.001

78. Müller, J., Böscke, T. S., Schröder, U., Mueller, S., Bräuhaus, D., Böttger, U., Frey, L., Mikolajick, T. (2012). Ferroelectricity in simple binary ZrO₂ and HfO₂. *Nano Lett.*, 12(8), 4318–4323. DOI:10.1021/nl302049k

79. Gregg, J. M., Unruh, H. (2016). Ferroelectrics. *In Ullmann's Encyclopedia of Industrial Chemistry (Wiley)*, 1–26. DOI:10.1002/14356007.a10_309.pub2

80. Kao, R. W., Peng, H. K., Chen, K. Y., Wu, Y. H. (2021). HfZrOx-based switchable diode for logic-in-memory applications. *IEEE Trans. Electron Devices*, 68(2), 545–549. DOI:10.1109/TED.2020.3046541

81. Cheema, S. S., Shanker, N., Wang, L. C. Ultrathin ferroic HfO₂–ZrO₂ superlattice gate stack for advanced transistors. *Nature*, 604, 65–71 (2022). DOI:10.1038/s41586-

022-04425-6

82. Kumar, S., Sharma, S. S., Giri, J., Dave, V., Amir, M., Panchal, H. (2024). Investigation of electrical, corporeal, ocular, and aquaphobic properties of zirconia thin-films by varying substrate temperature for high voltage insulators. *J. Asian Ceram. Soc.*, 12(1), 71–78. DOI:10.1080/21870764.2024.2307694

83. Krebs, M. A., Condrate, R. A. (1982). Vibrational Spectra of HfO₂–ZrO₂ Solid Solutions. *J. Amer. Ceram. Soc.*, 65(9), 144–145. DOI:10.1111/j.1151-2916.1982. tb10520.x

84. Lehan, J. P., Mao, Y., Bovard, B. G., Macleod, H. A. (1991). Optical and microstructural properties of hafnium dioxide thin films. *Thin Solid Films*, 203(2), 227–250. DOI:10.1016/0040-6090(91)90131-G

85. Horti, N. C., Kamatagi, M. D., Nataraj, S. K., Wari, M. N., Inamdar, S. R. (2020). Structural and optical properties of zirconium oxide (ZrO₂) nanoparticles: effect of calcination temperature. *Nano Express*, 1(1). DOI:10.1088/2632-959X/ab8684

86. Patel, K. J., Desai, M. S., Panchal, C. J., Deota, H. N., Trivedi, U. B. (2013). Allsolid-thin film electrochromic devices consisting of layers ITO/NiO/ZrO₂/WO₃/ITO. *J. Nano- Electron. Phys.*, 5(2), 10–12.

87. Pérez-Tomás, A., Mingorance, A., Tanenbaum, D., Lira-Cantú, M. (2018). Metal oxides in photovoltaics: all-oxide, ferroic, and perovskite solar cells. In *The Future of Semiconductor Oxides in Next-Generation Solar Cells (Elsevier)*. DOI:10.1016/B978-0-12-811165-9.00008-9

88. Nukala, P., Antoja-Lleonart, J., Wei, Y., Yedra, L., Dkhil, B., Noheda, B. (2019). Direct epitaxial growth of polar (1-x)HfO₂-(x)ZrO₂ ultrathin films on silicon. *ACS Appl. Electron. Mater.*, 1(12), 2585–2593. DOI:10.1021/acsaelm.9b00585

89. Konenko, I. P., Tolstopyatova, A. A., Balandin, A. A. (1967). Catalytic properties of titanium, zirconium, and hafnium dioxides in reactions of dehydrogenation and dehydration. *Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 16(3), 481–486. DOI:10.1007/ BF00905976

90. Tanabe, K. (1985). Surface and catalytic properties of ZrO₂. *Mater. Chem. Phys.*, 13(3–4), 347–364. DOI:10.1016/0254-0584(85)90064-1

91. Laishram, D., Shejale, K.P., Gupta, R., Sharma, R.K. (2018). Solution processed hafnia nanoaggregates: influence of surface oxygen on catalytic soot oxidation. *ACS Sustain. Chem. Eng.*, 6(9), 11286–11294. DOI:10.1021/acssuschemeng.8b00674

92. Yashima, M., Kakihana, M., Yoshimura, M. (1996). Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. *Solid State Ion.*, 86–88(C), 1131–1149. DOI:10.1016/0167-2738(96) 00386-4

93. Goodenough, J.B. (2003). Oxide-ion electrolytes. *Annu. Rev. Mater. Res.*, 33, 91–128. DOI:10.1146/annurev.matsci.33.022802.091651

94. Kendall, K. (2005). Progress in solid oxide fuel cell materials. *Int. Mater. Rev.*, 50(5), 257–264. DOI:10.1179/174328005X41131

95. Izu, N., Shin, W., Matsubara, I., Murayama, N., Oh-Hori, N., Itou, M. (2005). Temperature independent resistive oxygen sensors using solid electrolyte zirconia as a new temperature compensating material. *Sens. Actuators B: Chem.*, 108(1–2), 216–222. DOI:10.1016/j.snb.2004.11.034

96. Fergus, J. W. (2006). Electrolytes for solid oxide fuel cells. *J. Power Sources*, 162(1), 30–40. DOI:10.1016/j.jpowsour.2006.06.062

97. Halley, S., Ramaiyan, K. P., Tsui, L., Garzon, F. (2022). A review of zirconia oxygen, NOx, and mixed potential gas sensors – history and current trends. *Sens. Actuators B: Chem.*, 370, 132363. DOI:10.1016/j.snb.2022.132363

98. Hagiwara, T., Yamamura, H., Nomura, K., Igawa, M. (2013). Relationship between crystal structure and oxide-ion conduction in $Ln_2Zr_2O_7$ (Ln = Eu, Nd and La) system deduced by neutron and X-ray diffraction. *J. Ceram. Soc. Jpn*, 121(1410), 205–210. DOI:10.2109/jcersj2.121.205

99. Shlyakhtina, A. V., Kondrat'eva, O. N., Nikiforova, G. E., Shchegolikhin, A. N., Stolbov D. N., Kolbanev I. V., Liang, W., Lyskov N. V. (2022). Study of $Nd_{2\pm x}Hf_{2\pm x}O_{7\pm\delta}$ system: The ionic and thermal transport properties. *Mater. Res. Bull.*, 155, 111971. DOI:10.1016/j.materresbull.2022.111971

100. Feng, J., Xiao, B., Zhou, R., Pan, W. (2012). Thermal expansions of *Ln*₂Zr₂O₇ (*Ln* = La, Nd, Sm, and Gd) pyrochlore. *J. Appl. Phys.*, 111(10). DOI:10.1063/1.4722174

101. Zhang, J., Guo, X., Jung, Y. G., Li, L., Knapp, J. (2017). Lanthanum zirconate

based thermal barrier coatings: A review. *Surf. Coat. Tech.*, 323, 18–29. DOI:10.1016/j.surfcoat.2016.10.019

102. Mikuśkiewicz, M., Migas, D., Moskal, G. (2018). Synthesis and thermal properties of zirconate, hafnate and cerate of samarium. *Surf. Coat. Tech.*, 354, 66–75. DOI:10.1016/j.surfcoat.2018.08.096

103. Guskov, V. N., Gagarin, P. G., Guskov, A. V., Tyurin, A. V., Khoroshilov, A. V., Gavrichev, K. S. (2019). Heat capacity and thermal expansion of neodymium hafnate ceramics. *Ceram. Int.*, 45(16), 20733–20737. DOI:10.1016/j.ceramint.2019.07.057

104. Guskov, V. N., Tyurin, A. V., Guskov, A. V., Gagarin, P. G., Khoroshilov, A. V., Gavrichev, K. S. (2020). Thermal expansion and thermodynamic properties of gadolinium hafnate ceramics. *Ceram. Int.*, 46(8), 12822–12827. DOI:10.1016/j.ceram int.2020.02.052

105. Guskov, A. V., Gagarin, P. G., Guskov, V. N., Khoroshilov, A. V., Gavrichev, K. S. (2021). Heat capacity and thermal expansion of samarium hafnate. *Inorg. Mater.*, 57(10), 1015–1019. DOI:10.1134/S0020168521100046

106. Stolyarova, V. L., Vorozhtcov, V. A., Lopatin, S. I., Shugurov, S. M., Shilov, A. L., Karachevtsev, F. N. (2021). Mass spectrometric study of ceramics in the Sm₂O₃–ZrO₂– HfO₂ system at high temperatures. *Rapid Commun. Mass Spectrom.*, 35(9), 1–13. DOI:10.1002/rcm.9066

107. Bakradze, M. M., Doronin, O. N., Artemenko, N. I. et al. (2021). Physicochemical properties of Sm₂O₃–ZrO₂–HfO₂ ceramics for the development of promising Thermal Barrier Coatings. *Russ. J. Inorg. Chem.*, 66, 789–797. DOI:10.1134/S00360236210 5003X

108. Doronin, O. N., Artemenko, N. I., Stekhov, P. A., Marakhovskii, P. S., Stolyarova, V. L., Vorozhtsov, V. A. (2022). Physicochemical properties of Gd₂O₃–ZrO₂–HfO₂ ceramics as promising Thermal Barrier Coatings. *Russ. J. Inorg. Chem.*, 67(5), 732–739. DOI:10.1134/S0036023622050060

109. Kablov E. N., Shilov A. L., Stolyarova V. L., et al. (2022). Mass spectrometric study and modeling of the thermodynamic properties in the Gd₂O₃–ZrO₂–HfO₂ system at high temperatures. *Rapid Commun Mass Spectrom.*, 36(13):e9306. DOI:10.1002/

rcm.9306

110. Gagarin, P. G., Guskov, A. V., Guskov, V. N., Khoroshilov, A. V., Gavrichev, K. S. (2023). Thermophysical properties of neodymium and gadolinium zirconate hafnates. *Russ. J. Inorg. Chem.*, 68(10), 1460–1470. DOI:10.1134/S003602362 3601861

111. Chun, J., Reuvekamp, P. G., Chen, D., Lin, C., Kremer, R. K. (2015). Promising high-k dielectric permittivity of pyrochlore-type crystals of Nd₂Hf₂O₇. *J. Mater. Chem. C*, 3(3), 491–494. DOI:10.1039/c4tc02416h

112. Petit, S., Lhotel, E., Canals, B., Ciomaga Hatnean, M., Ollivier, J., Mutka, H., Ressouche, E., Wildes, A. R., Lees, M. R., Balakrishnan, G. (2016). Observation of magnetic fragmentation in spin ice. *Nature Phys.*, 12(8), 746–750. DOI:10.1038/nphys 3710

113. Wang, Z., Zhou, G., Jiang, D., Wang, S. (2018). Recent development of *A*₂*B*₂O₇ system transparent ceramics. *J. Adv. Ceram.*, 7(4), 289–306. DOI:10.1007/s40145-018-0287-z

114. Gupta, S. K., Reghukumar, C., Kadam, R. M. (2016). Eu³⁺ local site analysis and emission characteristics of novel Nd₂Zr₂O₇:Eu phosphor: Insight into the effect of europium concentration on its photoluminescence properties. *RSC Adv.*, 6(59), 53614 – 53624. DOI:10.1039/c6ra11698a

115. Gupta, S. K., Reghukumar, C., Keskar, M., Kadam, R. M. (2016). Revealing the oxidation number and local coordination of uranium in Nd₂Zr₂O₇ pyrochlore: A photoluminescence study. *J. Lumin.*, 177, 166–171. DOI:10.1016/j.jlumin.2016.04.031 **116.** Zuniga, J. P., Gupta, S. K., Abdou, M., De Santiago, H. A., Puretzky, A. A., Thomas, M. P., Guiton, B. S., Liu, J., Mao, Y. (2019). Size, structure, and luminescence of Nd₂Zr₂O₇ nanoparticles by molten salt synthesis. *J. Mater. Sci.*, 54(19), 12411–12423. DOI:10.1007/s10853-019-03745-9

117. Gupta, S. K., Sudarshan, K., Ghosh, P. S., Srivastava, A. P., Bevara, S., Pujari, P. K., Kadam, R. M. (2016). Role of various defects in the photoluminescence characteristics of nanocrystalline Nd₂Zr₂O₇: An investigation through spectroscopic and DFT calculations. *J. Mater. Chem. C*, 4(22), 4988–5000. DOI:10.1039/c6tc01032f **118.** Zinatloo-Ajabshir, S., Salavati-Niasari, M. (2017). Photo-catalytic degradation of

erythrosine and eriochrome black T dyes using Nd₂Zr₂O₇ nanostructures prepared by a modified Pechini approach. *Sep. Purif. Technol.*, 179, 77–85. DOI:10.1016/j.seppur. 2017.01.037

119. Sattonnay, G., Grygiel, C., Monnet, I., Legros, C., Herbst-Ghysel, M., Thomé, L. (2012). Phenomenological model for the formation of heterogeneous tracks in pyrochlores irradiated with swift heavy ions. *Acta Mater.*, 60(1), 22–34. DOI:10.1016/ j.actamat.2011.09.017

120. Sattonnay, G., Sellami, N., Thomé, L., Legros, C., Grygiel, C., Monnet, I., Jagielski, J., Jozwik-Biala, I., Simon, P. (2013). Structural stability of Nd₂Zr₂O₇ pyrochlore ion-irradiated in a broad energy range. *Acta Mater.*, 61(17), 6492–6505. DOI:10.1016/j.actamat.2013.07.027

121. Sun, J., Zhou, J., Hu, Z., Chan, T.S., Liu, R., Yu, H., Zhang, L., Wang, J. Q. (2022). Controllable sites and high-capacity immobilization of uranium in Nd₂Zr₂O₇ pyrochlore. *J. Synchrotron Radiat.*, 29, 37–44. DOI:10.1107/S1600577521012558

122. Dinsdale, A. T. (1991). SGTE data for pure elements. *Calphad*, 15(4), 317–425. DOI:10.1016/0364-5916(91)90030-N

123. Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K. A. (2013). Commentary: The materials project: A materials genome approach to accelerating materials innovation. *APL Materials*, *1*(*1*). DOI:10.1063/1.4812323

124. Arai, Y., Saito, M., Samizo, A., Inoue, R., Nishio, K., Kogo, Y. (2024). Material design using calculation phase diagram for refractory high-entropy ceramic matrix composites. *Int. J. Appl. Ceram. Technol.*, 21(4), 2702–2711. DOI:10.1111/ijac.14688
125. Landau, L. D., Lifshitz, E. M. (1965). Quantum Mechanics (2nd ed.). *Pergamon*, 254–259.

126. Levy, Stanley Isaac. (1915). The Rare Earths, Their Occurrence, Chemistry and Technology. *New York: Longmans, Green & Co.*, 342 p.

127. Meggers, W. F., Scribner, B. F. (1937). Arc and Spark Spectra of Ytterbium. *J. Res. Natl. Bur. Standards*, 19, 651–664.

128. Meggers, W. F., Scribner, B. F. (1937). Arc and Spark Spectra of Lutetium. J. Res.

Natl. Bur. Standards, 19, 31–39.

129. Jensen, W. B. (1982). The positions of Lanthanum (Actinium) and Lutetium (Lawrencium) in the periodic table. *J. Chem. Educ.*, 59(6), 634–636. DOI:10.1021/ ed059p634

130. Jørgensen, C. K. (1988). Influence of rare earths on chemical understanding and classification. *Handbook on the Physics and Chemistry of Rare Earths*, 11(75), 197–292. DOI:10.1016/S0168-1273(88)11007-6

131. Fluck, E. (1988). New notations in the periodic table. *Pure Appl. Chem.*, 60(3), 431–436. DOI:10.1351/pac198860030431

132. Leigh, Jeffrey. (2009). Periodic Tables and IUPAC. *Chem. Int.*, 31(1). URL: www.iupac.org/publications/ci/2009/3101/1 leigh.html

133. Scerri, E. (2021). Provisional report on discussions on Group 3 of The Periodic Table. *Chem. Int.*, 43(1), 31–34. DOI:10.1515/ci-2021-0115

134. Goldschmidt, V. M., Barth, T., Lunde, G. (1925). Geochemische verteilungsgesetze der elemente, isomorphie und polymorphie des sesquioxyde: die lanthanidenkontraktion und ihre konsequenzen. *Skrifter Norske Vidensk. Akad. I Mat. Natur. Kl.*, V(7), 59.

135. Klemm, W., Bommer, H. (1937). Zur kenntnis der metalle der seltenen erden. *Z. Anorg. Allg. Chem.*, 231(1-2), 138–171. DOI:10.1002/zaac.19372310115

136. Mae, Y. (2017). Schematic interpretation of anomalies in the physical properties of Eu and Yb among the lanthanides. *Int. J. Mater. Sci. Appl.*, 6(4), 165. DOI: 10.11648/j.ijmsa.20170604.11

137. Johnson, D. A., Nelson, P. G. (2018). Valencies of the lanthanides. *Found. Chem.*, 20(1), 15–27. DOI:10.1007/s10698-017-9291-6

138. Gursoy, O., Timelli, G. (2020). Lanthanides: A focused review of eutectic modification in hypoeutectic Al–Si alloys. *J. Mater. Res. Technol.*, 9(4), 8652–8666. DOI:10.1016/j.jmrt.2020.05.105

139. Gschneidner, K. A. (1971). On the nature of 4*f* bonding in the lanthanide elements and their compounds. *J. Less-Common Met.*, 25(4), 405–422. DOI:10.1016/0022-5088(71)90184-6

140. Fuggle, J. C. (1987). The effects of 4f level occupancy, coulomb Interactions, and hybridization on core level spectra of lanthanides. *In: Giant Resonances in Atoms, Molecules, and Solids. NATO ASI Series, Boston, MA: Springer*, 151, 381–403. DOI: 10.1007/978-1-4899-2004-1 25

141. Gillen, R., Clark, S. J., Robertson, J. (2013). Nature of the electronic band gap in lanthanide oxides. *Phys. Rev. B Condens. Matter*, 87(12), 1–6. DOI:10.1103/PhysRev B.87.125116

142. Gschneidner, K. A. (1993). Systematics and anomalies. *J. Alloys Compd.*, 192(1–2), 1–10. DOI:10.1016/0925-8388(93)90170-R

143. Gschneidner, K. A. (2016). Systematics. *Handbook on the Physics and Chemistry of Rare Earths*, 50(282), 1–18. DOI:10.1016/bs.hpcre.2016.07.001

144. Jørgensen, C. K. (1970). The "Tetrad effect" of Peppard is a variation of the nephelauxetic ratio in the third decimal. *J. Inorg. Nucl. Chem.*, 32(9), 3127–3128. DOI:10.1016/0022-1902(70)80388-8

145. Slater, J. C. (1929). The theory of complex spectra. *Phys. Rev.*, 34(10), 1293–1322. DOI:10.1103/PhysRev.34.1293

146. Johnson, D. A., Nelson, P. G. (2014). The status of Slater's Theory of manyelectron atoms. *Comments Inorg. Chem.*, 34(5–6), 178–184. DOI:10.1080/02603594 .2014.896347

147. Bragg, W. L. (1920). The arrangement of atoms in crystals. *Philos. Mag.*, 40 (236), 169–189. DOI:10.1080/14786440808636111

148. Slater, J. C. (1964). Atomic radii in crystals. *J. Chem. Phys.*, 41(10), 3199–3204. DOI:10.1063/1.1725697

149. Landé, A. (1920). Über die Größe der Atome. Z. Phys., 1(3), 191–197. DOI: 10.1007/BF01329165

150. Wasastjerna, J. A. (1923). On the radii of ions. Acta Soc. Sci. Fenn., 1(38), 1-25.

151. Goldschmidt, V. M. (1926). Skr. Nor. Vidensk. Akad. Oslo, I(8), 69.

152. Pauling, L. (1927). The sizes of ions and the structure of ionic crystals. *J. Am. Ceram. Soc.*, 49(3), 765–790. DOI:10.1021/ja01402a019

153. Pauling, L. (1928). The sizes of ions and their influence on the properties of salt-

like compounds. Z. Kristallogr. Cryst. Mater., 67(1–6), 377–404. DOI:10.1524/zkri. 1928.67.1.377

154. Pauling, L. (1928). The influence of relative ionic sizes on the properties of ionic compounds. *J. Am. Ceram. Soc.*, 50(4), 1036–1045. DOI:10.1021/ja01391a014

155. Zachariasen, W. H. (1931). A set of empirical crystal radii for Ions with inert gas configuration. *Z. Kristallogr. Cryst. Mater.*, 80(1–6), 137–153. DOI:10.1524/zkri. 1931.80.1.137

156. Ahrens, L. H. (1952). The use of ionization potentials Part 1. Ionic radii of the elements. *Geochim. Cosmochim. Acta*, 2(3), 155–169. DOI:10.1016/0016-7037(52) 90004-5

157. Ahrens, L. H. (1954). Shielding efficiency of cations. *Nature*, 174(4431), 644–645. DOI:10.1038/174644a0

158. Templeton, D. H., Dauben, C. H. (1954). Lattice Parameters of some Rare Earth compounds and a set of Crystal Radii. *J. Am. Chem. Soc.*, 76(20), 5237–5239. DOI: 10.1021/ja01649a087

159. Witte, H., Wölfel, E. (1955). Röntgenographische Bestimmung der Elektronenverteilung in Kristallen II: Die Elektronenverteilung im Steinsalz. *Z. Phys. Chem.*, 3(5–6), 296–329. DOI:10.1524/zpch.1955.3.5_6.296

160. Fumi, F. G., Tosi, M. P. (1964). Ionic sizes and born repulsive parameters in the NaCl-type alkali halides-I. The Huggins-Mayer and Pauling forms. *J. Phys. Chem. Solids*, 25(1), 31–43. DOI:10.1016/0022-3697(64)90159-3

161. Shannon, R. D., Prewitt, C. T. (1969). Effective ionic radii in oxides and fluorides. *Acta Crystallogr. B*, B25(5), 925–946. DOI:10.1107/s0567740869003220

162. Shannon, R. D., Prewitt, C. T. (1970). Revised values of effective ionic radii. *Acta Crystallogr. B*, 26(7), 1046–1048. DOI:10.1107/s0567740870003576

163. Shannon, R. D. (1976). Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Crystallogr. A*, A32, 751–767. DOI:10.1107/S0567739476001551

164. Gibbs, G. V., Spackman, M. A., Boisen, M. B. (1992). Bonded and promolecule radii for molecules and crystals. *American Mineralogist*, 77(7–8), 741–750.

165. Vanpoucke, D. E. P., Cottenier, S., Van Speybroeck, V., Bultinck, P., Van Driessche, I. (2012). Tuning of CeO₂ buffer layers for coated superconductors through doping. *Appl. Surf. Sci.*, 260, 32–35. DOI:10.1016/j.apsusc.2012.01.032

166. Batsanov, S. S. (1968). The Concept of Electronegativity. Conclusions and prospects. *Russ. Chem. Rev.*, 37(5), 332–351. DOI:10.1070/RC1968v037n05ABEH 001639

167. Guo, Y. Y., Kuo, C. K., Nicholson, P. S. (1999). The ionicity of binary oxides and silicates. *Solid State Ion.*, 123(1–4), 225–231. DOI:10.1016/s0167-2738(99)00083-1

168. Imanaka, N. (2005). Physical and chemical properties of rare earth oxides. *In: Binary Rare Earth Oxides – Springer, Dordrecht.*, 111–133. DOI:10.1007/1-40202569
-6 5

169. Goldschmidt, V. M., Ulrich, F., Barth, T. (1925). Norske Vidensk. Akad. Skrifter I Mat. Natur. Kl., V(5), 1.

170. Foëx, M., Traverse, J.-P. (1966). Étude du polymorphisme des sesquioxydes de terres rares à haute température. *Bulletin de La Société Française de Minéralogie et de Cristallographie*, 89 (2), 184–205. DOI:10.3406/bulmi.1966.5951

171. Roth, R. S., Schneider, S. J. (1960). Phase equilibria in systems involving the rareearth oxides. Part I. Polymorphism of the oxides of the trivalent rare-earth ions. *J. Res. Natl. Bur. Stand.*, 64A(4), 309. DOI:10.6028/jres.064a.030

172. Warshaw, I., Roy, R. (1961). Polymorphism of the rare earth sesquioxides. *J. Phys. Chem.*, 65(11), 2048–2051. DOI:10.1021/j100828a030

173. Eyring, L., Holmberg, B. (1963). Ordered phases and nonstoichiometry in the Rare Earth Oxide system. *in: Nonstoichiometric Compounds, Advan. Chem. Ser. 39*, 46–57. DOI:10.1021/ba-1964-0039.ch004

174. Glushkova, V. B., Boganov, A. G. (1965). Polymorphism of rare-earth sesquioxides. *Russ. Chem. Bull.*, 14(7), 1101–1107. DOI:10.1007/BF00847877

175. Foëx, M., Traverse, J.-P. (1966). Remarques sur les différentes transformations cristallines présentées à haute température par sesquioxydes des terres rares. *C. R. Chim.*, 262, 636–639.

176. Brauer, G. (1967). Precipitation of rare-earth oxides from melt salts. 6th Rare Earth

Research Conference, Gatlinburg, Tennesee (May 3–5, 1967), 385–390.

177. Chikalla, T. D., McNeilly, C. E., Roberts, F. P. (1972). Polymorphic modifications of Pm₂O₃. *J. Am. Ceram. Soc.*, 55(8), 428–429.

178. Lopato, L. M., Shevchenko, A. V., Kushchevskii, A. E., Tresvyatskii, S. G. (1974). High-temperature polymorphic transformations of rare earth oxides. *Izv. Akad. Nauk SSSR. Neorg. Mater. (on Russ.)*, 10(8), 1481–1487.

179. Coutures, J.-P., Verges, R., Foëx, M. (1975). Valeurs comparées des températures de solidification des différents sesquioxydes de terres rares; l'influence de l'atmosphere. *Rev. Int. Hautes Temp. Refract.*, 12(2), 181–185.

180. Eyring, L. R. (1979). The binary rare earth oxides. *Handbook on the Physics and Chemistry of Rare Earths*, 3(27), 337–399. DOI:10.1016/S0168-1273(79)03010-5

181. Shevchenko, A. V., Lopato, L. M. (1985). TA method applikation to the highest refractory oxide systems investigation. *Thermochim. Acta*, 93, 537–540. DOI:10.1016/0040-6031(85)85135-2

182. Coutures, J., Rand, M. (1989). Melting temperatures of Refractory Oxides: Part II Lanthanoid Sesquioxides. *Pure Appl. Chem.*, 61(8), 1461–1482. DOI:10.1515/iupac. 61.0057

183. Salikhov, T., Kan, V. (1993). A method for measuring the spectral reflection coefficients near high-temperature phase transitions of refractory materials. *Tech. Phys.*, 38, 674–677.

184. Fedorov, P. P., Nazarkin, M. V., Zakalyukin, R. M. (2002). On polymorphism and morphotropism of rare earth sesquioxides. *Crystallogr. Rep.*, 47(2), 281–286. DOI:10.1134/1.1466504

185. Андрієвська, О. Р. (2010). Фазові рівноваги у системах оксидів гафнію, цирконію, ітрію з оксидами рідкісноземельних елементів. *Київ: Наукова думка (рос.)*, 472 с. ISBN:9789660009895

186. Pianassola, M., Anderson, K., Agca, C., Benmore, C. J., McMurray, J. W., Neuefeind, J. C., Melcher, C., Zhuravleva, M. (2023). In situ high-temperature structural analysis of high-entropy rare-earth sesquioxides. *Chem. Mater.*, 35(3), 1116–1124. DOI:10.1021/acs.chemmater.2c03088

187. Zinkevich, M. (2007). Thermodynamics of rare earth sesquioxides. *Prog. Mater. Sci.*, 52(4), 597–647. DOI:10.1016/j.pmatsci.2006.09.002

188. Zhang, Y., Jung, I. H. (2017). Critical evaluation of thermodynamic properties of rare earth sesquioxides (*RE* = La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y). *CALPHAD: Comput. Coupling Ph. Diagr. Thermochem.*, 58(June), 169–203. DOI:10.1016/j.calphad.2017.07.001

189. Konings, R. J. M., Beneš, O., Kovács, A., Manara, D., Sedmidubskỳ, D., Gorokhov, L., Iorish, V. S., Yungman, V., Shenyavskaya, E., Osina, E. (2014). The thermodynamic properties of the f-elements and their compounds – Part 2. The lanthanide and actinide oxides. *J. Phys. Chem. Ref. Data*, 43(1). DOI:10.1063/1.4825 256

190. Pauling, L. (1929). XXIV. The Crystal Structure of the A-Modification of the Rare Earth Sesquioxides. *Z. Kristallogr. Krist.*, 69(1–6), 415–421. DOI:10.1524/zkri.1929. 69.1.415

191. Koehler, W. C., Wollan, E. O. (1953). Neutron-diffraction study of the structure of the A-form of the rare earth sesquioxides. *Acta Cryst.*, 6(8), 741–742. DOI:10.1107/S0365110X53002076

192. Aldebert, P., Traverse, J.-P. (1979). Etude par diffraction neutronique des structures de haute temperature de La₂O₃ et Nd₂O₃. *Mater. Res. Bull.*, 14(3), 303–323. DOI:10.1016/0025-5408(79)90095-3

193. Hirosaki, N., Ogata, S., Kocer, C. (2003). Ab initio calculation of the crystal structure of the lanthanide Ln_2O_3 sesquioxides. *J. Alloys Compd.*, 351(1–2), 31–34. DOI:10.1016/S0925-8388(02)01043-5

194. Wu, B., Zinkevich, M., Aldinger, F., Wen, D., Chen, L. (2007). Ab initio study on structure and phase transition of A- and B-type rare-earth sesquioxides Ln_2O_3 (Ln = La-Lu, Y, and Sc) based on density function theory. *J. Solid State Chem.*, 180(11), 3280–3287. DOI:10.1016/j.jssc.2007.09.022

195. *IUPAC*. (2005). Nomenclature of Inorganic Chemistry: *IUPAC Recommendations* 2005, 176–179. ISBN 0-85404-438-8 URL: iupac.org/wp-content/uploads/2016/07/ Red_Book_2005.pdf

196. *MP*. (2023). Materials Data on A-La₂O₃ by *Materials Project*. DOI:10.17188/ 1194889

197. Cromer, D. T. (1957). The Crystal Structure of Monoclinic Sm₂O₃. *J. Phys. Chem.*, 61(6), 753–755. DOI:10.1021/j150552a011

198. *MP*. (2023). Materials Data on B-Sm₂O₃ by *Materials Project*. DOI:10.17188/ 1192513

199. Bommer, H. (1939). Die Gitterkonstanten der C-Formen der Oxyde der seltenen Erdmetalle. *Z. anorg. allg.*, 241(2–3), 273–280. DOI:10.1002/zaac.19392410215

200. Kohlmann, H. (2019). The crystal structure of cubic C-type samarium sesquioxide, Sm₂O₃. *Z. Naturforsch.*, 74(5), 433–435. DOI:10.1515/znb-2019-0042

201. Von Schnering, H. G., Von Muller-Buschbaum, H. (1965). Strukturuntersuchungen an La₂O₃. *Z. Anorg. Allg. Chem.*, 340(5–6), 232–245. DOI:10.1002/zaac. 19653400503

202. Wyckoff, R. W. G. (1967). Crystal Structures (2nd ed.). *New York: Interscience*, Vol. 2, 1–22.

203. Von Muller-buschbaum, H. (1966). Strukturuntersuchung an Nd₂O₃. *Z. Anorg. Allg. Chem.*, 343(1–2), 6–10. DOI:10.1002/zaac.19663430103

204. Schleid, T., Meyer, G. (1989). Single crystals of rare earth oxides from reducing halide melts. *J. Less-Common Met.*, 149, 73–80. DOI:10.1016/0022-5088(89)90472-4 **205.** Heiba, Z. K., Akin, Y., Sigmund, W., Hascicek, Y. S. (2003). X-ray structure and microstructure determination of the mixed sesquioxides (Eu_{1-x}Yb_x)₂O₃ prepared by a sol-gel process. *J. Appl. Crystallogr.*, 36(6), 1411–1416. DOI:10.1107/S002188980 3019319

206. Yakel, H. L. (1979). A refinement of the crystal structure of monoclinic europium sesquioxide. *Acta Crystallogr. B*, 35(3), 564–569. DOI:10.1107/s0567740879004167

207. Artini, C., Costa, G. A., Pani, M., Lausi, A., Plaisier, J. (2012). Structural characterization of the CeO₂/Gd₂O₃ mixed system by synchrotron X-ray diffraction. *J. Solid State Chem.*, 190, 24–28. DOI:10.1016/j.jssc.2012.01.056

208. Ripan, R., Ceteanu, I. (1972). Chimia metalelor. Vol. 2. *Moscow: Mir (on Russ.)*, 871 p.

209. Dubertret, A., Lehr, P. (1968). Description d'une surstructure Zr₃O_{1-x}. *C. R. Acad. Sci. C*, 267, 820–822.

210. Mao, G. Q., Xue, K. H., Song, Y. Q., Wu, W., Yuan, J. H., Li, L. H., Sun, H., Long, S., Miao, X. S. (2019). Oxygen migration around the filament region in HfO_x memristors. *AIP Adv.*, 9(10), 1–9. DOI:10.1063/1.5122989

211. Blaise, P., Traore, B. (2015). Structural Properties and Thermodynamics of Hafnium sub-oxides in RRAM. 7, 1–4. URL: arxiv.org/abs/1511.07665

212. Zhang, Y., Mao, G. Q., Zhao, X. (2021). Evolution of the conductive filament system in HfO₂-based memristors observed by direct atomic-scale imaging. *Nat. Commun.*, 12(1). DOI:10.1038/s41467-021-27575-z

213. Hlaváč, J. (1982). Melting Temperatures Of Refractory Oxides: Part I. *Pure Appl. Chem.*, 54(3), 681–688. DOI:10.1351/pac198254030681

214. Shevchenko, A. V., Tkachenko, V. D., Lopato, L. M., Ruban, A. K., Pasichnyi, V. V. (1986). A method of determining phase-transition temperatures using solar heating. *Powder Metall. Met. Ceram.*, 25(1), 79–82. DOI:10.1007/BF00843028

215. Naray-Szabo, I. (1936). Z. Kristallogr., 94, 414–416. DOI:10.1524/zkri.1936. 94.1.414

216. McCullough, J. D., Trueblood, K. N. (1959). The crystal structure of baddeleyite (monoclinic ZrO₂). *Acta Cryst.*, 12(7), 507–511. DOI:10.1107/s0365110x59001530

217. Adam, J., Rogers, M. D. (1959). The crystal structure of ZrO₂ and HfO₂. *Acta Cryst.*, 12(11), 951–951. DOI:10.1107/s0365110x59002742

218. Laudadio, E., Stipa, P., Pierantoni, L., Mencarelli, D. (2022). Phase properties of different HfO₂ polymorphs: A DFT-Based study. *Crystals*, 12(1). DOI:10.3390/cryst 12010090

219. Low, J. J., Paulson, N. H., D'Mello, M., Stan, M. (2021). Thermodynamics of monoclinic and tetragonal hafnium dioxide (HfO₂) at ambient pressure. *CALPHAD: Comput. Coupling Ph. Diagr. Thermochem.*, 72(April 2020), 102210. DOI:10.1016/ j.calphad.2020.102210

220. Smith, D. K., Newkirk, W. (1965). The crystal structure of baddeleyite (monoclinic ZrO₂) and its relation to the polymorphism of ZrO₂. *Acta Cryst.*, 18(6),

983-991. DOI:10.1107/s0365110x65002402

221. *MP*. (2023). Materials Data on M-ZrO₂ by *Materials Project*. DOI:10.17188/ 1202679

222. *MP*. (2023). Materials Data on T-HfO₂ by *Materials Project*. DOI:10.17188/ 1350467

223. *MP*. (2023). Materials Data on F-ZrO₂ by *Materials Project*. DOI:10.17188/ 1191294

224. Gorelov, V. P. (2019). High-temperature phase transitions in ZrO₂. *Phys. Solid State*, 61, 1288–1293. DOI:10.1134/S1063783419070096

225. Gorelov V. P., Belyakov S. A., Abdurakhimova R. K. (2023). Phase transitions in monoclinic ZrO₂. *Phys. Solid State*, 65(3), 461. DOI:10.21883/pss.2023.03.55589. 541

226. Kisi, E. H., Howard, C. J. (1998). Crystal structures of zirconia phases and their inter-relation. *Key Engineering Materials*, 154(153–154), 1–36. DOI:10.4028/www. scientific.net/kem.153-154.1

227. Trolliard, G., Mercurio, D., Perez-Mato, J. M. (2011). Martensitic phase transition in pure zirconia: A crystal chemistry viewpoint. *Z. Kristallogr.*, 226(3), 264–290. DOI:10.1524/zkri.2011.1340

228. Evarestov, R. A., Kitaev, Y. E. (2016). New insight on cubic-tetragonal-monoclinic phase transitions in ZrO₂: Ab initio study and symmetry analysis. *J. Appl. Crystallogr.*, 49(5), 1572–1578. DOI:10.1107/S1600576716011547

229. Noguchi, T., Okubo, T., Yonemochi, O. (1969). Reactions in the system ZrO₂–SrO. *J. Am. Ceram. Soc.*, 52, 178. DOI:10.1111/j.1151-2916.1969.tb13360.x

230. Scott, H. G. (1975). Phase relationships in the zirconia–yttria system. *J. Mater. Sci.*, 10(9), 1527–1535. DOI:10.1007/BF01031853

231. Galakhov, Yu. (ed.) (1985). Phase diagrams of refractory oxide systems: a reference book. Iss. 5: Binary systems, Part 1. *Leningrad: Nauka (on Russ.)*, 384 p.

232. El-Shanshoury, I. A., Rudenko, V. A., Ibrahim, I. A. (1970). Polymorphic behavior of thin evaporated films of zirconium and hafnium oxides. *J. Am. Ceram. Soc.*, 53(5), 264–268. DOI:10.1111/j.1151-2916.1970.tb12090.x

233. Miikkulainen, V., Leskelä, M., Ritala, M., Puurunen, R. L. (2013). Crystallinity of

inorganic films grown by atomic layer deposition: Overview and general trends. J. *Appl. Phys.*, 113(2). DOI:10.1063/1.4757907

234. Fan, Z., Chen, J., Wang, J. (2016). Ferroelectric HfO₂-based materials for next-generation ferroelectric memories. *J. Adv. Dielectr.*, 6(2). DOI:10.1142/S2010135X 16300036

235. Johnson, B., Jones, J. L. (2019). Structures, phase equilibria, and properties of HfO₂. *In: Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices. Elsevier Ltd.* DOI:10.1016/B978-0-08-102430-0.00002-4

236. Jaffe, J. E., Bachorz, R. A., Gutowski, M. (2005). Low-temperature polymorphs of ZrO₂ and HfO₂: A density-functional theory study. *Phys. Rev. B Condens. Matter*, 72(14), 1–9. DOI:10.1103/PhysRevB.72.144107

237. Banerjee, D., Sewak, R., Dey, C. C., Toprek, D., Pujari, P. K. (2021). Orthorhombic phases in bulk pure HfO₂: Experimental observation from perturbed angular correlation spectroscopy. *Mater. Today Commun.*, 26(November), 101827. DOI:10.1016/j.mtcomm.2020.101827

238. Hannink, R. H. J., Kelly, P. M., Muddle, B. C. (2000). Transformation toughening in zirconia-containing ceramics. *J. Am. Ceram. Soc.*, 83(3), 461–487. DOI:10.11 11/j.1151-2916.2000.tb01221.x

239. Kelly, P. M., Rose, L. R. F. (2002). The martensitic transformation in ceramics – its role in transformation toughening. *Prog. Mater. Sci.*, 47(5), 463–557. DOI:10.1016/S0079-6425(00)00005-0

240. Chevalier, J., Gremillard, L., Virkar, A. V., Clarke, D. R. (2009). The tetragonalmonoclinic transformation in zirconia: Lessons learned and future trends. *J. Am. Ceram. Soc.*, 92(9), 1901–1920. DOI:10.1111/j.1551-2916.2009.03278.x

241. Mamivand, M., Asle Zaeem, M., El Kadiri, H. (2014). Phase field modeling of stress-induced tetragonal-to-monoclinic transformation in zirconia and its effect on transformation toughening. *Acta Mater.*, 64, 208–219. DOI:10.1016/j.actamat.2013. 10.031

242. Sukharevsky, B. Ya., Alapin, B. G., Gavrish, A. M. (1964). On the peculiarities of the kinetics of the polymorphic transformation of zirconium dioxide upon cooling.

Dokl. Akad. Nauk SSSR (on Russ.), 156(3), 677-680.

243. Sukharevsky, B. Ya., Gavrish, A. M. (1973). On the question of the kinetics of martensitic transformations. *Dokl. Akad. Nauk SSSR (on Russ.)*, 211(4), 842–845.

244. Messerschmidt, U., Baither, D., Baufeld, B., Bartsch, M. (1997). Plastic deformation of zirconia single crystals: A review. *Mater. sci. eng.* A, 233(1–2), 61–74. DOI:10.1016/s0921-5093(97)00050-6

245. Deville, S., Guénin, G., Chevalier, J. (2004). Martensitic transformation in zirconia, Part I: Nanometer scale prediction and measurement of transformation induced relief. *Acta Mater.*, 52(19), 5697–5707. DOI:10.1016/j.actamat.2004.08.034

246. Deville, S., Guénin, G., Chevalier, J. (2004). Martensitic transformation in zirconia, Part II: Martensite growth. *Acta Mater.*, 52(19), 5709–5721. DOI:10.1016/j. actamat.2004.08.036

247. Mamivand, M., Asle Zaeem, M., El Kadiri, H. (2014). Shape memory effect and pseudoelasticity behavior in tetragonal zirconia polycrystals: A phase field study. *Int. J. Plast.*, 60, 71–86. DOI:10.1016/j.ijplas.2014.03.018

248. Curtis, C. E., Doney, L. M., Johnson, J. R. (1954). Some properties of hafnium oxide, hafnium silicate, calcium hafnate, and hafnium carbide. *J. Am. Ceram. Soc.*, 37(10), 458–465. DOI:/10.1111/j.1151-2916.1954.tb13977.x

249. Wolten, G. M. (1963). Diffusionless phase transformations in zirconia and hafnia. *J. Am. Ceram. Soc.*, 46(9), 418–422. DOI:10.1111/j.1151-2916.1963.tb11768.x

250. Baun, W. L. (1963). Phase transformation at high temperatures in hafnia and zirconia. *Science*, 140(3573), 1330–1331. DOI:10.1126/science.140.3573.1330

251. Boganov, A. G., Rudenko, V. S., Makarov, L. P. (1965). XRD study of zirconium and hafnium dioxides at temperatures up to 2750°C. *Dokl. Akad. Nauk SSSR (on Russ.)*, 160(5), 1065–1068.

252. Ruh, R., Garrett, H. J., Domagala, R. F., Tallan, N. M. (1968). The system Zirconia-Hafnia. *J. Am. Ceram. Soc.*, 51(1), 23–27.

253. Ruh, R., Corfield, P. W. R. (1970). Crystal structure of monoclinic hafnia and comparison with monoclinic zirconia. *J. Am. Ceram. Soc.*, 53(3), 126–129. DOI:10. 1111/j.1151-2916.1970.tb12052.x

254. Voronko, Y. K., Sobol, A. A., Shukshin, V. E. (2007). Monoclinic-tetragonal phase transition in zirconium and hafnium dioxides: A high-temperature Raman scattering investigation. *Phys. Solid State*, 49(10), 1963–1968. DOI:10.1134/S106378340710 0253

255. Shevchenko A. V., Lopato L. M., Tkachenko V. D., Ruban A. K. (1987). Reaction of hafnium and zirconium dioxides. *Izv. Akad. Nauk SSSR, Inorg. Mater.*, 23(2), 225–229.

256. Claussen, N. (1985). Strengthening strategies for ZrO₂-toughened ceramics at high temperatures. *Mater. Sci. Eng.*, 71(C), 23–38. DOI:10.1016/0025-5416(85)90203-4

257. Wang, J., Li, H. P., Stevens, R. (1992). Hafnia and hafnia-toughened ceramics. *J. Mater. Sci.*, 27(20), 5397–5430. DOI:10.1007/BF00541601

258. Smith, D. K., Cline, C. F. (1962). Verification of existence of cubic zirconia at high temperature. *J. Am. Ceram. Soc.*, 45(5), 249–250. DOI:10.1111/j.1151-2916.1962.tb 11135.x

259. Zhou, Y., Ge, Q. L., Lei, T. C., Sakuma, T. (1991). Diffusional cubic-to-tetragonal phase transformation and microstructural evolution in ZrO₂–Y₂O₃ ceramics. *J. Mater. Sci.*, 26(16), 4461–4467. DOI:10.1007/BF00543668

260. Schelling, P. K., Phillpot, S. R., Wolf, D. (2001). Mechanism of the Cubic-to-Tetragonal phase transition in Zirconia and Yttria-Stabilized Zirconia by moleculardynamics simulation. *J. Amer. Ceram. Soc.*, 84(7), 1609–1619. DOI:10.1111/j.1151-2916.2001.tb00885.x

261. Lanteri, V., Chaim, R., Heuer, A. H. (1986). On the microstructures resulting from the diffusionless cubic \rightarrow tetragonal transformation in ZrO₂–Y₂O₃ alloys. *J. Amer. Ceram. Soc.*, 69(10), 258–261. DOI:10.1111/j.1151-2916.1986.tb07356.x

262. Sheu, T.-S, Tien, T.-Y, Chen, I.-W. (1992). Cubic-to-tetragonal (t') transformation in zirconia-containing systems. *J. Amer. Ceram. Soc.*, 75(5), 1108–1116. DOI:10. 1111/j.1151-2916.1992.tb05546.x

263. Yashima, M., Arashi, H., Kakihana, M., Yoshimura, M. (1994). Raman scattering study of cubic–tetragonal phase transition in Zr_{1-x}Ce_xO₂ solid solution. *J. Amer. Ceram. Soc.*, 77(4), 1067–1071. DOI:10.1111/j.1151-2916.1994.tb07270.x

264. Yoshikawa, N., Suto, H. (1986). Phase diagram and microstructures of Yttria Partially Stabilized Zirconia. *Journal of the Japan Institute of Metals*, 50(12), 1101–1108. DOI:10.2320/jinstmet1952.50.12_1101

265. Dudnik, E. V., Lakiza, S. M., Hrechanyuk, I. M., Ruban, A. K., Redko, V. P., Marek, I. O., Shmibelsky, V. B., Makudera, A. A., Hrechanyuk, M. I. (2020). Thermal Barrier Coatings based on ZrO₂ solid solutions. *Powder Metall. Met. Ceram.*, 59(3–4), 179–200. DOI:10.1007/s11106-020-00151-8

266. Arseniev, P. A., Glushkova, V. B., Evdokimov, A. A., Keller, E. K., Kravchenko, V. B., Kravchinskaya, M. V., Krzhizhanovskaya, V. A., Kuznetsov, A. K., Kurbanov, K. M., Potemkin, A. V., Tikhonov, P. A., Tseytlin, M. N. (1985). *Compounds of rare earth elements. zirconates, hafnates, niobates, tantalates and antimonates. Moscow: Nauka (on Russ.)*, 261 p.

267. Howard, C. J., Hill, R. J., Reichert, B. E. (1988). Structures of ZrO₂ polymorphs at room temperature by high-resolution neutron powder diffraction. *Acta Crystallogr. B.*, 44(2), 116–120. DOI:/10.1107/S0108768187010279

268. Moulin, G., Favergeon, J., Béranger, G. (2008). Zircone – Céramique fonctionnelle. *Verres et Céramiques*. DOI:10.51257/a-v1-n3210

269. Stacy, D. W., Johnstone, J. K., Wilder, D. R. (1972). Axial thermal expansion of HfO₂. *J. Am. Ceram. Soc.*, 55(9), 482–483. DOI:10.1111/j.1151-2916.1972.tb11347.x **270.** Andrievskaya, E. R., Lopato, L. M. (1995). Influence of composition on the T \rightarrow M transformation in the systems ZrO₂–*Ln*₂O₃ (*Ln* = La, Nd, Sm, Eu). *J. Mater. Sci.*, 30(10), 2591–2596. DOI:10.1007/BF00362139

271. Wang, C., Zinkevich, M., Aldinger, F. (2006). The Zirconia-Hafnia system: DTA measurements and thermodynamic calculations. *J. Am. Ceram. Soc.*, 89(12), 3751–3758. DOI:10.1111/j.1551-2916.2006.01286.x

272. Wang, Chong. (2006). Experimental and computational phase studies of the ZrO₂based systems for Thermal Barrier Coatings. *Dissertation an der Universität Stuttgart, Bericht Nr. 189.* DOI:10.18419/opus-856

273. Yamada, T., Mizuno, M., Ishizuka, T., Noguchi, T. (1988). Liquidus-curve measurement in the system zirconia–hafnia, *Adv. Ceram.*, 24, 959–964.

274. Lopato, L. M., Andrievskaya, E. R., Shevchenko, A. V., Redko, V. P. (1997). Phase relations in the ZrO₂–Eu₂O₃ system. *Russ. J. Inorg. Chem. (on Russ.)*, 42(10), 1736–1739.

275. Andrievskaya, E. R., Lopato, L. M., Shevchenko, A. V., Smirnov, V. P. (1997). Phase equilibria in the HfO₂–Eu₂O₃ system. *Inorg. Mater.*, 33(7), 703–706.

276. Obolonchik, T. V., Lopato, L. M., Gerasimyuk, G. I., Shevchenko, A. V. (1991). Interaction in HfO₂–ZrO₂–Y₂O₃ system at 1250–1900 °C. *Izv. Akad. Nauk SSSR, Neorg. Mater. (on Russ.)*, 27(11), 2345–2348.

277. Komissarova, L. N., Spiridonov, F. M., Spitsyn, V. I. (1968). On the regularities of changes in the composition and structure of compounds in HfO₂ (ZrO_2) – M_2O_3 systems. *Dokl. Akad. Nauk SSSR (on Russ.)*, 181(4), 881–884.

278. Rouanet, A. (1971). Contribution a l'etude des systemes zirconia – oxydes des lanthanides au voisinage de la fusion: Memoire de these. *Rev. Int. Hautes Temp. Refract.*, 8(2), 161–180.

279. Wang, Ch., Zinkevich, M., Aldinger, F. (2007). Phase diagrams and thermodynamics of rare-earth-doped zirconia ceramics. *Pure Appl. Chem.*, 79(10), 1731– 1753. DOI:10.1351/pac200779101731

280. Glushkova, V. B., Kravchinskaya, M. V., Kuznetsov, A. K., Tikhonov, P. A. (1984). Hafnium dioxide and its compounds with rare-earth element oxides. *Leningrad: Nauka (on Russ.)*, 176 p.

281. Shlyakhtina, A. V. (2013). Morphotropy, isomorphism, and polymorphism of $Ln_2M_2O_7$ -based (Ln = La-Lu, Y, Sc; M = Ti, Zr, Hf, Sn) oxides. *Crystallogr: Rep.*, 58(4), 548–562. DOI:10.1134/S1063774513020259

282. Subramanian, M. A., Aravamudan, G., Subba Rao, G. V. (1983). Oxide pyrochlores – A review. *Prog. Solid State Chem.*, 15(2), 55–143. DOI:10.1016/0079-6786(83)90001-8

283. Subramanian, M. A., Sleight, A. W. (1993). Rare earth pyrochlores. *Handbook on the Physics and Chemistry of Rare Earths*, 16, 225–248. DOI:10.1016/S0168-1273 (05)80018-2

284. MP. (2023). Materials Data on Py-Sm₂Zr₂O₇ by Materials Project. DOI:10.171

88/1208131

285. Mandal, B. P., Garg, N., Sharma, S. M., Tyagi, A. K. (2006). Preparation, XRD and Raman spectroscopic studies on new compounds $RE_2Hf_2O_7$ (RE = Dy, Ho, Er, Tm, Lu, Y): Pyrochlores or defect-fluorite? *J. Solid State Chem.*, 179(7), 1990–1994. DOI:10.1016/j.jssc.2006.03.036

286. Menushenkov, A. P., Popov, V. V., Kabanova, V. A., Yaroslatsev, A. A., Zubavichus, Y. V., Kulik, E. S. (2015). Formation and evolution of local and crystalline structure of Tb₂O₃–HfO₂ compounds. *Phys. Procedia*, 71, 313–317. DOI:10.1016/j. phpro.2015.08.333

287. Blanchard, P. E. R., Clements, R., Kennedy, B. J., Ling, C. D., Reynolds, E., Avdeev, M., Stampfl, A. P. J., Zhang, Z., Jang, L. Y. (2012). Does local disorder occur in the pyrochlore zirconates? *Inorg. Chem.*, 51(24), 13237–13244. DOI:10.1021/ic3016 77b

288. Michel, D., Rouaux, Y., Perez y Jorba, M. (1980). Ceramic eutectics in the systems $ZrO_2-Ln_2O_3$ (*Ln* = lanthanide): unidirectional solidification, microstructural and crystallographic characterization. *J. Mater. Sci.*, 15(1), 61–66. DOI:10.1007/BF005 52427

289. Michel, D., Perez y Jorba, M., Collongues, R. (1974). Etude de la transformation ordre-desordre de la structure fluorite a la structure pyrochlore pour des phases (1-x)ZrO₂-x*Ln*₂O₃. *Mater. Res. Bull.*, 9(11), 1457–1468. DOI:10.1016/0025-5408(74)90 092-0

290. Van Dijk, M. P., Mijlhoff, F. C., Burggraaf, A. J. (1986). Pyrochlore microdomain formation in fluorite oxides. *J. Solid State Chem.*, 62(3), 377–385. DOI:10.1016/0022-4596(86)90253-7

291. Tabira, Y., Withers, R. L., Barry, J. C., Elcoro, L. (2001). The strain-driven pyrochlore to "defect fluorite" phase transition in rare earth sesquioxide stabilized cubic zirconias. *J. Solid State Chem.*, 159(1), 121–129. DOI:10.1006/jssc.2001.9139

292. Jiang, C., Stanek, C. R., Sickafus, K. E., Uberuaga, B. P. (2009). First-principles prediction of disordering tendencies in pyrochlore oxides. *Phys. Rev. B Condens. Matter*, 79(10), 17–21. DOI:10.1103/PhysRevB.79.104203
293. Von Wartenberg, H., Eckhardt, K. (1937). Schmelzdiagramme höchstfeuerfester Oxyde. *Z. Anorg. Allg. Chem.*, 232(1), 179–187. DOI:10.1002/zaac.19372320208

294. Brown, F. H. Jr., Duwez, P. (1955). The systems Zirconia–Lanthana and Zirconia– Neodymia. *J. Am. Ceram. Soc.*, 38(3), 95–101.

295. Roth, R.S. (1956). Pyrochlore-type compounds containing double oxides of trivalent and tetravalent ions. *J. Res. Natl. Bur. Stand.*, 56(1), 17. DOI:10.6028/jres. 056.003

296. Sukharevsky, B. Ya., Zoz, E. I., Gavrish, A. M., Gulko, N. V. (1977). System of La₂Zr₂O₇ – La₂Hf₂O₇. *Dokl. Akad. Nauk SSSR (on Russ.)*, 237(3), 589–591.

297. Bastide, B., Odier, P., Coutures, J.-P. (1988). Phase equilibrium and martensitic transformation in lanthana-doped zirconia. *J. Am. Ceram. Soc.*, 71(6), 449–453. DOI: 10.1111/j.1151-2916.1988.tb05893.x

298. Du, Y., Yashima, M., Koura, T., Kakihana, M., Yoshimura, M. (1995). Thermodynamic assessment of the ZrO₂–LaO_{1.5} system. *J. Eur. Ceram. Soc.*, 15(6), 503–511. DOI:10.1016/0955-2219(95)00040-2

299. Andrievskaya, E. R., Lopato, L. M. (2000). Approximating the liquidus surface of the ZrO₂–Y₂O₃–La₂O₃ phase equilibrium diagram with reduced polynomials. *Powder Metall. Met. Ceram.*, 39(9–10), 445–450. DOI:10.1023/a:1011310305155

300. Lakiza, S. M., Lopato, L. M. (2005). Phase diagram of the Al₂O₃–ZrO₂–La₂O₃ system. *J. Eur. Ceram. Soc.*, 25(8), 1373–1380. DOI:10.1016/j.jeurceramsoc.2005. 01.014

301. Andrievskaya, E. R. (2008). Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides. *J. Eur. Ceram. Soc.*, 28(12), 2363–2388. DOI:10.1016/j.jeurceramsoc.2008.01.009

302. Wang, C., Fabrichnaya, O., Zinkevich, M., Du, Y., Aldinger, F. (2008). Experimental study and thermodynamic modelling of the ZrO₂–LaO_{1.5} system. *CALPHAD: Comput. Coupling Ph. Diagr. Thermochem.*, 32(1), 111–120. DOI:10.1016/j.calphad. 2007.07.005

303. Fabrichnaya, O., Lakiza, S., Wang, C., Zinkevich, M., Aldinger, F. (2008). Assessment of thermodynamic functions in the ZrO₂–La₂O₃–Al₂O₃ system. *J. Alloys*

Compd., 453(1-2), 271-281. DOI:10.1016/j.jallcom.2006.11.102

304. Radha, A. V., Ushakov, S. V., Navrotsky, A. (2009). Thermochemistry of lanthanum zirconate pyrochlore. *J. Mater. Res.*, 24(11), 3350–3357. DOI:10.1557/jmr. 2009.0401

305. Duran, P. (1975). Phase relationships in the systems HfO₂-La₂O₃ and HfO₂-Nd₂O₃. *Ceram. Int.*, 1(1), 10–13. DOI:10.1016/0390-5519(75)90032-0

306. Шевченко, А. В., Лопато, Л. М., Рубан, А. К. (1976). Дослідження взаємодії в системі двоокис гафнію – гафнат лантану. *Доп. АН УРСР. Сер. Б*, 10, 922–926.

307. Шевченко, А. В., Лопато, Л. М. (1977). Вплив оксидів лантаноїдів церієвої підгрупи на поліморфізм діоксиду гафнію. *Доп. АН УРСР. Сер. Б*, 8, 718–720.

308. Spiridonov, F. M., Le Thnong Truong, Komissarova, L. N. (1977). *Russ. J. Inorg. Chem. (on Russ.)*, 19(2), 588.

309. Shevchenko A. V., Lopato L. M., Zajtseva Z. A. (1984). Interaction of HfO₂ with lanthanum, praseodymium and neodymium oxides at high temperatures. *Izv. Akad. Nauk SSSR, Neorg. Mater.*, 20(9), 1530–1534.

310. Glushkova, V. B., Kravchinskaya, M. V. (1985). HfO₂-based refractory compounds and solid solutions. I. Phase diagrams of the systems $HfO_2-M_2O_3$ and HfO_2-MO . *Ceram. Int.*, 11(2), 56–65. DOI:10.1016/0272-8842(85)90010-0

311. Andrievskaya, E. R., Lopato, L. M., Smirnov, V. P., Kir'yakova, I. E. (1996). Isothermal section of the phase diagram of the HfO₂–Y₂O₃–La₂O₃ system at 1600 °C. *Powder Metall. Met. Ceram.*, 35(7–8), 452–461. DOI:10.1007/BF01329239

312. Andrievskaya, E. R., Kovylyaev, V. V., Lopato, L. M., Ragulya, A. V., Shevchenko, A. V. (2000). Liquidus surface in the HfO₂–Y₂O₃–La₂O₃ system. *Izv. Akad. Nauk SSSR, Inorg. Mater.*, 36(6), 612–619. DOI:10.1007/BF02757964

313. Ushakov, S. V., Navrotsky, A., Tangeman, J. A., Helean, K. B. (2007). Energetics of defect fluorite and pyrochlore phases in lanthanum and gadolinium hafnates. *J. Am. Ceram. Soc.*, 90(4), 1171–1176. DOI:10.1111/j.1551-2916.2007.01592.x

314. Cao, Z., Xie, W., Qiao, Z., Xing, X. (2017). Thermodynamic Modeling of the HfO₂–La₂O₃–Al₂O₃ System. *J. Am. Ceram. Soc.*, 100(1), 365–377. DOI:10.1111/jace. 14462

315. Stolyarova, V. L., Vorozhtcov, V. A., Lopatin, S. I., Shilov, A. L. (2018). Thermodynamic properties of the La₂O₃–HfO₂ system at high temperatures. *Thermochim. Acta*, 668, 87–95. DOI:10.1016/j.tca.2018.08.014

316. Whittle, K. R., Cranswick, L. M. D., Redfern, S. A. T., Swainson, I. P., Lumpkin, G. R. (2009). Lanthanum pyrochlores and the effect of yttrium addition in the systems La_{2-x}Y_xZr₂O₇ and La_{2-x}Y_xHf₂O₇. *J. Solid State Chem.*, 182(3), 442–450. DOI:10.1016/ j.jssc.2008.11.008

317. Blanchard, P. E. R., Liu, S., Kennedy, B. J., Ling, C. D., Avdeev, M., Aitken, J. B., Cowie, B. C. C., Tadich, A. (2013). Investigating the local structure of lanthanoid hafnates *Ln*₂Hf₂O₇ via diffraction and spectroscopy. *J. Phys. Chem. C*, 117(5), 2266–2273. DOI:10.1021/jp311329q

318. Kopan', A. R., Gorbachuk, M. P., Lakiza, S. M., Tishchenko, Ya. S. (2016). Calorimetric study of the $La_2Hf_2O_7$ heat capacity in the range 57–302 K. *Powder Metall. Met. Ceram.*, 54(11–12), 696–703. DOI:10.1007/s11106-016-9764-5

319. Kopan`, A. R., Gorbachuk, N. P., Lakiza, S. M., Tishchenko, Ya. S. (2018). High-temperature enthalpy of La₂Hf₂O₇ in the temperature range of 490–2120 K. *Powder Metall. Met. Ceram.*, 56(11–12), 697–706. DOI:10.1007/s11106-018-9945-5

320. Davtyan, I. A., Glushkova, V. B., Keler, E. K. (1965). Study of the Nd₂O₃–ZrO₂ system. Investigation of the regions rich in zirconium dioxide, *Izv. Akad. Nauk SSSR, Inorg. Mater.*, 1(5), 679–685.

321. Glushkova, V. B., Davtyan, I. A., Keler, E. K. (1965). Study of the Nd₂O₃–ZrO₂ system. Investigation of regions rich in neodymium oxide. *Izv. Akad. Nauk SSSR, Inorg. Mater.*, 1(11), 1766–1774.

322. Sazonova, L. V., Davtyan, I. A., Glushkova, V. B. (1965). Study of ZrO₂–Nd₂O₃ system and influence of preparation method on product properties. *Izv. Akad. Nauk SSSR, Neorg. Mater. (on Russ.)*, 1(1), 1965–1977.

323. Glushkova, V. B., Sazonova, L. V. (1967). Effect of rare-earth oxide additives on zirconium dioxide polymorphism. Chemistry of high-temperature materials. *Leningrad: Nauka (on Russ.)*, 83–90.

324. Gavrish, A. M., Gulko, N. V., Tarasova, L. A. (1981). X-ray diffraction and crystal-

optical investigation of phase relations in the Nd₂O₃–ZrO₂ system. *Russ. J. Inorg. Chem.*, 26, 1785–1788.

325. Gavrish, A. M., Alekseenko, L. S., Tarasova, L. A., Orekhova, G. P. (1982). Structure and electrical resistance of solid solutions in the ZrO₂–Nd₂O₃ system. *Izv. Akad. Nauk SSSR, Inorg. Mater.*, 18(2), 214–216.

326. Zoz, E. I., Fomichev, E. N., Kalashnik, A. A., Eliseeva G. G. (1982). On structure and properties of rare earth zirconates and hafnates. *Russ. J. Inorg. Chem. (on Russ.)*, 27(1), 95–99.

327. Hinatsu, Y., Muromura, T. (1986). Phase relations in the systems ZrO₂–Y₂O₃–Nd₂O₃ and ZrO₂–Y₂O₃–CeO₂. *Mater. Res. Bull.*, 21(11), 1343–1349. DOI:10.1016/ 0025-5408(86)90069-3

328. Katamura, J., Seki, T., Sakuma, T. (1995). The cubic–tetragonal phase equilibria in the $ZrO_2-R_2O_3$ (R = Y, Gd, Sm, Nd) systems. *J. Phase Equilib.*, 16(4), 315–319. DOI:10.1007/bf02645287

329. Ohtani, H., Matsumoto, S., Sundman, B., Sakuma, T., Hasebe, M. (2005). Equilibrium between fluorite and pyrochlore structures in the ZrO₂–Nd₂O₃ system. *Mater. Trans.*, 46(6), 1167–1174. DOI:10.2320/matertrans.46.1167

330. Fabrichnaya, O., Seifert, H. J. (2008). Assessment of thermodynamic functions in the ZrO₂–Nd₂O₃–Al₂O₃ system. *CALPHAD: Comput. Coupling Ph. Diagr. Thermochem.*, 32(1), 142–151. DOI:10.1016/j.calphad.2007.07.002

331. Fabrichnaya, O., Savinykh, G., Schreiber, G., Seifert, H. J. (2011). Phase relations in the ZrO₂–Nd₂O₃–Y₂O₃ system: Experimental study and advanced thermodynamic modeling. *J. Phase Equilib. Diff.*, 32(4), 284–297. DOI:10.1007/s11669-011-9903-0

332. Glushkova V. B., Sazonova L. V., Ganitz F. (1978). Study of the Nd₂O₃–HfO₂ system. *Izv. Akad. Nauk SSSR, Neorg. Mater. (on Russ.)*, 14(1), 2096–2101.

333. Sevastyanov, V. G., Simonenko, E. P., Simonenko, N. P., Stolyarova, V. L., Lopatin, S. I., Kuznetsov, N. T. (2013). Synthesis, vaporization and thermodynamic properties of superfine Nd₂Hf₂O₇ and Gd₂Hf₂O₇. *Eur. J. Inorg. Chem.*, 26, 4636–4644. DOI:10.1002/ejic.201300253

334. Wang, Ch., Zinkevich, M., Aldinger, F. (2007). Experimental investigation and

thermodynamic modeling of the ZrO₂–SmO_{1.5} system. J. Am. Ceram. Soc., 90(7), 2210–2219. DOI:10.1111/j.1551-2916.2007.01692.x

335. Kopan', A. R., Gorbachuk, M. P., Lakiza, S. M., Tishchenko, Ya.S. (2010). Low-temperature heat capacity of samarium zirconate (Sm₂Zr₂O₇). *Powder Metall. Met. Ceram.*, 49(5–6), 317–323. DOI:10.1007/s11106-010-9238-0

336. Андриевская, Е. Р., Корниенко, О. А., Самелюк, А. В., Городов, В. С., Черкасова, К. А., Згуровец, В. О. (2008). Взаимодействие оксида циркония с оксидом самария при температуре 1500 °С. Современные проблемы физического материаловедения. Київ: ІПМ, (рос.), 17, 16–24.

337. Корнієнко, О. А. (2011). Фазові рівноваги в системах оксидів церію, цирконію, гафнію та лантаноїдів. *Дисертація на здобуття наукового ступеня кандидата хімічних наук за спеціальністю 02.00.04 – фізична хімія. – Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, Київ.*

338. Korniienko, O. A., Bykov, A. I., Andrievskaya, E. R. (2020). Phase equilibria in the ZrO₂–La₂O₃–Sm₂O₃ system at 1100 °C. *Powder Metall. Met. Ceram.*, 59(3–4), 224–231. DOI:10.1007/s11106-020-00154-5

339. Vorozhtcov, V. A., Stolyarova, V. L., Shilov, A. L., Lopatin, S. I., Shugurov, S. M., Karachevtsev, F. N. (2021). Thermodynamics and vaporization of the Sm₂O₃–ZrO₂ system studied by Knudsen effusion mass spectrometry. *J. Phys. Chem. Solids*, 156, 110156. DOI:10.1016/j.jpcs.2021.110156

340. Kornienko, O. A., Andriyevska, O. R., Bykov, O. I., Samelyuk, A.V., Bataiev, Yu. M. (2021). Phase equilibrium in systems based on oxides of zirconium, lanthanum and samarium. *J. Eur. Ceram. Soc.*, 41(6), 3603–3613. DOI:10.1016/j.jeurceramsoc. 2021.01.004

341. Tabira, Y., Withers, R. L. (1999). Structure and crystal chemistry as a function of composition across the wide range nonstoichiometric $(1-\epsilon)ZrO_2 \cdot \epsilon SmO_{1.5}$, $0.38 < \epsilon < 0.55$, oxide pyrochlore system. *J. Solid State Chem.*, 148(2), 205–214. DOI:10.1006/jssc.1999.8433

342. Shinozaki, K., Miyauchi, M., Kuroda, K., Sakurai, O., Mizutani, N., Kato, M. (1979). Oxygen-ion conduction in the Sm₂Zr₂O₇ pyrochlore phase. *J. Am. Ceram. Soc.*,

62(9–10), 538–539. DOI:10.1111/j.1151-2916.1979.tb19131.x

343. Isupova, E. N., Glushkova, V. B, Keler, E. K. (1968). HfO₂–Sm₂O₃ system in the solid phases in the HfO₂ enriched region. *Izv. Akad. Nauk SSSR, Inorg. Mater.*, 4(3), 334–39.

344. Duran, P. (1979). System Hafnia–Samaria. *J. Am. Ceram. Soc.*, 62(1–2), 9–12. DOI:10.1111/j.1151-2916.1979.tb18794.x

345. Shevchenko, A. V., Lopato, L. M., Nazarenko, L. V. (1984). Systems of HfO₂ with oxides of samarium, gadolinium, terbium and dysprosium at high temperatures. *Izv. Akad. Nauk SSSR, Inorg. Mater.*, 20(11), 1862–1866.

346. Andrievskaya, E., Smirnov, V., Lopato, L. (2003). Phase equilibria in the system Hafnia–Yttria–Samaria at 1600°C. *High Temp. Mater. Process.*, 23(3), 147–162. DOI:10.1515/HTMP.2004.23.3.147

347. Kiparisov, S. S., Belyaev, R. A., Belyakov, A. I., Bondarenko, V. V., Vyskubov, V. P., Kozlov, V. G., Kuznetsov, S. A., Melikhova, L. P. (1978). The phase diagram of the Eu₂O₃–ZrO₂ system. *Izv. Akad. Nauk SSSR, Neorg. Mater. (on Russ.)*, 12(9), 1693–1694.

348. Moore, D. A., Ferguson, I. F. (1982). Zirconia-stabilized cubic europia. *J. Am. Ceram. Soc.*, 65(9), 414–418. DOI:10.1111/j.1151-2916.1982.tb10506.x

349. Andrievskaya, E. R., Kovylyaev, V. V., Lopato, L. M., Shevchenko, A. V., Frolov, A. A. (2014). Liquidus surface of the ZrO₂–Y₂O₃–Eu₂O₃ phase diagram. *Powder Metall. Met. Ceram.*, 53(5–6), 312–322. DOI:10.1007/s11106-014-9618-y

350. Fabrichnaya, O., Kriegel, M. J., Pavlyuchkov, D., Seidel, J., Dzuban, A., Savinykh, G., Schreiber, G. (2013). Heat capacity for the Eu₂Zr₂O₇ and phase relations in the ZrO₂-Eu₂O₃ system: Experimental studies and calculations. *Thermochim. Acta*, 558, 74–82. DOI:10.1016/j.tca.2013.02.009

351. Scheidecker, R. W., Wilder, D. R., Moeller, H. (1977). The system HfO₂–Eu₂O₃. *J. Am. Ceram. Soc.*, 60(11–12), 501–504. DOI:10.1111/j.1151-2916.1977.tb14092.x

352. Шевченко, А. В., Лопато, Л. М., Стегній, А. І., Майстер, І. М., Двєрняков, В. С., Пасічний, В. В. (1979). Ліквідус систем HfO₂–TiO₂, ZrO₂–TiO₂ i HfO₂–Eu₂O₃. *Доп. АН УРСР. Сер. А.*, 7, 585–588.

353. Shevchenko, A. V., Lopato, L. M., Stegniy, A. I., Ruban, A. K., Dvernyakov, V. S., Pasichny, V. V. (1981). Liquidus of systems hafnium dioxide – REE oxides in the region with high content of HfO₂. *Izv. Akad. Nauk SSSR, Neorg. Mater. (on Russ.)*, 17(6), 1022–1026.

354. Fedorov, P. P., Chernova, E. V. (2022). The conditions for the solid state synthesis of solid solutions in zirconia and hafnia systems with the oxides of rare earth elements. *Condensed Matter and Interphases*, 24(4), 537–544. DOI:10.17308/kcmf.2022.24/10558

355. Negro, A., Amato, I. (1972). An investigation of the zirconia–gadolinia system. *J. Less-Common Met.*, 26(1), 81–88. DOI:10.1016/0022-5088(72)90010-0

356. Feighery, A. J., Irvine, J. T. S., Zheng, C. (2001). Phase relations at 1500 °C in the ternary system ZrO₂–Gd₂O₃–TiO₂. *J. Solid State Chem.*, 160(2), 302–306. DOI:10. 1006/jssc.2001.9201

357. Zinkevich, M., Wang, C., Morales, F. M., Rühle, M., Aldinger, F. (2005). Phase equilibria in the ZrO₂–GdO_{1.5} system at 1400–1700 °C. *J. Alloys Compd.*, 398(1–2), 261–268. DOI:10.1016/j.jallcom.2005.02.022

358. Lakiza, S., Fabrichnaya, O., Wang, C., Zinkevich, M., Aldinger, F. (2006). Phase diagram of the ZrO₂–Gd₂O₃–Al₂O₃ system. *J. Eur. Ceram. Soc.*, 26(3), 233–246. DOI:10.1016/j.jeurceramsoc.2004.11.011

359. Fabrichnaya, O., Seifert, H. J. (2011). Up-date of a thermodynamic database of the ZrO₂–Gd₂O₃–Y₂O₃–Al₂O₃ system for TBC applications. *J Phase Equilib. Diff.*, 32(1), 2–16. DOI:10.1007/s11669-010-9815-4

360. Андриевская, Е. Р., Корниенко, О. А. (2009). Взаимодействие оксида гадолиния с оксидом циркония при температуре 1500 °С. *Збірник наукових праць ПАТ «УКРНДІ Вогнетривів ім. А. С. Бережного», Харків (рос.)*, 109, 117–125.

361. Dudnik, E. V., Lakiza, S. N., Hrechanyuk, N. I., Ruban, A. K., Red'ko, V. P., Hlabay, M. S., Myloserdov, A. B. (2018). The Gd₂Zr₂O₇-based materials for Thermal Barrier Coatings. *Powder Metall. Met. Ceram.*, 57(5–6), 301–315. DOI:10.1007/s11106-018-9983-z

362. Spiridinov, F. M., Stepanov, V. A., Komissarova, L. N., Spitsyn, V. I. (1968). The

binary HfO₂–Gd₂O₃ system. *J. Less-Common Met.*, 14(4), 435–443. DOI:10.1016/ 0022-5088(68)90167-7

363. Duran, P. (1977). Phase relationships in the Hafnia–Gadolinia system. *Ceram. Int.*, 3(4), 137–140. DOI:10.1016/0390-5519(77)90059-x

364. Karaulov, A. G., Zoz, E. I. (1999). Phase formation in the ZrO₂–HfO₂–Gd₂O₃ and ZrO₂–HfO₂–Yb₂O₃ systems. *Refractories and Industrial Ceramics*, 40(11–12), 479–483. DOI:10.1007/BF02762623

365. Tyshchenko, Ya., Korniyenko, K. (2017). Al-Gd-Hf-O ternary phase diagram Evaluation. *MSI Eureka*, 72(c), 10.52997.1.4. DOI:10.7121/msi-eureka-10.52997.1.4 **366.** Minervini, L., Grimes, R. W., Sickafus, K. E. (2000). Disorder in pyrochlore oxides. *J. Amer. Ceram. Soc.*, 83(8), 1873–1878. DOI:10.1111/j.1151-2916.2000. tb01484.x

367. Bajenova, I., Guskov, A., Gagarin, P., Khvan, A. V., Gavrichev, K. (2023). Experimental determination of the enthalpy of formation of the pyrochlore rare-earth hafnates. *J. Amer. Ceram. Soc.*, 106. DOI:10.1111/jace.19027

368. Lejus, A.-M., Michel, D. (1980). Étude par microdureté de phénomènes de non stœchiométrie et d'ordre-désordre dans des solutions solides zircone-oxydes de lanthanides. *Bull. Minéral.*, 103(3), 376–379. DOI:10.3406/bulmi.1980.7354

369. Feng, J., Xiao, B., Zhou, R., Pan, W. (2012). Thermal expansions of $Ln_2Zr_2O_7$ (*Ln* = La, Nd, Sm, and Gd) pyrochlore. *J. Appl. Phys.*, 111(10). DOI:10.1063/1.4722174

370. Zhang, J., Guo, X., Jung, Y. G., Li, L., Knapp, J. (2017). Lanthanum zirconate based thermal barrier coatings: *A review. Surf. Coat. Tech.*, 323, 18–29. DOI:10.1016/ j.surfcoat.2016.10.019

371. Guo, X., Lu, Zh., Park, H.-Y., Li, L., Knapp, J., Jung, Y.-G., Zhang, J. (2018). Thermal properties of La₂Zr₂O₇ double-layer thermal barrier coatings. *Adv. Appl. Ceram.*, 118, 1–7. DOI:10.1080/17436753.2018.1510820

372. Stopyra, M., Moskal, G., Niemiec, D. (2015). Synthesis and thermal properties of europium zirconate and hafnate via solid state reaction and polymerized complex method. *Surf. Coat. Tech.*, 284, 38–43. DOI:10.1016/j.surfcoat.2015.09.064

373. Solovkin, A. S., Tsvetkova, Z. N. (1962). The chemistry of aqueous solutions of

zirconium salts (Does the zirconyl ion exist?). *Russ. Chem. Rev.*, 31(11), 655–669. DOI:10.1070/rc1962v031n11abeh001326

374. Scian, A. N., Aglietti, E. F., Caracoche, M. C., Rivas, P. C., Pasquevich, A. F., López García, A. R. (1994). Phase transformations in Monoclinic Zirconia caused by milling and subsequent Annealing. *J. Am. Ceram. Soc.*, 77(6), 1525–1530. DOI:10. 1111/j.1151-2916.1994.tb09752.x

375. Печарський, В. К., Завалій, П. Ю., Аксельруд, Л. Г., Гринь, Ю. М., Гладишевський, Є. І. (1984). Комплекс программ структурного анализа для УВК СМ-4. *Вісник Львівского університету. Серія хімічна. (рос.)*, 25, 9–11.

376. Аксельруд, Л. Г., Гринь, Ю. М., Завалій, П. Ю. (1990). Комплекс программ для структурного анализа кристаллов CSD. Общее описание. *Львів: Вид-во ЛДУ (poc.)*, 102 с.

377. Бокий, Г. Б. (1971). Кристаллохимия, 3-тье изд. Москва: Наука (рос.), 400 с.

378. Vegard, L. (1921). Die konstitution der mischkristalle und die raumfüllung der atome. *Z. Phys.*, 5(1), 17–26. DOI:10.1007/BF01349680

379. Denton, A. R., Ashcroft, N. W. (1991). Vegard's law. *Phys. Rev. A*, 43(6), 3161–3164. DOI:10.1103/PhysRevA.43.3161

380. Kornienko, O., Yurchenko, Yu., Olifan, O., Samelyuk, A., Zamula, M., Pavlenko, O. (2024). Phase relations in the La₂O₃–ZrO₂–HfO₂ system at 1250 °C and 1500 °C. *Chem. Thermodyn. Therm. Anal.*, 100144. DOI:10.1016/j.ctta.2024.100144

381. Юрченко, Ю. В., Корічев, С. Ф., Барщевська, Г. К., Забіяка, К. І. (2024). Ізотермічний переріз потрійної діаграми стану системи La₂O₃–ZrO₂–HfO₂ при 1100 °С. *Вісник ОНУ. Хімія*, 29, 2(88), 85–93. DOI:10.18524/2304-0947.2024.2(88) .322133

382. Юрченко, Ю. В., Корнієнко, О. А. (2019). Фазові взаємодії в системі ZrO₂– HfO₂–La₂O₃ при 1600 °C. XI Всеукраїнська наукова конференція студентів та аспірантів «Хімічні Каразінські читання – 2019» (22–24 квітня 2019 р., м. Харків), 45–46.

383. Sholom, A. A, Spasonova, L. M., Yurchenko, Yu. V., Olifan, O. I., Kornienko, O. A. (2023). Phase equilibria in ternary ZrO_2 -HfO₂- Ln_2O_3 (Ln = Nd, Sm) systems at

1500 °C. 4th International Congress on Materials & Structural Stability (P1–407, March 8–10, 2023, Rabat, Morocco), 167.

384. Юрченко, Ю. В., Корнієнко, О. А., Корічев, С. Ф., Замула, М. В., Самелюк, А. В., Барщевська, Г. К. (2024). Фазові рівноваги в системі ZrO₂–HfO₂–La₂O₃ за температури 1500 °C. *VII Міжнародна (XVII Українська) наукова конференція студентів, аспірантів і молодих учених «Хімічні проблеми сьогодення» (19–21 березня 2024 р., м. Вінниця), 119.*

385. Korniienko, O., Yurchenko, Yu., Korichev, S., Sameljuk, A., Barchevska, H., Subota I. (2024). Phase relation of the ZrO₂–HfO₂–La₂O₃ system at 1500–1100 °C. *IXth International Samsonov Conference «Materials Science of Refractory Compounds» (MSRC–2024, May 27–30, 2024, Kyiv, Ukraine), 17.*

386. Korniienko, O. A., Yurchenko, Yu. V., Olifan, O. I., Samelyuk, A. V., Zamula, M. V. (2023). Isothermal section of the ZrO₂–HfO₂–Nd₂O₃ ternary phase diagram at 1100 °C. *Hybrid Adv.*, *4*, 100085. DOI:10.1016/j.hybadv.2023.100085

387. Yurchenko, Yu. V., Korniienko, O. A., Bykov, O. I., Samelyuk, A. V., Yushkevych, S. V., Zamula, M. V. (2023). Phase equilibria in the ZrO₂–HfO₂–Nd₂O₃ system at 1500 °C and 1700 °C. *Open Ceram.*, 15, 100421.

388. Kornienko, O. A., Yurchenko, Yu. V., Bykov, O. I., Samelyuk, A. V., Zamula, M. V. (2022). Phase relation studies in the ZrO₂–HfO₂–Nd₂O₃ system at 1500 °C. *VIIIth International Samsonov Conference «Materials Science of Refractory Compounds»* (*MSRC*–2022, May 24–27, 2022, Kyiv, Ukraine), 14.

389. Sholom, A. A, Spasonova, L. M., Yurchenko, Yu. V., Olifan, O. I., Kornienko, O. A. (2023). Phase equilibria in ternary ZrO_2 –HfO₂– Ln_2O_3 (Ln = Nd, Sm) systems at 1500 °C. *4th International Congress on Materials & Structural Stability (P1–407, March 8–10, 2023, Rabat, Morocco), 167.*

390. Юрченко, Ю. В., Корнієнко, О. А., Биков, О. І., Самелюк, А. В., Замула, М. В. (2023). Фазові рівноваги в потрійній системі ZrO₂–HfO₂–Nd₂O₃ при 1700 °C в атмосфері повітря. *VI Міжнародна (XVI Українська) наукова конференція студентів, аспірантів і молодих учених «Хімічні проблеми сьогодення» (ХПС–2023, 21–23 березня 2023 р., м. Вінниця), 81.*

391. Юрченко, Ю. В., Корнієнко О. А., Замула М. В., Самелюк А. В., Оліфан О. І., Суббота І. С. (2023). Ізотермічний переріз діаграми стану трикомпонентної системи ZrO₂–HfO₂–Nd₂O₃ за температури 1100 °C. *XIV Всеукраїнська наукова конференція студентів та аспірантів «Хімічні Каразінські читання – 2023» (24–26 квітня 2023 р., м. Харків), 60–61.*

392. Юрченко, Ю. В., Корнієнко, О. А., Биков, О. І., Самелюк, А. В. (2022). Ізотермічний переріз діаграми стану системи ZrO_2 –HfO₂–Sm₂O₃ при 1600 °C. *Journal of Chemistry and Technologies*, 30(1), 34–43. DOI:10.15421/jchemtech. v30i1.245246

393. Yurchenko, Yu.V., Kornienko, O.A., Bykov, O.I., Samelyuk, A.V., Bataiev, Yu.M., Yushkevych, S.V., Zamula, M.V. (2022). Phase equilibrium in the ZrO₂–HfO₂–Sm₂O₃ system at 1500 °C. *Chem. Thermodyn. Therm. Anal.*, 8, 100093. DOI:10.1016/j.ctta. 2022.100093

394. Юрченко, Ю. В., Барщевська, Г. К., Биков, О. І., Корнієнко, О. А., Самелюк, А. В. (2021). Фазові рівноваги в системі ZrO₂–HfO₂–Sm₂O₃ при температурі 1500 °C. *V Всеукраїнська наукова конференція «Актуальні задачі хімії: дослідження та перспективи» (15 квітня 2021 р., м. Житомир), 199–200.*

395. Юрченко, Ю. В., Биков, О. І., Самелюк, А. В., Корнієнко, О. А. (2021). Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂–Sm₂O₃ при 1600 °C. *VII Всеукраїнська науково-практична конференція «Актуальні проблеми науковопромислового комплексу регіонів – 2021» (17–21 травня 2021 р., м. Рубіжне), 54– 55.*

396. Kornienko, O. A., Yurchenko, Yu. V., Bykov, O. I., Samelyuk, A. V., Zamula, M. V. (2022). Phase relation studies in the ZrO₂–HfO₂–Nd₂O₃ system at 1500 °C. *VIIIth International Samsonov Conference «Materials Science of Refractory Compounds»* (*MSRC*–2022, May 24–27, 2022, Kyiv, Ukraine), 14.

397. Юрченко, Ю. В., Корнієнко, О. А., Корічев, С. Ф., Юшкевич, С. В. (2023). Ізотермічний переріз потрійної діаграми стану системи ZrO₂–HfO₂–Eu₂O₃ за температури 1100 °С. *Вісник ОНУ. Хімія*, 28, 2(85), 72–82. DOI:10.18524/2304-0947.2023.2(85).286605 **398.** Yurchenko, Yu. V., Kornienko, O. A., Olifan, O. I., Sameliuk, A. V., Yushkevych, S. V., Zamula, M. V. (2024). Experimental study of isothermal sections of the ZrO₂– HfO₂–Eu₂O₃ ternary diagram at 1500 °C and 1700 °C. *CALPHAD: Comput. Coupling Ph. Diagr. Thermochem.*, 86, 102721. DOI:10.1016/j.calphad.2024.102721

399. Юрченко, Ю. В., Корнієнко, О. А., Корічев, С. Ф., Замула, М. В., Самелюк, А. В., Спасьонова, Л. М. (2023). Ізотермічний переріз діаграми стану системи на основі діоксидів цирконію, гафнію та оксиду європію при 1500 °C. *VII Всеукраїнська наукова конференція «Актуальні задачі хімії: дослідження та перспективи» (АЗХ 2023, 19 квітня 2023 р., м. Житомир), 153–154.*

400. Yurchenko, Yu. V., Korniienko, O. A., Korichev, S. F., Samelyuk, A. V., Zamula, M. V., Spasonova, L. N. (2023). Phase equilibria in the ZrO₂–HfO₂–Eu₂O₃ system at 1700 °C. *8th International Materials Science Conference HighMatTech–2023 (October 2–6, 2023, Kyiv, Ukraine), 52.*

ДОДАТКИ

Додаток А – Опубліковані статті за темою дисертації

1. Юрченко, Ю. В., Корнієнко, О. А., Биков, О. І., Самелюк, А. В. (2022). Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂–Sm₂O₃ при 1600 °C. *Journal of Chemistry and Technologies* (Q4), 30(1), 34–43. DOI:10.15421/ jchemtech.v30i1.245246

Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка рукопису статті.

 Yurchenko, Yu. V., Kornienko, O. A., Bykov, O. I., Samelyuk, A. V., Bataiev, Yu. M., Yushkevych, S. V., Zamula, M. V. (2022). Phase equilibrium in the ZrO₂–HfO₂– Sm₂O₃ system at 1500 °C. *Chem. Thermodyn. Therm. Anal.*, 8, 100093. DOI:10. 1016/j.ctta.2022.100093

Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка рукопису статті.

3. Юрченко, Ю. В., Корнієнко, О. А., Корічев, С. Ф., Юшкевич, С. В. (2023). Ізотермічний переріз потрійної діаграми стану системи ZrO₂–HfO₂–Eu₂O₃ за температури 1100 °С. *Вісник ОНУ. Хімія*, 28, 2(85), 72–82. DOI:10.18524/2304-0947.2023.2(85).286605

Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка рукопису статті.

- 4. Korniienko, O. A., Yurchenko, Yu. V., Olifan, O. I., Samelyuk, A. V., Zamula, M. V. (2023). Isothermal section of the ZrO₂–HfO₂–Nd₂O₃ ternary phase diagram at 1100 °C. *Hybrid Adv.*, 4, 100085. DOI:10.1016/j.hybadv.2023.100085 Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка рукопису статті.
- Yurchenko, Yu. V., Korniienko, O. A., Bykov, O. I., Samelyuk, A. V., Yushkevych, S. V., Zamula, M. V. (2023). Phase equilibria in the ZrO₂–HfO₂–Nd₂O₃ system at 1500 °C and 1700 °C. *Open Ceram.* (Q2), 15, 100421. DOI:10.1016/j.oceram.

2023.100421

Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка рукопису статті.

6. Yurchenko, Yu. V., Kornienko, O. A., Olifan, O. I., Sameliuk, A. V., Yushkevych, S. V., Zamula, M. V. (2024). Experimental study of isothermal sections of the ZrO₂– HfO₂–Eu₂O₃ ternary diagram at 1500 °C and 1700 °C. *CALPHAD: Comput. Coupling Ph. Diagr. Thermochem.* (Q2), 86, 102721. DOI:10.1016/j.calphad. 2024.102721

Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка рукопису статті.

- 7. Kornienko, O., Yurchenko, Yu., Olifan, O., Samelyuk, A., Zamula, M., Pavlenko, O. (2024). Phase relations in the La₂O₃–ZrO₂–HfO₂ system at 1250 °C and 1500 °C. *Chem. Thermodyn. Therm. Anal.* (Q3), 100144. DOI:10.1016/j.ctta.2024.100144 Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка рукопису статті.
- 8. Юрченко, Ю. В., Корічев, С. Ф., Барщевська, Г. К., Забіяка, К. І. (2024). Ізотермічний переріз потрійної діаграми стану системи La₂O₃–ZrO₂–HfO₂ при 1100 °С. Вісник ОНУ. Хімія, 29, 2(88), 85–93. DOI:10.18524/2304-0947.2024.2 (88).322133

Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка рукопису статті.

Додаток Б – Апробація результатів дисертації

 Юрченко, Ю. В., Корнієнко, О. А. (2019). Фазові взаємодії в системі ZrO₂– HfO₂–La₂O₃ при 1600 °C. XI Всеукраїнська наукова конференція студентів та аспірантів «Хімічні Каразінські читання – 2019» (22–24 квітня 2019 р., м. Харків), 45–46.

Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка тез.

Юрченко, Ю. В., Барщевська, Г. К., Биков, О. І., Корнієнко, О. А., Самелюк, А. В. (2021). Фазові рівноваги в системі ZrO₂–HfO₂–Sm₂O₃ при температурі 1500 °С. *V Всеукраїнська наукова конференція «Актуальні задачі хімії: дослідження та перспективи» (15 квітня 2021 р., м. Житомир), 199–200.* Особистий внесок здобувача: приготування зразків, обробка результатів,

підготовка тез.

3. Юрченко, Ю. В., Биков, О. І., Самелюк, А. В., Корнієнко, О. А. (2021). Ізотермічний переріз діаграми стану системи ZrO₂–HfO₂–Sm₂O₃ при 1600 °C. *VII Всеукраїнська науково-практична конференція «Актуальні проблеми науково-промислового комплексу регіонів – 2021» (17–21 травня 2021 р., м. Рубіжне), 54–55.*

Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка тез.

Kornienko, O. A., Yurchenko, Yu. V., Bykov, O. I., Samelyuk, A. V., Zamula, M. V. (2022). Phase relation studies in the ZrO₂–HfO₂–Nd₂O₃ system at 1500 °C. *VIIIth International Samsonov Conference «Materials Science of Refractory Compounds» (MSRC–2022, May 24–27, 2022, Kyiv, Ukraine)*, 14.

Особистий внесок здобувача: приготування зразків, обробка результатів.

Sholom, A. A, Spasonova, L. M., Yurchenko, Yu. V., Olifan, O. I., Kornienko, O. A. (2023). Phase equilibria in ternary ZrO₂–HfO₂–Ln₂O₃ (*Ln* = Nd, Sm) systems at 1500 °C. *4th International Congress on Materials & Structural Stability (P1–407, March 8–10, 2023, Rabat, Morocco), 167.*

Особистий внесок здобувача: приготування зразків, обробка результатів.

6. Юрченко, Ю. В., Корнієнко, О. А., Биков, О. І., Самелюк, А. В., Замула, М. В. (2023). Фазові рівноваги в потрійній системі ZrO₂–HfO₂–Nd₂O₃ при 1700 °C в атмосфері повітря. *VI Міжнародна (XVI Українська) наукова конференція студентів, аспірантів і молодих учених «Хімічні проблеми сьогодення» (ХПС–2023, 21–23 березня 2023 р., м. Вінниця), 81.*

Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка тез.

 Юрченко, Ю. В., Корнієнко О. А., Замула М. В., Самелюк А. В., Оліфан О. І., Суббота І. С. (2023). Ізотермічний переріз діаграми стану трикомпонентної системи ZrO₂–HfO₂–Nd₂O₃ за температури 1100 °C. *XIV Всеукраїнська наукова* конференція студентів та аспірантів «Хімічні Каразінські читання – 2023» (24–26 квітня 2023 р., м. Харків), 60–61.

Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка тез.

Юрченко, Ю. В., Корнієнко, О. А., Корічев, С. Ф., Замула, М. В., Самелюк, А. В., Спасьонова, Л. М. (2023). Ізотермічний переріз діаграми стану системи на основі діоксидів цирконію, гафнію та оксиду європію при 1500 °С. VII Всеукраїнська наукова конференція «Актуальні задачі хімії: дослідження та перспективи» (АЗХ 2023, 19 квітня 2023 р., м. Житомир), 153–154.

Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка тез.

Yurchenko, Yu. V., Korniienko, O. A., Korichev, S. F., Samelyuk, A. V., Zamula, M. V., Spasonova, L. N. (2023). Phase equilibria in the ZrO₂–HfO₂–Eu₂O₃ system at 1700 °C. 8th International Materials Science Conference HighMatTech–2023 (October 2–6, 2023, Kyiv, Ukraine), 52.

Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка тез.

Юрченко, Ю. В., Корнієнко, О. А., Корічев, С. Ф., Замула, М. В., Самелюк, А. В., Барщевська, Г. К. (2024). Фазові рівноваги в системі ZrO₂-HfO₂-La₂O₃ за

температури 1500 °C. VII Міжнародна (XVII Українська) наукова конференція студентів, аспірантів і молодих учених «Хімічні проблеми сьогодення» (19–21 березня 2024 р., м. Вінниця), 119.

Особистий внесок здобувача: приготування зразків, обробка результатів, підготовка тез.

11. Korniienko, O., Yurchenko, Yu., Korichev, S., Sameljuk, A., Barchevska, H., Subota I. (2024). Phase relation of the ZrO₂–HfO₂–La₂O₃ system at 1500–1100 °C. *IXth International Samsonov Conference «Materials Science of Refractory Compounds» (MSRC–2024, May 27–30, 2024, Kyiv, Ukraine), 17.*

Особистий внесок здобувача: приготування зразків, обробка результатів.