Определение величин деформации и напряжения начала пластического течения в материалах методом инструментального индентирования

С. А. Фирстов, В. Ф. Горбань, Э. П. Печковский

Методом инструментального автоматического индентирования использованием новой методологии обработки и анализа результатов для большого количества различных материалов аналитически и экспериментально установлены величины деформации ε_{IT} и напряжения σ_{IT} , которые соответствуют началу пластической деформации материала при простых схемах нагружения (растяжение, сжатие, изгиб). Показано, что значение напряжения σ_{IT} близко к величине предела пропорциональности σ_{nu} материала, то есть $\sigma_{IT} \approx \sigma_{nu}$. Установлена связь величин ε_{IT} и σ_{IT} с твердостью H_{IT} материала, его модулем Юнга Е и контактным модулем упругости Е_r пары материал—индентор: $\varepsilon_{IT} = 0.307 (H_{IT}/E_r) u \sigma_{IT} = 0.307 H_{IT}(E/E_r)$ (для индентора Берковича). Показано, что величина отношения твердости к пределу упругости материала $H_{\rm IT}/\sigma_{\rm IT}$ определяется отношением модулей упругости $E_{\rm r}$ и E в виде $H_{\rm IT}/\sigma_{\rm IT} = 3,257(E_{\rm r}/E)$ и в зависимости от упругих свойств материала изменяется в пределах 1,78—3,257.

Ключевые слова: инструментальное автоматическое индентирование, высокопрочные материалы и покрытия, деформация, напряжение, отношение твердости к напряжению.

Введение

Появление метода инструментального индентирования, позволяющего записывать диаграмму нагружения в координатах сила—глубина внедрения индентора, расширило возможности определения физикомеханических характеристик исследуемого материала. Благодаря работам [1—6] стало возможным установление значений не только твердости, но и модуля Юнга, коэффициента упругости и ползучести, вошедших в стандарт ISO 14577-1:2002(Е) [7]. Ранее в работе [8] предложен подход, позволяющий определять уровень упругой деформации в контактной области, исходя из данных индентирования.

В работах [9—15] представлена новая методология обработки и анализа результатов инструментального индентирования материалов. В ее основе находится аналитически полученное уравнение индентирования, которое устанавливает функциональную связь характеристик прочности и деформации с показателями автоматически записанной диаграммы индентирования:

$$H_{\rm IT}/E_{\rm r} = K \left(h_{\rm s}/h_{\rm c} \right). \tag{1}$$

Здесь K = 0,687 сtg α — коэффициент формы индентора; $H_{\rm IT}$ — твердость по Мейеру; $E_{\rm r}$ — так называемый "эффективный", "контактный", "приведенный" модуль упругости пары материал—индентор — $1/E_{\rm r} = (1 - v^2)/E + (1 - v_0^2)/E_0$ (здесь v — коэффициент Пуассона; E — модуль Юнга материала, индекс "0" относится к материалу индентора); α — угол заточки

© С. А. Фирстов, В. Ф. Горбань, Э. П. Печковский, 2012

индентора (угол между высотой и гранью правильной трехгранной пирамиды); $h_{\rm s}$ — внеконтактная глубина внедрения индентора — максимальное углубление (sink-in) в материале вокруг индентора (в этой области отпечатка индентор не соприкасается с материалом, а материал претерпевает только упругую деформацию) (рис. 1); $h_{\rm c}$ — контактная глубина внедрения индентора в материале (в этой области отпечатка индентора в материале) (рис. 1); $h_{\rm c}$ — контактная индентор и материал непосредственно соприкасаются, а материал испытывает упругопластическую деформацию);

Для индентора Берковича ($\alpha = 65^{\circ}$) уравнение индентирования имеет вид

$$H_{\rm IT}/E_{\rm r} = 0.3206(h_{\rm s}/h_{\rm c}).$$
 (2)

Внеконтактная h_s и контактная h_c глубина внедрения определяется в соответствии с установленной методикой [1, 2, 4, 5]:

$$h_{\rm s} = 0,72 \; F_{\rm max} / (dF/dh_{\rm max}); \quad h_{\rm c} = h_{\rm max} - h_{\rm s},$$
 (3)

где dF/dh_{max} — наклон ветви разгружения на ее начальном участке в области действия упругой деформации материала (рис. 1).

При индентировании в системе материал—индентор осуществляются упругая и пластическая деформации, а также возможно разрушение. В контактной области происходит упругопластическая деформация ε_c , которая определяется как [1—6]

$$\varepsilon_c = \ln \sin \alpha.$$
 (4)

Во внеконтактной области имеет место только упругая деформация материала ε_{es} , величина которой на глубине h_s , как показано в работах [9—13], связана с контактной деформацией ε_c соотношением

$$\varepsilon_{\rm es} = \varepsilon_{\rm c} \ (h_{\rm s}/h_{\rm c}). \tag{5}$$

В работе [8] показано также, что форма индентора определяет величину ε_c и автоматически обеспечивает ее постоянство в процессе нагружения. Из этого следует, что, несмотря на непрерывное увеличение глубин внедрения индентора h_s и h_c во внеконтактной и контактной областях материала, величина их отношения h_s/h_c остается постоянной. Значит, в соответствии с выражением (5) должно оставаться

Рис. 1. Схемы диаграммы автоматического индентирования (*a*) и взаимодействия индентора с материалом (б).

постоянным и отношение соответствующих деформаций $\epsilon_{es}/\epsilon_c.$ То есть имеет место равенство

$$\varepsilon_{\rm es}/\varepsilon_{\rm c} = h_{\rm s}/h_{\rm c}.\tag{6}$$

Справедливость выражения (6) следует также из того, что, поскольку при нагружении отношение $h_s/h_c = \text{const}$, а контактная деформация ε_c при данном угле заточки индентора также является константой, следовательно, является константой и упругая деформация $\varepsilon_{es} = \varepsilon_c(h_s/h_c)$, а значит, и отношение $\varepsilon_{es}/\varepsilon_c = \text{const}$.

Таким образом, метод инструментального автоматического индентирования позволяет непосредственно определять не только твердость H_{IT} и контактный модуль упругости E_r (а значит, и модуль Юнга E), но и деформацию ε_{es} , которую впредь будем обозначать как ε_{IT} . Однако в проблеме определения механических характеристик хрупких материалов и сверхтвердых покрытий, знание которых необходимо для их успешной эксплуатации, остается много нерешенных задач.

Например, для высокопрочных материалов и сверхтвердых покрытий выявление достоверных значений деформации ε_y и напряжения σ_y материала, соответствующих началу пластической деформации, стандартными методами затруднено в связи с неконтролируемым разрушением таких материалов ниже предела текучести. В литературе практически отсутствуют исследования по детальному изучению этих величин, полученных методом инструментального автоматического индентирования. Настоящая работа посвящена определению этих характеристик при индентировании различных материалов, а также их взаимосвязи с другими физико-механическими свойствами материала, выявляемых как при индентировании, так и при стандартных методах испытания.

Методика эксперимента

Индентирование осуществляли методом инструментального микроиндентирования на установке Микрон-гамма [16] при комнатной температуре (нагрузка до F = 3 H) алмазной пирамидой Берковича с углом заточки 65° с автоматически выполняемыми нагружением и разгружением на протяжении 30 с. Одновременно проводится запись диаграммы индентирования в координатах F—h (сила—глубина внедрения). Точность определения силы F составляла 10⁻³ H, глубины внедрения h индентора — $\pm 2,5$ нм. Значения показателей F, h_{max} , h_c , h_s фиксировались по данным измерений двух тысяч точек на диаграмме индентирования и, кроме того, проводили автоматическое вычисление таких характеристик материала, как твердость H_{IT} , контактный модуль упругости E_r , модуль Юнга E, а также деформация ε_{IT} и соответствующее ей напряжение σ_{IT} .

Экспериментальные результаты и их обсуждение

Деформация и напряжение в материале в неконтактной области

Из выражения (5) следует, что деформация материала ε_{IT} применительно к индентору Берковича ($\alpha = 65^{\circ}$) может быть представлена в виде

$$\varepsilon_{\rm IT} = 0,0984 \ (h_{\rm s}/h_{\rm c}).$$
 (7)

Совместный анализ уравнения индентирования (1) и выражения для деформации ε_{IT} (5) позволил установить связь трех характеристик **77**

материала между собой: деформации $\varepsilon_{\rm IT}$, твердости $H_{\rm IT}$ и контактного модуля упругости $E_{\rm r}$; для индентора Берковича она имеет вид

$$\varepsilon_{\rm IT} = 0,307 \ (H_{\rm IT}/E_{\rm r}).$$
 (8)

Связь между деформацией ε_{IT} и соответствующим ей напряжением σ_{IT} , возникающими в материале при индентировании, может быть описана выражением, аналогичным закону Гука [6, 13, 18]

$$\sigma_{\rm IT} = E \, \varepsilon_{\rm IT} \,, \tag{9}$$

где Е — модуль Юнга.

Как показали экспериментальные данные (табл. 1—4), величины деформации ε_{IT} и напряжения σ_{IT} материала, определенные при индентировании с использованием выражений (7)—(9), близки к соответствующим значениям деформации ε_y и напряжения σ_y , определенным при испытаниях на растяжение, сжатие, изгиб. Приведенные результаты показывают, что напряжения σ_{IT} и σ_y различаются между собой в пределах 3—8%.

Т а б л и ц а 1. Механические свойства материалов, определенные методом инструментального индентирования

N⁰	Материал*	<i>Н</i> _{IT} , ГПа	<i>Е,</i> ГПа	<i>Е</i> _г , ГПа	ε _{IT} , %	σ _{IT} , ГПа	$E_{\rm r}/E$	$H_{\rm IT}/\sigma_{\rm IT}$
1	Cr	2,0	250	223	0,30	0,75	0,892	2,91
2	Ti	1,0	100	95	0,33	0,33	0,952	3,09
3	Cu	2,0	132	125	0,50	0,66	0,947	3,08
4	W	6,9	400	331	0,70	2,80	0,827	2,69
5	Cu—Zr ₂₀	3,1	132	125	0,80	1,06	0,947	3,08
6	Ті деформ.	3,2	100	95	1,05	1,05	0,952	3,09
7	Ni—Al—Re	4,5	136	129	1,10	1,50	0,948	3,08
8	$Ti_{50}Zr_{25}Nb_{25}$	3.2	65	64	1.60	1,04	0,985	3,21
9	ВК6М	18,1	299	250	2,20	6,58	0,836	2,72
10	Ti ₃ SiC ₂	15,7	249	222	2,30	5,73	0,891	2,90
11	(Ti, W)C—Co	38,0	546	386	3,10	16,9	0,707	2,30
12	Ті—Zr—Ni—Cu аморф.	13,3	124	118	3,50	4,35	0,943	3,08
13	SiO ₂	7,8	69	68	3,60	2,55	0,985	3,21
14	Ті—Zr—Ni аморф.	9,6	78	77	4,00	3,12	0,985	3,21
15	TiN	43,3	429	327	4,10	17,59	0,762	2,48
16	Со—Fe—Si—В аморф.	15,0	117	112	4,20	4,91	0,951	3,09
17	SiC	52,4	558	383	4,20	23,44	0,686	2.23
18	Si аморф.	12,1	86	85	4,40	3,78	0,985	3,21
19	MoN + TiN покр.	55,0	470	340	4,97	23,36	0,723	2,34
20	TiN покр.	60,0	480	350	5,26	25,25	0,729	2,37
21	Алмаз нано	95,0	940	536	4,99	48,90	0,570	1,85
22	Алмаз моно	98,0	1000	556	5,33	53,92	0,556	1,81

^{*}Материалы расположены в порядке возрастания величины деформации ε_{IT} (индентор Берковича, угол заточки $\alpha = 65^{\circ}$).

Метод испытания	<i>Е</i> , ГПа	<i>Е</i> г, ГПа	<i>Н</i> _{IT} , ГПа	ε _{IT} , %	σ _{IT} , ГПа	$H_{\rm IT}/\sigma_{\rm IT}$	ε _{упр} , %	σ _{упр} , МПа
Индентирование	67	66	2,35	1,09	732	3,21		
4-точечный изгиб	67						1,01	675
Растяжение	67						1,01	678
Сжатие	67						1,06	720

Таблица 2. Механические свойства сплава Ti—25Nb (% (мас.)), определенные разными методами испытаний

Т а б л и ц а 3. Сопоставление механических свойств, полученных в условиях инструментального индентирования и четырехточечного изгиба

	Ин	дентиро	вание	Изгиб			
Состав	<i>Н</i> _{IT} , ГПа	ε _{IT} ,%	$σ_{IT}$, ΓΠα	Е, ГПа	ε, %	σ _p , ГПа	
Р6М3Ф5К5	12,8	1,79	4,54	245	1,46	3,48	
Р6М7Ф5К10	13,7	1,91	4,84	250	1,34	3,28	
Р12М3Ф2К5	12,6	1,84	4,42	221	1,43	3,19	
Ti-25Nb	2,35	1,09	0,73	67	1,01	σ _{упр} 0,67	

Результаты индентирования пластичного сплава Ti—25Nb (% (мас.)) сопоставлены с испытаниями на изгиб трех высокопрочных сталей (табл. 3). Деформация є_{ІТ} и соответствующее напряжение σ_{IT} сталей, определенные при индентировании, заметно выше напряжения разрушения σ_р при изгибе. В данном случае это объясняется тем, что при испытании сталей на изгиб они разрушались, не достигнув предела упругости. Ti—25Nb обладал Сплав пластичностью, что позволило

Т а б л и ц а 4. Характеристики деформации и напряжения, полученные при индентировании титана в различных структурных состояниях (прокатка на разные степени) и одноосном сжатии (E = 100 ГПа) [15]

Прокатка, истинная дефор- мация <i>е</i>	<i>Н</i> _{IT} , ГПа	ε _{IT} , %	σ _{IT} , ΓΠa	Растяже- ние σ _{0,5} , ГПа
Литой	1,60	0,48	0,48	0,52
0,35	1,85	0,60	0,60	0,64
0,50	2,06	0,67	0,67	0,67
1,00	2,10	0,68	0,68	0,78
1,25	2,22	0,72	0,72	0,82
1,60	2,70	0,87	0,87	0,93

определить его предел упругости при изгибе σ_{ynp} . Как видно, значения σ_{IT} и σ_{ynp} в этом случае практически совпадают.

В табл. 4 представлены результаты сравнительных исследований механических свойств титана, предварительно прокатанного на разные степени деформации, методами индентирования и одноосного сжатия [16]. Из данных следует, что соответствующие значения напряжений σ_{IT} и $\sigma_{0,5}$ для всех структурных состояний прокатанного титана незначительно отличаются между собой.

Таким образом, полученные экспериментальные данные позволяют считать, что деформация ε_{IT} и соответствующее ей напряжение σ_{IT} , определенные при индентировании, близки к деформации и напряжению на начальных этапах пластической деформации при простых схемах нагружения (растяжение, сжатие, изгиб), а конкретное значение σ_{IT} близко к величине предела пропорциональности σ_{nu} , то есть $\sigma_{IT} \approx \sigma_{nu}$. Следовательно, метод инструментального автоматического индентирования позволяет определять такие характеристики материала, как деформация, а также соответствующее ей напряжение — предел пропорциональности или условный предел текучести $\sigma_{IT} \approx \sigma_{nu}$. Это особенно актуально для материалов с особыми свойствами, таких, например, как сверхтвердые хрупкие материалы и покрытия (табл. 1), для которых выявление истинных значений этих характеристик весьма проблематично.

Связь напряжения с твердостью при индентировании

Уравнение индентирования (1), выраженное через деформацию ε_{IT} для индентора Берковича в виде $H_{IT}/E_r = 3,257\varepsilon_{IT}$, можно представить в терминах напряжений. Для этого, подставив в данное выражение величину деформации ε_{IT} из формулы (9) $\varepsilon_{IT} = \sigma_{IT}/E$, получили

$$H_{\rm IT}/E_{\rm r} = 3,257(\sigma_{\rm IT}/E).$$
 (10)

Далее, группируя величины напряжений в уравнении (10), получаем соотношение между твердостью и напряжением в материале при индентировании

$$\sigma_{\rm IT} = 0.307 H_{\rm IT} (E/E_{\rm r}).$$
 (11)

На рис. 2 представлены экспериментально полученные значения напряжения в материале σ_{IT} , выше которых для каждого изученного материала наступает пластическая деформация (табл. 1), а также аналитическая зависимость (11). Видно достаточно хорошее совпадение экспериментальных данных (табл. 1) и расчетных значений напряжения σ_{IT} (11) для самых различных материалов. При этом для материалов, у которых значения модуля Юнга *E* и контактного модуля упругости E_r близки между собой $E \approx E_r$ (в зависимости от величины коэффициента

Рис. 2. Зависимость напряжения σ_{IT} от твердости *H*_{IT} для разных материалов (табл. 1) при индентировании индентором Берковича $(\alpha = 65^{\circ})$: \circ — экспериментальные данные; 1 — аналитически полученная зависимость $\sigma_{IT} =$ $= 0,307 H_{IT}(E/E_r)$ (выражение (11)); 2 — расчетные данные, полученные в работе [19] методом молекулярной динамики для сверхтвердых покрытий.

80

Пуассона v это соблюдается для значений модуля Юнга <100—140 ГПа), зависимость (11) может рассматриваться близкой к прямолинейной. В этом случае выполняются соотношения $\sigma_{IT} \approx 0,307 H_{IT}$ или $H_{IT}/\sigma_{IT} \approx 3,26$. При этом твердость материалов не превышает $H_{IT} = 20$ —25 ГПа.

Представленные на рис. 2 экспериментальные данные (табл. 1) и аналитическая зависимость (11) для σ_{IT} (кривая 1) нашли подтверждение в расчетных данных, полученных в работе [19] методом молекулярной динамики для сверхтвердых покрытий (кривая 2). Видно достаточно хорошее совпадение всех трех групп данных вплоть до значений твердости материалов 60—65 ГПа.

Практическая ценность соотношения (11) состоит в том, что оно позволяет для широкого спектра материалов, практически без ограничения состава, структурного состояния и размера образца, в том числе и сверхтвердых и хрупких при комнатной температуре, непосредственно определять напряжение начала пластического течения σ_{nq} . При этом достигается это без особых затруднений — благодаря разработанной авторами методологии обработки и анализа результатов автоматического индентирования [9—13]. Выражение (11) позволяет также найти величину отношения твердости к напряжению

$$H_{\rm IT}/\sigma_{\rm IT} = 3,257(E_{\rm r}/E).$$
 (12)

Из выражения (12) следует, что величина отношения твердости к напряжению $H_{\rm IT}/\sigma_{\rm IT}$ определяется упругими свойствами материала (точнее, их величиной по сравнению с упругими свойствами индентора-алмаза E_r/E). На рис. 3 представлены экспериментальные данные (табл. 1) и зависимость (12) между двумя отношениями $H_{\rm IT}/\sigma_{\rm IT}$ и E_r/E . Видно, что отношение твердости к напряжению $H_{\rm IT}/\sigma_{\rm IT}$ для разных материалов различно и в зависимости от материала изменяется в пределах $H_{\rm IT}/\sigma_{\rm IT} =$ = 1,78—3,257.

Из известных материалов наибольшую величину отношения $H_{\rm IT}/\sigma_{\rm IT} \approx 1,78$ имеет предельно упругий материал алмаз, у которого наибольший модуль Юнга и, следовательно, наименьшая величина отношения контактного модуля упругости E_r к модулю Юнга $E: E_r/E \approx 0,56$. (Величина отношения E_r/E зависит от значений модуля Юнга алмаза-объекта и алмаза-индентора (E = 1000—1160 ГПа [6]), а также от коэффициента Пуассона ($\nu = 0,07$ —0,12 [20])).

Предельную величину $H_{IT}/\sigma_{IT} \approx 3,26$ имеют материалы, у которых модуль Юнга *E* практически равен контактному модулю упругости E_r (равенство $E \approx E_r$ имеет место, как уже упоминалось, при величине модуля Юнга <100—140 ГПа и соответствующем значении коэффициента Пуассона v.

Выводы

Методом инструментального автоматического индентирования с использованием новой методологии обработки и анализа результатов для большого количества различных материалов аналитически и экспериментально определены величины деформации ε_{IT} и соответствующего ей напряжения σ_{IT} в материале в неконтактной области (углубление вокруг погруженного индентора).

Экспериментально показано, что величины деформации ϵ_{IT} и напряжения σ_{IT} соответствуют деформации и напряжению на начальных этапах пластической деформации материала при простых схемах нагружения (растяжение, сжатие, изгиб). При этом величина напряжения σ_{IT} близка к величине предела пропорциональности σ_{nu} , то есть $\sigma_{IT} \approx \sigma_{nu}$.

Установлена связь величин ε_{IT} и σ_{IT} с твердостью H_{IT} материала, его модулем Юнга *E* и контактным модулем упругости E_r пары материал—индентор: $\varepsilon_{IT} = 0,307(H_{IT}/E_r)$ и $\sigma_{IT} = 0,307H_{IT}(E/E_r)$ (индентор Берковича). Полученные экспериментальные результаты нашли подтверждение в расчетных данных, представленных в работе [19] для сверхтвердых покрытий методом молекулярной динамики.

Аналитически и экспериментально показано, что величина отношения твердости к напряжению материала $H_{\rm IT}/\sigma_{\rm IT}$ определяется величиной отношения модулей упругости $E_{\rm r}$ и E и в зависимости от конкретного материала может изменяться в интервале значений $H_{\rm IT}/\sigma_{\rm IT} = 1,78$ —3,257. Предельную величину отношения $H_{\rm IT}/\sigma_{\rm IT} \approx 1,78$ имеет предельно упругий материал алмаз. Предельную величину $H_{\rm IT}/\sigma_{\rm IT} \approx 3,25$ имеют материалы, у которых модуль Юнга E практически равен контактному модулю упругости $E_{\rm r}$.

Метод инструментального автоматического индентирования с использованием новой методологии обработки и анализа результатов позволяет при комнатной температуре определять конкретные значения начала пластической деформации и соответствующего напряжения для хрупких материалов и сверхтвердых покрытий, что недоступно для других известных методов испытания.

- 1. Булычев С. И., Алехин В. П., Шоршоров М. Х., Терновский А. П. Исследование механических свойств материалов с помощью кинетической диаграммы нагрузка—глубина отпечатка при микровдавливании // Проблемы прочности. 1976. № 9. С. 79—83.
- 2. *Булычев С. М.* Достижения и перспективы испытания материалов непрерывным вдавливанием индентора // Завод. лаборатория. 1992. **38**, № 3. С. 29—36.
- Мильман Ю. В. Новые методики микромеханических испытаний материалов методом локального нагружения жестким индентором // Сучасне матеріалознавство XXI сторіччя. — К.: Наук. думка, 1998. — С. 637—656.
- 4. *Doener M. F. and Nix W. D.* Indentation problems // J. Mater. Res. 1986. 1. — P. 601—614.

- Oliver W. C., Pharr G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology // Ibid. — 2004. — 19, No.1. — P. 3—21.
- 6. Галанов Б. А., Григорьев О. Н., Мильман Ю. В. Определение твердости и модуля Юнга при внедрении индентора // Докл. АН СССР. 1984. 274, № 4. С. 815—818.
- 7. *ISO 14577-1:2002(E)*. Instrumented indentation test for hardness and materials parameters. Part 1: Test method. Date: 2002-09-22.
- Галанов Б. А., Мильман Ю. В., Чугунова С. И., Гончарова И. В. Исследование механических свойств высокотвердых материалов методом индентирования // Сверхтвердые материалы. — 1999. — № 3. — С. 25—38.
- 9. Фирстов С. А., Горбань В. Ф., Печковский Э. П., Мамека Н. А. Уравнение индентирования // Доп. НАН України. 2007. № 12. С. 100—106.
- Фирстов С. А., Горбань В. Ф., Печковский Э. П., Мамека Н. А. Связь прочностных характеристик материалов с показателями автоматического индентирования // Материаловедение. — М.: Наука и Технологии. — 2007. — № 11. — С. 26—31.
- 11. Фирстов С. А., Горбань В. Ф., Печковский Э. П. Новая методология обработки и анализа результатов автоматического индентирования материалов. К.: Логос, 2009. 82 с.
- Горбань В. Ф., Печковский Э. П., Фирстов С. А. Роль упругой деформации в определении механических свойств материалов методом автоматического индентирования // Металлофизика и новейшие технологии. — 2010. — 32, № 5. — С. 673—684.
- Фирстов С. А., Горбань В. Ф., Печковский Э. П. Новые методологические возможности определения механических свойств современных материалов методом автоматического индентирования // Наука та інновації. — 2010. — 6, № 5. — С. 7—18.
- 14. Горбань В. Ф., Печковский Э. П. Связь параметров упругости, полученных методом инструментального индентирования, со структурным состоянием материала // Порошковая металлургия. 2010. № 7/8. С. 55—62.
- 15. Фирстов С. А., Горбань В. Ф., Печковский Э. П. Актуальные проблемы определения характеристик деформации, упругости и прочности новых материалов, а также структурных и фазовых превращений в них методом индентирования // Материалы конф. "Актуальные проблемы прочности", 15—17 октября 2007 г., Минск. Ч. 2. — С. 3—8.
- 16. Борисовская Е. М., Подрезов Ю. А. Горбань В. Ф. и др. Влияние предществующей деформации на микротвердость титана // Электронная микроскопия и прочность материалов. 2006. Вып. 13. С. 72—87.
- 17. Aznakayev E. Micron-gamma for estimation the physico-mechanical properties of micro-materials // Proc. of the Internat. conf. "Small Talk-2003", San Diego, California, USA, 2003. TP.001. P. 8—10.
- 18. Галанов Б. А., Григорьев О. Н. Аналитическая модель индентирования хрупких материалов // Электронная микроскопия и прочность материалов. 2006. Вып. 13. С. 4—42.
- Maritza G. J., Veprek-Heijman, Ratko G., Veprek H. et al. Non-linear finite element constitutive modelling of indentation // Surf.&Coat. Techn. — 2009. — 203. — P. 3385—3391.
- 20. *Greaves G. N., Greer A. L., Lakes R. S. and Rouxel T.* Poisson's ratio and modern materials // Nature Materials. 2011. **10**, No. 11. P. 823—837.

Визначення величин деформації та напруження початку пластичної деформації в матеріалах методом інструментального індентування

С. О. Фірстов, В. Ф. Горбань, Е. П. Пєчковський

Методом інструментального автоматичного індентування з використанням нової методології обробки й аналізу результатів для великої кількості різних матеріалів аналітично й експериментально встановлено величини деформації ϵ_{IT} і напруження σ_{IT} , які відповідають початку пластичної деформації матеріалу при простих схемах навантаження (розтяг, стиск, згин). Показано, що значення напруження σ_{IT} близько до величини межі пропорційності σ_{nu} матеріалу, тобто $\sigma_{IT} \approx \sigma_{III}$. Встановлений зв'язок величин ε_{IT} і σ_{IT} із твердістю H_{IT} матеріалу, його модулем Юнга Е і контактним модулем пружності E_r пари матеріал—індентор: $\varepsilon_{\text{IT}} = 0.307(H_{\text{IT}}/E_r)$ i $\sigma_{\text{IT}} = 0.307H_{\text{IT}}(E/E_r)$ (для індентора Берковича). Встановлено, що величина відношення твердості до межі напруження матеріалу H_{IT}/σ_{IT} визначається відношенням модулів пружності E_r і E у вигляді $H_{IT}/\sigma_{IT} = 3,257(E_r/E)$ і залежно від конкретного матеріалу може змінюватися в межах $H_{\rm IT}/\sigma_{\rm IT} = 1,78$ — 3,257. Показано, що методом інструментального автоматичного індентування при кімнатній температурі можна визначати конкретні значення початку пластичної деформації й відповідного напруження для крихких матеріалів і надтвердих покриттів, що недоступно для інших відомих методів випробування.

Ключові слова: інструментальне автоматичне індентування, високоміцні матеріали й покриття, деформація, напруження, відношення твердості до напруження.

Assignment of strain and stress values for the beginning of plastic yielding in materials by instrumented indentation method

S. A. Firstov, V. F. Gorban, E. P. Pechkovsky

The method of an instrumented automatic indentation method with use of new methodology of processing and the analysis of results on a plenty of various materials analytically also experimentally establishes of strain ε_{IT} and stress σ_{IT} values which correspond to the beginning of plastic yielding of a material at simple circuits of a loading (tension, compression, bend). It is shown that value of stress σ_{IT} is close to proportional limit value σ_{pl} of a material, i. e. $\sigma_{IT} \approx \sigma_{pl}$. Connection of values ε_{IT} and σ_{IT} with hardness H_{IT} of a material, its modulus of elasticity E and the contact module of elasticity E_r of pair a material — an indentor is established: $\varepsilon_{IT} = 0,307(H_{IT}/E_r)$ and $\sigma_{IT} = 0,307H_{IT} \cdot (E/E_r)$ (for Berkovich's indentor). It is established that the value of the relation of hardness to a stress of material H_{IT}/σ_{IT} is determined by value of the relation of elastic moduluses E_r and E as $H_{IT}/\sigma_{IT} = 3,257(E_r/E)$ and depending on a concrete material can change in limits $H_{IT}/\sigma_{IT} = 1,78$ —3,257. It is shown that an instrumented automatic indentation method at room temperature it is possible to define concrete values of the beginning of plastic strain and a corresponding stress for brittle materials and superfirm coverings that is inaccessible to other known test methods.

Keywords: instrumented automatic indentation, high-strength materials and coverings, strain, stress, relation of hardness to stress.