Рентгенографическое определение динамических смещений атомов алюминия в однофазном состоянии и в эвтектическом сплаве Al—Si

О. Н. Григорьев, А. И. Устинов, М. В. Карпец, Л. М. Мелах, С. А. Демченкова

Институт проблем материаловедения им. И. Н. Францевича НАН Украины, Киев, e-mail: grig.oleg@gmail.com

Методом высокотемпературной рентгеновской дифракции исследованы тепловые характеристики кристаллов в образцах порошкового алюминия и алюминия в составе эвтектической системы алюминий—кремний. При высоких температурах в эвтектических системах температура Дебая и величина динамических тепловых смещений атомов существенно отличаются от таковых в однофазных компонентах — ослабляются межатомные связи и растет амплитуда тепловых колебаний атомов. Это должно приводить к повышенной диффузионной активности в приграничных объемах фаз в эвтектических системах и ускорять протекание ряда высокотемпературных процессов (спекание порошков, ползучесть и др.).

Ключевые слова: эвтектика, фазовые превращения, диффузия, температура Дебая, динамические тепловые смещения.

Введение

Известно, что для активации спекания тугоплавких соединений используют добавки, образующие эвтектические системы и обеспечивающие уплотнение в режиме жидкофазного спекания. Наши исследования процессов спекания боридов, являющихся основой нового класса материалов — ультравысокотемпературной керамики, показали эффективность таких добавок и при реализации режимов твердофазного спекания [1]. Активация спекания предполагает повышенную диффузионную подвижность атомов в зернограничных областях компонентов эвтектических систем. Рассмотрение такой активации может быть выполнено с использованием различных подходов и решение этого вопроса сопряжено с пониманием природы (микроскопического механизма) эвтектического или контактного плавления, что обсуждается в научной литературе более 60 лет [2, 3]. В последнее время обнаружено образование диффузионных зон по границам контактирующих эвтектических компонентов даже в тех случаях, когда на диаграммах состояний отсутствуют области взаимной растворимости [4, 5]. Показано также, что поведение материала диффузионной зоны определяет многие особенности эвтектических систем. В частности, плавление материала при эвтектической температуре начинается и развивается именно в пределах диффузионной зоны [4-6]. Микроскопический механизм природы повышенной диффузионной подвижности и активации спекания рассмотрим на основе предположения

[©] О. Н. Григорьев, А. И. Устинов, М. В. Карпец, Л. М. Мелах, С. А. Демченкова, 2014

о более высоких амплитудах колебаний атомов в окрестности границ зерен эвтектики. Анализу динамических тепловых смещений атомов методами рентгеновской дифракции в одной из фаз (Al) эвтектической системы Al—Si по сравнению с таковыми в чистом однофазном поликристалле и посвящена настоящая работа. С целью увеличения площади межфазных границ приготовлены образцы слоистой структуры с толщиной последовательных слоев компонентов эвтектики порядка десятков нанометров. Образование диффузионных зон по границам компонентов означает, что слои алюминия в контакте с кремнием модифицированы и фактически на нанослоистом материале возможно изучение эффективных тепловых характеристик (температура Дебая, тепловые смещения атомов) алюминия диффузионной зоны эвтектического сплава.

Материалы и методики

Исследование выполнено методами рентгенографии на образцах однофазного порошкового алюминия и алюминия, входящего в состав модельной эвтектической системы Al-Si. Диаграмма состояния Al-Si характеризуется растворимостью кремния в алюминии порядка 2% (ат.) при температуре эвтектического плавления 850 К и отсутствием растворимости алюминия в кремнии. Слоистые образцы Al-Si состава, близкого к эвтектическому, приготовлены вакуумным осаждением по методике, подробно описанной в работе [7]. Для реализации этого метода вакуумную камеру с двумя испарителями разделяли непроницаемым экраном таким образом, чтобы он предотвращал перемешивание паровых потоков от испарителей (рис. 1). Подложка, закрепленная на вертикальном валу, в процессе вращения попеременно попадает в паровые потоки чистых элементов. Изменяя скорость вращения и интенсивность испарения компонентов из раздельных мишеней, можно варьировать как соотношение элементов в фольге, так и период чередования слоев. Для исследований приготовлены многослойные фольги Al-Si эвтектического состава с периодом чередования слоев 45 нм (толщина слоев Al и Si — порядка 35 и 10 нм соответственно) и 640 нм (толщина слоев Al и Si — порядка 440 и 200 нм соответственно). При изготовлении образцов использовали алюминий технической чистоты, в котором содержание примеси марганца составляло ~1% (мас.). В качестве монофазного алюминия применяли

порошок химической чистоты со средним размером частиц 30 мкм.

Амплитуду колебаний атомов изучали по температурной зависимости теплового множителя в интенсивности рентгеновских дифракци-

Рис. 1. Схема камеры для получения многослойных фольг электронно-лучевым вакуумным осаждением элементов: 1 — подложка; 2 — образец; 3 — электронно-лучевые пушки; 4 — испарители; 5 — разделительный экран.

онных рефлексов. Исследование выполнено в атмосфере гелия на высокотемпературном рентгеновском дифрактометре ДРОН-УМ1 с высокотемпературной приставкой УВД-2000 в интервале температур 290—830 К с использованием монохроматического CuK_{α} -излучения (графитовый монохроматор на дифрагированном пучке).

Изучали влияние температуры на величину теплового множителя 2*M* интенсивности *I* рентгеновских линий.

$$\frac{I_T}{I_{0K}} = \exp(-2M).$$

Значение М определяется выражениями [8]:

$$M = \left(\frac{8\pi^2}{3}\right)\overline{U^2} \left(\frac{\sin\theta}{\lambda}\right)^2 \tag{1}$$

для независимых друг от друга изотропных колебаний атомов, обладающих одинаковой энергией, и

$$M = \frac{6h^2}{mk\theta} \left[\frac{\Phi(x)}{x} + \frac{1}{4} \right] \left(\frac{\sin\theta}{\lambda} \right)^2$$
(2)

для рассеяния на суперпозиции упругих волн, распространяющихся в кристалле с примитивной решеткой. В соотношениях (1) и (2) использованы обозначения:

 U^2 — среднеквадратичные динамические смещения атомов; θ — угол дифракции; λ — длина волны рентгеновского излучения; $\Phi(x)/x$ — функция Дебая, $x = \theta/T$, θ — характеристическая температура Дебая; h — постоянная Планка; k — постоянная Больцмана; m — масса атома.

Характеристическая температура Дебая, определяемая как $\theta = \frac{hv_0}{k}$

(v₀ — предельная частота тепловых колебаний атомов), чувствительна к изменениям в спектре колебаний и зависит от температуры, а также от методов измерения (по определению рентгеновских характеристик, тепловых или механических свойств). В настоящей работе для алюминия принимается величина $\theta = 385$ K = const при T > 300 K [9].

В целом, величина *M* увеличивается с температурой, но сложным образом зависит от нее. Преобразуя (2) к виду

$$M = \frac{6h^2}{mk\theta^2} T \left[\Phi(x) + \frac{x}{4} \right] \left(\frac{\sin\theta}{\lambda} \right)^2$$

и приравнивая (1) и (2), получим для области высоких температур ($T > \theta$), при которых величина в квадратных скобках примерно равна единице, величину среднеквадратичных динамических смещений атома, линейно зависящих от температуры:

$$\overline{U^2} = \frac{9\pi^2 h^2}{4mk\theta^2} T.$$
(3)

В настоящей работе для определения температурной зависимости $\overline{U^2}$ применяли отношение интенсивностей характерных рефлексов алюминия при различных углах дифракции. Это позволяет частично минимизировать или исключить экспериментальные ошибки или ошибки, обусловленные

физическим состоянием образца. В частности, эффекты текстуры исключаются при использовании кратных отражений, например (111) и (222) [10]. Тогда для определения характеристик тепловых колебаний при данной температуре Т имеем

$$\gamma_T = \frac{I_T^{111}}{I_T^{222}} = \frac{I_0^{111} e^{-2M_T^{111}}}{I_0^{222} e^{-2M_T^{222}}} = A \frac{e^{-2M_T^{111}}}{e^{-2M_T^{222}}},$$
(4)

здесь величина А объединяет множители используемых рефлексов, не зависящие от температуры и рассчитываемые с помощью соотношения:

$$A = \frac{I_0^{111}}{I_0^{222}} = \frac{\left|F_{111}\right|^2}{\left|F_{222}\right|^2} \frac{\left(\frac{1 + \cos^2 2\alpha \cdot \cos^2 2\theta}{\sin 2\theta \cdot \sin \theta}\right)_{111}}{\left(\frac{1 + \cos^2 2\alpha \cdot \cos^2 2\theta}{\sin 2\theta \cdot \sin \theta}\right)_{222}},$$
(5)

где *α* — брегговский угол монохроматора.

Структурный фактор для рассматриваемой ГЦК решетки одинаков для обоих рефлексов ($F_{111} = F_{222} = 4f$, где f — атомный фактор рассеяния).

После подстановки в (4) значений М из (1), выполнив логарифмирование и простые преобразования, получим нормированное на период решетки алюминия а значение динамических смещений U_T при данной температуре

$$\frac{\overline{U_T}}{a} = \sqrt{\frac{\ln \gamma_T - \ln A}{6\pi^2}} \,. \tag{6}$$

Данное выражение можно использовать для определения амплитуды колебаний, однако оно требует расчета величины А, что может быть сопряжено со значительными ошибками. Для области высоких температур $T > \theta$ соотношение (6) с учетом (3) можно переписать в виде

$$\ln \gamma_T = \ln A + \frac{B}{\theta^2} T , \qquad (7)$$

которое по наклону графика $\ln \gamma_T(T)$ позволяет определить θ и затем по (3) найти значения тепловых смещений U_T. При этом предполагается, что определение θ выполняется для интервала температур, в котором значение А можно принять постоянным.

Результаты и их обсуждение

интегральные Экспериментально измеренные интенсивности рефлексов (111) и (222) алюминия, полученные в исследуемом интервале температур от слоистого образца с периодом 45 нм и монофазного эталона, приведены в таблице. Обнаружено, что в процессе фактического отжига при высокотемпературных рентгеновских съемках в слоистом образце развивалась текстура, приводящая к отклонениям от монотонного падения интенсивности рефлексов с формированием максимума интенсивности при температуре порядка 630 К. Для однофазного алюминия имело место монотонное падение интенсивности рефлексов с температурой. С целью исключения влияния текстуры на интенсивность рефлексов в соответствии с текстурной моделью Марша-Долласа [11]

вычислены поправки с получением скорректированных значений интенсивностей рефлексов алюминия от слоистого образца (таблица). Как следует из таблицы, введение текстурных поправок практически не изменило отношения интенсивностей рефлексов (111) и (222), что свидетельствует о корректности метода Марша—Долласа в обсуждаемом случае.

Температурные зависимости интенсивностей рефлексов эталона и слоистого образца (с учетом текстурных поправок для последнего) представлены на рис. 2. Видно, что для композиционного образца Al-Si имеет место более резкое падение интенсивности алюминия для обоих рефлексов (111) и (222). Это указывает на большие значения теплового множителя алюминия, находящегося в составе эвтектической композиции. Снижение интенсивности рефлексов исследуемого слоистого образца может также определяться изменением величины A в соотношениях (5) и (7) вследствие фактического уменьшения отражающего объема из-за формирования диффузионных зон и образованием в них новых метастабильных фаз [4, 5]. Для выяснения такой возможности в работе исследована микроструктура поперечного сечения многослойных образцов методами ТЕМ^{*}. На рис. 3 представлена микроструктура многослойной фольги с периодом чередования слоев 640 нм в исходном состоянии и после нагрева до температуры 518 К. Видно, что в исходном состоянии микроструктура фольги представляет собой чередование слоев алюминия и кремния, для которых характерно четкое разделение элементов на границе их раздела.

Интегральные интенсивности рефлексов (111) и (222) и их отношения для монофазного образца и алюминия в составе слоистого композита

<i>Т</i> , К	Эталон Al			Слоистый образец Al—Si (As-06)		
	<i>I</i> ₁₁₁	I ₂₂₂	$\gamma (I_{111/} I_{222})$	<i>I</i> ₁₁₁	I ₂₂₂	γ (I ₁₁₁ / I ₂₂₂)
290	39 063	2955	13,21	45 630 (33 012)	3630 (2631)*	12,57 (12,54)
470	35 012	2485	14,089	40 036 (24 867)	3067 (1905)	13,05 (13,05)
630	31 700	2085	15,2	53 570 (18 037)	3688 (1241)	14,52 (14,53)
730	29 133	1784	16,33	37 223 (14 025)	2255 (851)	16,5 (16,48)
830	26 736	1528	17,49	31 281 (9394)	1674 (503)	18,69 (18,67)

*В скобках даны интенсивности рефлексов и их отношения после введения текстурных поправок.

Рис. 2. Температурные зависимости интенсивности рефлексов (111) и (222) алюминия в однофазном (**■**) и композиционном образцах (•).

47

После нагрева фольги до 518 К ее микроструктура имеет такие же характерные особенности — последовательное чередование слоев. Однако вблизи границ раздела между элементами наблюдается диффузионная зона толщиной до 100 нм при переходе от одного элемента к другому (рис. 3, *в*, *г*). Это означает, что в изучаемом при более высоких температурах образце с периодом чередования слоев 45 нм дифракционная картина от слоев алюминия формируется материалом диффузионной зоны.

На дифрактограммах слоистых образцов в исходном состоянии присутствуют только линии алюминия и кремния, но после высокотемпературного отжига (в процессе высокотемпературной дифрактометрии), наряду с рефлексами алюминия и кремния, появляются дополнительные пики вследствие выделения новой фазы, содержащей Mn (рис. 4). Эти дополнительные линии идентифицированы как рефлексы аппроксимантной кубической фазы типа α -(AlMnSi) с периодом a = 1,2614 нм [12]. Её обнаружение свидетельствует о существовании в слоях алюминия в исследуемом образце соответствующей квазикристаллической составляющей, которая способствует появлению прослоек темного цвета в пределах слоев алюминия (рис. 3). Это указывает на очистку первичного твердого раствора Al(Mn) с выделением указанной квазикристаллической фазы при его распаде. Периоды решетки алюминия в слоистом образце равны 0,4043 и 0,4118 нм для комнатной температуры и 830 К соответственно. Наблюдаемое относительное изменение $\Delta a/a = 1.85 \cdot 10^{-2}$ незначительно отличается от изменения периода решетки за счет теплового расширения $(\sim 1, 5 \cdot 10^{-2}$ при $\Delta T \sim 500^{\circ}$ и коэффициенте термического расширения алюминия $\alpha \sim 30.10^{-6}$). Выявляемые различия $\Delta a/a$ преимущественно обусловлены эффектом релаксации внутренних напряжений в слоистой системе

Рис. 3. Светлопольные изображения микроструктуры поперечного сечения многослойной фольги Al—Si в исходном состоянии (a, δ) и после ее нагрева до 518 К (e, c). Стрелкой отмечена диффузионная зона, которая образуется между слоями алюминия и кремния после нагрева фольги до 528 К.

^{*}Образцы для ТЕМ получали механическим утонением фольги с последующим ионным травлением.

Рис. 4. Полнопрофильный анализ дифракционной картины образца AS-06 после высокотемпературной рентгеновской съемки в интервале температур 290—830 К.

при нагреве (на что указывает знак различия $\Delta a/a_{\rm H3M} - \Delta a/a_{\alpha} > 0$), а также возможным образованием нового твердого раствора на основе алюминия с растворенным в нем кремнием (приводящим к уменьшению периода решетки). Разграничение эффектов релаксации внутренних напряжений и изменений примесного состояния слоев алюминия при нагреве требует дальнейшего специального анализа вне рамок настоящей работы.

Поскольку в дальнейшем анализе теплового множителя реальных прослоек алюминия как компонента эвтектической системы используются не измеренные интенсивности рефлексов алюминия, а отношения интенсивностей рефлексов, то этим в значительной мере исключаются эффекты, обусловленные указанными особенностями структурного состояния алюминия. Зависимости ln γ_T (*T*) для рефлексов алюминия в составе исследуемых слоистых эвтектических композитов и в однофазном эталонном образце для области высоких температур $T > \theta$ приведены на рис. 5, *a*.

Для высокотемпературного интервала 630—830 К наклоны кривых ln $\gamma(T)$ для композита и эталона оказываются соответственно равны 1,25·10⁻³ и 7,015·10⁻⁴. Используя известное значение температуры Дебая для монофазного алюминия (385 К) на основе (7), получаем температуру Дебая для алюминия в составе эвтектического нанослоистого композита — 288 К, то есть на 25% более низкую, чем у эталонного однофазного алюминия. Согласно соотношению (3), это означает, что в указанном температурном интервале средние тепловые динамические смещения атомов алюминия в слоистом эвтектическом образце (фактически в диффузионной зоне на основе алюминия) на 25% больше по сравнению с таковыми у алюминия в однофазном состоянии. Результаты расчета динамических смещений U для области высоких температур (вплоть до предплавильных для слоистого образца) с помощью соотношения (3) с использованием полученного значения θ приведены на рис. 5, δ .

Отметим, что полученные результаты количественно, но не качественно, могут зависеть от примеси марганца в алюминии, присутствующей в составе второй фазы. Поэтому в дальнейшем будут

Рис. 5. Зависимость $\ln \gamma(T)$ для алюминия в составе слоистого образца (**n**) и однофазного эталона (**•**) (*a*) и средние тепловые смещения атомов алюминия в монофазном (**•**) и слоистом образце Al—Si (**n**) (*б*).

выполнены аналогичные исследования на других эвтектических модельных системах Me—Si с тщательным контролем их примесного состояния. Приведенные данные относятся к средним по объему значениям динамических смещений. Поскольку динамические смещения характеризуются функциями распределения с параметрами, зависящими от расстояния до межфазных границ, то можно полагать, что вблизи этих границ амплитуды колебаний достигают еще больших значений.

Таким образом, показано, что тепловые характеристики кристаллов (температура Дебая и величина динамических тепловых смещений атомов) в значительной степени зависят от структурного состояния материала. При высоких температурах в эвтектических системах, по крайней мере, в диффузионных зонах вблизи межфазных границ, указанные тепловые характеристики компонентов существенно отличаются от таковых в однофазном состоянии и имеет место значительное ослабление межатомных связей и увеличение амплитуды тепловых колебаний атомов. Это явление может быть основной причиной повышенной диффузионной активности в приграничных объемах фаз в эвтектических системах и стимулировать увеличение скоростей ряда высокотемпературных процессов (спекания порошков, ползучести и др.). Оно объясняет также понижение температуры плавления эвтектической композиции по сравнению с температурами плавления отдельных компонентов композита (то есть главную особенность эвтектических композиций).

Выражаем благодарность доктору физико-математических наук Б. А. Галанову за обсуждение и замечания по данной работе.

- Grigoriev O. N. Sctucture and Properties of SiC—TiB₂ Ceramics / Y. G. Gogotsi, V. I. Subbotin, V. V. Kovalchuk // J. Mater. Proc. and Manufacturing Sci. — 1998. — 7, No. 1. — P. 99—110.
- 2. Залкин В. М. Природа эвтектического и контактного плавления. М. : Металлургия, 1987. 152 с.
- Zalkin V. M. On the theory of eutectic alloys and presentation of the theory in textbooks on physical metallurgy // Metal Sci. and Heat Treatment. — 2009. — 51, No. 3—4. — P. 153—160.
- 4. *Bokhonov B*. In situ investigation of stage of the formation of eutectic alloys in Si— Au and Si—Al systems / B. Bokhonov, M. Korchagin // J. of Alloys and Comp. — 2000. — **312**. — P. 238—250.

- 5. Bokhonov B. In-situ investigation of the formation of eutectic alloys in the systems silicon-silver and silicon-copper / B. Bokhonov, M. Korchagin // J. of Alloys and Comp. — 2002. — **335**. — P. 149—156.
- 6. Bystrenko A. V. Contact melting and the structure of binary eutectics near eutectic point / A. V. Bystrenko, V. V. Kartuzov // Ibid. — 2014. — 617. — P. 124—128.
- 7. Ustinov A. Effect of overall composition on thermally induced solid-state transformation in thick EBPVD Al-Ni multilayers / [A. Ustinov, L. Olikhovska, T. Melnichenko, A. Shishkin] // Surf. and Coat. Technologies. — 2008. — 202. — P. 3832-3838.
- 8. Русаков А. А. Рентгенография металлов. М. : Атомиздат, 1977. 480 с.
- 9. Уманский Я. С. Рентгенография металлов. М. : Металлургия, 1967. 235 с. 10. Горелик С. С. Рентгенографический и электронно-оптический анализ / С. С. Горелик, Л. Н. Расторгуев, Ю. А. Скаков. — М. : Металлургия, 1970. — 366 c.
- 11. Dollase W. A. Correction of intensities for preferred orientation of the March model // J. Appl. Cryst. — 1986. — 19. — P. 267—272.
- 12. Sugiyama Kazumasa. Re-Refinement of a-(AlMnSi)" / Sugiyama Kazumasa, Kaji Nobutaka, Hiraga Kenji // Acta Crystallographica. Section C. - 1998. - 54 (4). -P. 445-447.

Рентгенографічне визначення динамічних зміщень атомів алюмінію в однофазному стані і в евтектичному сплаві Al-Si

О. М. Григор'єв, А. И. Устінов, М. В. Карпець, Л. М. Мелах, С. А. Демченкова

Методом високотемпературної рентгенівської дифракції досліджено теплові характеристики кристалів на зразках порошкового алюмінію і алюмінію в складі евтектичної системи алюміній-кремній. При високих температурах в евтектичних системах температура Дебая і величина динамічних теплових зміщень атомів суттєво відрізняються від таких в однофазних компонентах послаблюються міжатомні зв'язки і росте амплітуда теплових коливань атомів. Це повинно приводити до підвищеної дифузійної активності в приграничних об'ємах фаз в евтектичних системах і прискорювати протікання ряда високотемпературних процесів (спікання порошків, повзучість та ін.).

Ключові слова: евтектика, фазові перетворення, дифузія, температура Дебая, динамічні теплові змішення.

X-ray determination of the dynamic displacement of the aluminum atoms in the single-phase state and in the eutectic Al-Si alloy

O. N. Grigoriev, A. I. Ustinov, M. V. Karpets, L. M. Melakh, S. A. Demchenkova

Thermal characteristics of aluminum powder grains and aluminum as a part of Al-Si eutectic system have been investigated by high-temperature X-ray diffraction. At high temperatures in the eutectic systems the Debye temperature and the dynamic thermal displacements of atoms significantly differ from those in the single-phase. Herewith, interatomic bonds weaken and the amplitude of the atoms thermal vibrations increases. It should cause an increase in diffusion activity in the grain-border volumes of phases in eutectic systems and intensify the range of high-temperature processes (powders sintering, creep, etc.).

Keywords: eutectic, phase transformations, diffusion, Debye temperature, dynamic thermal displacements.