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In addition to the traditional determination of hardness and elastic moduli from
continuous diagrams of instrumental indentation, it is proposed to determine the yield
stress, the characteristic of plasticity, the characteristic relative size of the elastoplastic
zone under the indenter, and the volumetric deformation of the material in the area of
contact of the indenter with the sample. The indentation diagram shows the transition
point to the unconstrained material flow under the indenter.
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Introduction

At present, the instrumented indentation technique [1, 2] is widely used to
determine the hardness and elastic moduli of materials [1, 2], which uses a
continuous recording of the experimental indentation diagram (P—h), where P
is the force acting on the indenter, h is the approach of the indenter and the
sample. The basis of this technique are the functional theoretical relations
between P and, h which are obtained for the unloading branch of the diagram
(P—h) from the known solutions of the elastic contact problem, and were
proposed in the 70s of the last century by Bulychev, Alekhin and Shershorov
[3, 4] for use in the instrumental indentation method in determining hardness
and elastic moduli of materials. This proposal became decisive for the
subsequent development and improvement of the technique of measuring
hardness and elastic moduli with instrumental indentation devices [5—12] with
continuous recording of diagrams (P—h) on a wide scale of forces P and
displacements h.

The application and improvement of this technique also revealed its
shortcomings, limitations and difficulties of use, which were analyzed,
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discussed and compared with other methods in numerous works [1—12], where
various corrections (including corrections obtained experimentally) were pro-
posed to the theoretical relations. Some systematic critical analysis of these
problems is given in [2]. There have been attempts to take into account in the
basic relations of the method [1, 2] the elastic deformation of indenters,
the imperfection of their geometry, and other factors [1, 2, 5—10].

The critical analysis performed in [12] revealed errors in the method of
instrumental determination of hardness and elastic moduli [1, 2] and insufficient
substantiation of some of its provisions.

This circumstance served as the motivation for the present work, devoted to
a deeper critical revision and extension of the basic functional theoretical
relations of this method, which expanded the list of the determined properties of
materials. Based on the indentation model [13], the technique is supplemented
by: determination of the yield stress of the sample material, the characteristic
size of the elastic-plastic zone under the indenter and the point of the beginning
of the unconstrained flow of the material under the indenter on the indentation
diagram. These refinements, additions and proposals are made without invoking
additional (to the hypotheses [1, 2]) assumptions and experimental
measurements. The results are illustrated by examples of application and
improvement of the proposed methodology.

Analysis of the Oliver-Pharr methodology and comments to it
The widely used Oliver-Pharr method [1, 2] for determining the hardness

HM and effective Young's modulus E” is based on the use of experimental
values of the maximum pressing force Pmax, the corresponding maximum
approach hmax of the indenter and the sample, and the elastic stiffness of the

indenter and the sample S = 3—E , Which are measured on the unloading branch

of the continuous indentation diagram (P—h) at P=P, and h=h_,

(Fig. 1). The method assumes that the contact surface of the indenter and the
flat surface of the sample after deformation are of the same type as the surface
of the indenter: spherical if the indenter has a spherical surface; conical if the
indenter has a conical surface; pyramidal if the indenter has a pyramidal
surface, etc. After unloading, which is assumed to be elastic, the surfaces of the
indenter and the sample in the contact region have the same property, i.e., they
are surfaces of the same type as the indenter and touch at the same point at the
beginning of reloading.

In Fig. 2 for the unloading branch shown in Fig. 1, an explanatory
computational scheme of the elastic contact of the indenter (with the surface

z=h, —rcoty,) and the indentation (with the surface z=h, —rcotyg,) is

presented. This diagram shows the values he, hs, hc as well as an equivalent
absolutely ~ rigid indenter ~ with the surface z=h_ —rcota,

cota =coty, —cotyg,, embedded in an elastic half-space z >h, with the

1—vi2+l—v§ B
E, E. )’

boundary z=h, and an effective elastic modulus E =(
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where E;, v;, Eg, v4 are the Young and Poisson moduli of the indenter (i) and the
sample (S), respectively. The quantities hs, hc are the components of the elastic
approach h, =hg +h. = hc/(271:) , the meaning of which is explained in Fig. 2.
With an elastic contact of the Hertz type, there is a constant relation
between  the  quantites hs, hc  [14]: hs/he =(n-2)/2

(hs =2(n-2)P,, /(nS), h. =4P,,/(nS)). The value g(r)=rcota is
equal to the gap between the conical surfaces of the indentation and the
indenter, touching their vertices at the point O on the z axis after unloading.
The quantity a is the radius of the elastic contact region after the subsequent
loading of the indenter and the indentation by the force Pmax, and which is
assumed to be equal to the indentation radius when the average contact pressure
under the indenter is equal to the hardness HM. Therefore, this radius is equal to
the radius of the contact area of the indenter with the sample under the force

P=P. and h=h_, (Fig. 1) after the first loading of the sample. As in the

Hertz problem, elastic tangential displacements (parallel to the plane z=0) are
not taken into account, due to their smallness compared to vertical
displacements (in the direction of the axis z).

The theoretical formula for the unloading branch of the diagram (P—h)
obtained on the basis of the solution of an elastic contact problem of the Hertz
type [14, 15] (Fig. 1 and 2), has the form

2 . 2
P= E(h-h;), h;<h<h, . 1
n(coty; —cotye) (=) h, @
Elastic stiffness of this branch:
dP 4 .
= E"(h-h,). )

dh  m(coty, —cotye)

If we denote S :d—P , then from (1), (2), after excluding the value

h=hy

cota=coty; —cotys,, for the elastic component of the approach of the
indenter and the sample h, =h_., —h, we have

h,=h. —h =2P_/S. (3)

dpP . . .
Here the value S = — = 2E a is the experimentally measured value

h=hmax
of the elastic stiffness of the unloading branch of the curve (P—h) [1, 2] (Fig.
1). Taking into account (1) and (3), for the quantity coto = coty, —coty,, we

obtain

8P x
cota=——"TE, 4
Y (4)
and the unloading branch (Fig. 1) is also represented by the following functional

dependence:
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2 2
P=@ Pmix[h—hmax +2PTaxj : 5)

2
P_S (h—hmax+zpﬂj, Ll S
dh 2P, S dh heh
which uses only experimentally measured values Pmax, hmax and S and the
assumption of elastic unloading.
Such a priori representation of the unloading branch, in essence, regularizes
the definition of S by the formulas [12]

N
ZSi (1_ F_:;]/Z) N _
S:i:lN—>0, ZS?iO,SiZMZO, =i,(6)
26 i=1 2Pmax Pmax
i=1
where (hi, P= P(hi)), i=123,....,N are the experimental values, which

are the coordinates of the points of the unloading branch or its part (Fig. 1).
,’)

~0|

=N

APy s P . .
t (o Fo) _ Fig. 1. P(h) dependency diagram:
' sections of loading (1) and
7 p unloading (2) of the indenter; h¢
i is the indentation depth (Fig. 2);
B(#,P) i p he = 2PmudS is the elastic
L 2T /i N component of the approach of the
! _dr indenter and the sample. B(h", P")
dh is the point of transition to
fx unconstrained  material  flow
0 i > i
i) h 5 n under the indenter (see (13).
h
Prosa
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Fig. 2. Computational (model) scheme (in a cylindrical coordinate
system Orz) of the introduction of an elastic conical indenter 1

into indentation 2; 3 is the initial surface of the sample Z=0;4is
the absolutely rigid equivalent indenter.
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Thus, the stiffness S value determined by formula (6) continuously depends
on the experimental data for the P(h) dependence and is stable to their small
changes. Note that the value S in the method [1, 2] is determined by the
“continuous stiffness measurement” (CSM) technique using small dynamic
oscillations imposed on forces (or displacements). The use of this technique to
the one-sided contact of the indenter and the sample requires additional
justification, due to the significant difference in the stiffness of one-sided bonds
during their loading and unloading during oscillations.

Determination of the effective elastic modulus E” and hardness HM
Relation (1) allows the following parametric representation [11, 14, 15]:

P="FE"a%cota,
2 (7)
h=acota,

where the radius of the contact area a is a parameter.
From this and by the definition of the quantities h, h. and g(r) we have the

equalities

h,=h, +h., hsz(g—l)hc, h. =g(a)=acota, he:gacota:ghc. (8)

Taking into account (4), for the quantity cotyg, in the equation of the indent
surface z=h, —rcotyg, we have

Poax =+
cotyg =coty; —coto =coty; 8 Smgx E. 9)
T

and, since 0=h, —acoty,, for the radius of the imprint we have a= :
Coty

Hence, using the well-known relation S = 2E"a, to determine the value of
E” we have the equation

2h, _, 8P .
cot =—FE =coty ———™E | 10
,YSR S yl T SZ ( )
from which for the elastic modulus E* and hardness HM = PL&;‘ we obtain the
mia
formulas
2
E' =S CZ”iZ . HM - S TR
T S max P S
where HIY' = 2coty, P , and P, h..S are values
E 2-m\ P Sh,,
m|1+2 —max -
n )Sh...

determined from the experimental indentation diagram (P—h).
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Note that since the elastic modulus E* does not depend on the plastic
properties of the material, formula (11) should practically not depend (or
"weakly" depend) on the choice of a point A(hmax, Pmax) on the indentation
diagram (Fig. 1), that is, calculations with it must be stable with respect to the
position of this point with experimental data: (hmax,PmaX,S). Elementary
algebraic transformations can show that formulas (11) are another, simpler,
form of the corresponding formulas in [12] and, therefore, they give the same
results as the formulas in this work.

Determination of the yield point Y, the characteristic relative size

of the elastoplastic zone X = b /a, and the volumetric deformation
of the material ¢ in the region of contact of the indenter with the sample

The estimation of the yield stress and the size of the elastoplastic zone
under the indenter is carried out on the basis of the indentation model [13], the
scheme of which is given in Fig. 3. If the elastic characteristics of the sample

and indenter material (Eg, vy, E;,Vv;), as well as the hardness HM are known

(or determined by formulas (11)), then the system of transcendental equations
for determining the yield stress Y, and the characteristic relative size of the

elastoplastic zone X =bg/a>1 has the form [13]:

; 2(1-2vg))| Egcot
(1+85)[X T 3(1-vs) J=6(1—vs;\v(s’

HM =Y, | 2SO jolq_ OtV | iy,
3 (1+g) 2(1+eg)
3(1-2v, )(HM —2Y, Inx)

SS: ]
ES

whose solution with respect to real unknown quantities (x, Y,) approximately

determines the stress-strain state in the sample and the Tabor constant

C=HM/Y, (see the second equation of system (12)). Here the value

2y determines the value of the angle at the top of the loaded conical indenter
(Fig- 3) and coty =coty, —2(1-v; ) HM /Ei .

Unfortunately, in the methodology [1, 2] for determining hardness HM and
effective Young's modulus E”, there are no a priori recommendations for
choosing a point A(h,,,P.) on the diagram (P—h) when plastic

max ! © max

(12)

deformations are sufficiently developed (that is, there is no criterion for
sufficient development of plastic deformations). It seems that such a priori
recommendations are difficult to define. In this regard, the a posteriori

assessments of the force P” <P, gain importance when an unrestrained
plastic flow under the indenter begins.
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Fig. 3. Model scheme (in a spherical
coordinate system with center 0) of
zones under the indenter with
different stress-strain states of the
sample material: r < a is the hydro-

static core; @ <r <bg is the area
of elastoplastic deformation;
r > by is the area of elastic defor-

mation: 1 — conical contact surface
of the indenter and the sample; 2 —
sample surface; 3 — indenter under
load with apex angle 2'V.

Based on the model [13], the contact radius a, and the force P” acting on

the indenter, at which an unconstrained plastic flow begins under the indenter,
a posteriori are estimated, respectively, by the formulas

2
coty .o coty
_al1- cop=%p o1V p 3
% a( 2(l+83)] a> ™ ( 2(1+85)J e (13)

Force P < P, corresponds to the approach h= h", determined from the
diagram (P—h) (see Fig. 1).

Remark 1. The above results are presented for the case of penetration of
a cone with an apex angle 2yi. The transition from pyramidal indenters to an
equivalent conical one (and vice versa) can be performed using the condition
of equality of the projection areas of the imprints left by different indenters
with the same penetration volume (the same penetration depth for pyramidal
and conical indenters). This condition leads to the following relationship
between the tapering angles of equivalent conical, pyramidal (three- and four-

faced) indenters:
2
T T
coty, =——coty, = ,4/— coty,,
Y| 2 YV 27 YB

where i, yv, ys are the tip angles of indenters: conical, tetrahedral (for
example, Vickers, yv = 68°) and trihedral (for example, Berkovich, yg = 65°),
respectively.

Remark 2. In (12), it is assumed that the Poisson's ratio of the sample v
is known and is determined in tests independent (for example, by acoustic

methods) from the experimental diagram (P—h) (Fig. 1).
Plasticity characteristic 8,, and representative deformation ¢,

The magnitude of the plasticity characteristic 6,, is determined by the
formulas [16, 17]

8, =¢, /e, g=Insinyy, e =g —,<0,e,=— (1+v, )(1-2v5)HM /E ,(14)

where €, €, & are, respectively, elastic, plastic and total average in the contact
area linear (in the direction of the force P, see Fig. 2) deformations, ys = 65°.
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The contact area refers to that part of the flat surface of the specimen that comes
into contact with the indenter after deformation. In formulas (14), the quantity

g, =Insiny, =—-0.098, y, =65° is constant and is determined by the

geometry of the contacting bodies (indenter and sample) before their
deformation. If for sufficiently developed plastic deformations we neglect the

material compressibility (volumetric deformation ¢, +¢,, +€&;, =0), then the

value & = —0,098 determines with good accuracy the average linear
compressive deformation in the contact area in the direction of the force that
acts on the indenter (Fig. 2), similar to uniaxial tension-compression. Therefore,
this value can be considered as a representative (characteristic) deformation
under uniaxial compression, as suggested by Tabor and Johnson [15]. This
deformation corresponds to both the yield strength Y, in Table 2 and the hard-

ness value HM = CY,, as the average value of the contact pressure under the
indenter. In this case, the value of C is determined by the complex bulk stress-

strain state of the sample under the indenter, which differs significantly from
uniaxial compression. The structure of a representative deformation

€, =g, +&, isapproximately estimated by the formula
g, =(1-8, )¢

If the average total linear deformation and its components in the contact
area of the indenter and the sample are determined from the deformed scheme in
accordance with the formulas [17]

g = g +€,, &, =—In\1+cot’yg <0, cotyg =coty, —2HM/E", (16)

HM 1 1-v? 1-v2 =
=— (1+vg)(1-2v{)—, ===—"+—25 3, =¢ /e <3,
(Lrve)(1-2v) T Gr= T B =y <y

€, =0y¢,. (15)

r?

€

e

where 2y, is the angle at the apex of the residual indentation in the sample

after unloading the conical indenter, e, €p, & are, respectively, elastic, plastic
and total average over the contact area, linear (in the direction of force P, see
Fig. 2) deformations, then the value of & will not be the same (constant) for all
materials. However, as shown in [13], its average value (g, )=-0.060 (for a
large group of materials when indenting with a diamond Vickers indenter) has a
small standard deviation o =0.003 and is almost constant. Formulas (16), in
fact, are analogs of the formulas that determine the longitudinal deformation of
a bar from its enlarged cross section under uniaxial compression.

Examples of determination of elastic moduli, hardness of materials, yield
stress and characteristic size of the elastoplastic zone under the indenter

To validate the obtained relations, samples of fused silica FS and a single
crystal of tungsten (111) W with a purity of 99,99% (material with a high shear
modulus) were tested. The tests were carried out with a Nano Indenter G200

nanohardness tester with a diamond (E; =1141 I'Tla, v; =0.07) Berkovich
indenter (y, =65°) at loads of P, =97 and 193 mN.
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Table 1 Experimental data for
indentation for single crystal (111)
tungsten (W) and fused silica (FS)

[12]
Prmax Nimax S
Sample | p* (13) h* (6)
mN mN MN/m
97 970
W1 66 725 1.742
193 1410
w2 130 1074 2.350
97 898
FS1 61 695 0.3065
193 1289
FS2 119 986 0.399

The test results (P, , N, S values for formulas (11)) are taken from [12],

where their detailed description is given. Experimental diagrams of indenter
penetration for fused silica and tungsten obtained at loads Pmax = 97 and
193 mN are shown in Fig. 4. The complete theoretical unloading branches of
the diagrams, constructed according to formula (1), are also given here.

The calculation results according to the proposed method using the test data
are shown in Table 2. It is known that the elastic modulus of tungsten is
409 GPa, and that of fused quartz is 72 GPa. The modulus of elasticity for fused
silica using our technique turned out to be markedly higher than 72 GPa.
Perhaps this is a consequence of the fact that when the indenter penetrates the
fused quartz, the material is compacted (about 20% [12]) in the contact zone,

g5 €[-0.19,-0.17] (Table 1).

W
200

100}
FS 771
.-" ’
80+ 7
: 150

§
2 _,f;';}’ H
S |
|
i

Z
. 7 ._.-J."' I
-‘E yia
! 40 ;,.,
50+
20r 4

Load, mN
s

W , W L
L FS . VA el . ‘ . ‘
0 200 400 600 800 1000 0 200 400 600 800 1000 1200 1400
Displacement, nm Displacement, nm

a b
Fig. 4. Diagram of penetration of the Berkovich indenter for fused quartz and single
crystal (111) tungsten: Pmax = 97 (a) and 193 mN (b): 1 — unloading branch of
diagrams, eq. (1) [12]; 2 — point (P, h") of the beginning of unconstrained plastic
flow under the indenter (Table 1).
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Table 2. Results of calculations for nanoindentation of fused silica
FS (vs =0.17) and (111) plane of a tungsten single crystal W (vs = 0.28)

E" [ HMm, _ Ye,
sample | GPa| GPa | = blslza 8y | O | gpa| c | B
11| ) | =2 (12) | (16) | (14) (12) (12)

W1 | 340 |4.70 | 445 | 2.81|0.900| 0.940 | 1.67 |2.81|-0.0037

W2 |316|4.43 | 401 | 2.76 |0.895| 0.937 | 1.60 |2.77 |-0.0039

FS1 83 [9.10| 87 |1.08(0.113|0.180 | 9.82 {0.93 |-0.1707

FS2 77 19.19| 80 |1.06|0.080(0.102 [10.25|0.90|-0.1947

Conclusions
An extended characterization of materials based on experimental

continuous diagrams of instrumental indentation is proposed, which includes
the determination of the following properties: moduli of elasticity, hardness,
yield stress, characteristic size of the elastoplastic zone under the indenter,
volumetric compressibility of the material under the indenter, characteristic of
plasticity, representative deformation and its structure. A posteriori, the position
of the point (on the experimental indentation diagram) of the beginning of the
unconstrained flow of the material under the indenter was estimated.
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AiarpaM iHCTPYMEHTAJILHOIO iHAEHTYBAHHA
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Kpumuuno nepeensaoaromvcsi 0CHOGHI (DYHKYIOHANbHI mMeopemuyHi Cni6IOHOWEHHS
Memoody IHCMPYMEHMANbHO20 GUSHAUEHHS MEePOOCmi [ NPYICHUX MOOYII8, 5K
PO3WUPIOIOMb  CRUCOK BU3HAYYBAHUX 6lacmusocmeli mamepianis. /[ooamkogo (00
Mpaouyitino2o GU3HAYEHHs MEepPOOCmi Ma NPYICHUX MOOYNI6 34 HenepepeHuMU
diazpamamu iHCMPYMEeHMAIbHO2O THOEHMYB8AHHS) NPONOHYEMbCA BUSHAYAMU SPAHULIO
meuil,  Xapakmepucmuky — HIACMUYHOCMI,  XAPAKMEPHUU  GIOHOCHUL  pPO3MID
NPYICHONAACMUYHOL 30HU Ni0 IHOeHmopoM, 00’cmuy Oegopmayio mamepiany 8
obracmi  kowmaxkmy iHOenmopa i3 3paskom. Hagedeno npaxmuuny memoouxy
PO3paxyuxy énacmugocmeii. Pezyiomamu intocmpyromsca npukiadamu 3acmocy8amHs
3anPONOHOBAHOI 800CKOHANEHOI Memoduxu. Jiacpama iHOeHmy8aHHs NOKA3YE MOYKY
nepexooy 00 HeobmediceHol meyii mamepiany nio iHOeHMoOpPoOM.

Kniwouoei cnoea: inoenmyeanns, meepoicmv, MOOYL NPYICHOCHMI, KOHMAKMHA
HCOPCMKICMb, NPYICHONIACTIUYHT Oedhopmayii.
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