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In addition to the traditional determination of hardness and elastic moduli from 

continuous diagrams of instrumental indentation, it is proposed to determine the yield 

stress, the characteristic of plasticity, the characteristic relative size of the elastoplastic 

zone under the indenter, and the volumetric deformation of the material in the area of 

contact of the indenter with the sample. The indentation diagram shows the transition 

point to the unconstrained material flow under the indenter. 
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Introduction 

At present, the instrumented indentation technique [1, 2] is widely used to 

determine the hardness and elastic moduli of materials [1, 2], which uses a 

continuous recording of the experimental indentation diagram (P—h), where P 

is the force acting on the indenter, h is the approach of the indenter and the 

sample. The basis of this technique are the functional theoretical relations 

between P and, h which are obtained for the unloading branch of the diagram 

(P—h) from the known solutions of the elastic contact problem, and were 

proposed in the 70s of the last century by Bulychev, Alekhin and Shershorov 

[3, 4] for use in the instrumental indentation method in determining hardness 

and elastic moduli of materials. This proposal became decisive for the 

subsequent development and improvement of the technique of measuring 

hardness and elastic moduli with instrumental indentation devices [5—12] with 

continuous recording of diagrams (P—h) on a wide scale of forces P and 

displacements h. 

The application and improvement of this technique also revealed its 

shortcomings, limitations and difficulties of use, which were analyzed, 
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discussed and compared with other methods in numerous works [1—12], where 

various corrections (including corrections obtained experimentally) were pro-

posed to the theoretical relations. Some systematic critical analysis of these 

problems is given in [2]. There have been attempts to take into account in the 

basic relations of the method [1, 2] the elastic  deformation  of  indenters,  

the imperfection of their geometry, and other factors [1, 2, 5—10]. 

The critical analysis performed in [12] revealed errors in the method of 

instrumental determination of hardness and elastic moduli [1, 2] and insufficient 

substantiation of some of its provisions. 

This circumstance served as the motivation for the present work, devoted to 

a deeper critical revision and extension of the basic functional theoretical 

relations of this method, which expanded the list of the determined properties of 

materials. Based on the indentation model [13], the technique is supplemented 

by: determination of the yield stress of the sample material, the characteristic 

size of the elastic-plastic zone under the indenter and the point of the beginning 

of the unconstrained flow of the material under the indenter on the indentation 

diagram. These refinements, additions and proposals are made without invoking 

additional (to the hypotheses [1, 2]) assumptions and experimental 

measurements. The results are illustrated by examples of application and 

improvement of the proposed methodology. 
 

Analysis of the Oliver-Pharr methodology and comments to it 

The widely used Oliver-Pharr method [1, 2] for determining the hardness 

HM  and effective Young's modulus 
*E  is based on the use of experimental 

values of the maximum pressing force Pmax, the corresponding maximum 

approach hmax of the indenter and the sample, and the elastic stiffness of the 

indenter and the sample 
dP

S
dh

 , which are measured on the unloading branch 

of the continuous indentation diagram (P—h) at maxP P  and maxh h  

(Fig. 1). The method assumes that the contact surface of the indenter and the 

flat surface of the sample after deformation are of the same type as the surface 

of the indenter: spherical if the indenter has a spherical surface; conical if the 

indenter has a conical surface; pyramidal if the indenter has a pyramidal 

surface, etc. After unloading, which is assumed to be elastic, the surfaces of the 

indenter and the sample in the contact region have the same property, i.e., they 

are surfaces of the same type as the indenter and touch at the same point at the 

beginning of reloading. 

In Fig. 2 for the unloading branch shown in Fig. 1, an explanatory 

computational scheme of the elastic contact of the indenter (with the surface 

cotf iz h r   ) and the indentation (with the surface cotf SRz h r   ) is 

presented. This diagram shows the values he, hS, hC as well as an equivalent 

absolutely rigid indenter with the surface 
max cot ,z h r    

cot cot coti SR     , embedded in an elastic half-space fz h  with the 

boundary fz h  and an effective elastic modulus 

1
2 2

* 1 1i S

i S

E
E E



   
  
 

, 
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where , , ,i i S SE E   are the Young and Poisson moduli of the indenter (i) and the 

sample (S), respectively. The quantities hS, hC are the components of the elastic 

approach  2e S C Ch h h h    , the meaning of which is explained in Fig. 2. 

With an elastic contact of the Hertz type, there is a constant relation 

between the quantities hS, hC [14]:  2 2S Ch h    

  max2( 2)Sh P S   ,  max4Ch P S  . The value   cotg r r   is 

equal to the gap between the conical surfaces of the indentation and the 

indenter, touching their vertices at the point O  on the z axis after unloading. 

The quantity a is the radius of the elastic contact region after the subsequent 

loading of the indenter and the indentation by the force Pmax, and which is 

assumed to be equal to the indentation radius when the average contact pressure 

under the indenter is equal to the hardness HM. Therefore, this radius is equal to 

the radius of the contact area of the indenter with the sample under the force 

maxP P  and maxh h  (Fig. 1) after the first loading of the sample. As in the 

Hertz problem, elastic tangential displacements (parallel to the plane 0z  ) are 

not taken into account, due to their smallness compared to vertical 

displacements (in the direction of the axis z). 

The theoretical formula for the unloading branch of the diagram (P—h) 

obtained on the basis of the solution of an elastic contact problem of the Hertz 

type [14, 15] (Fig. 1 and 2), has the form 
 

 
 

2
*

max

2
,

cot cot
f f

i SR

P E h h h h h   
   

 .           (1) 

 

Elastic stiffness of this branch: 
 

 
 *4

cot cot
f

i SR

dP
E h h

dh
 
   

.                         (2) 

 

If we denote 

max

,
h h

dP
S

dh 

  then from (1), (2), after excluding the value 

cot cot coti SR     , for the elastic component of the approach of the 

indenter and the sample maxe fh h h   we have 
 

max max2e fh h h P S   .                                      (3)  
 

Here the value 

max

*2
h h

dP
S E a

dh 

   is the experimentally measured value 

of  the  elastic  stiffness  of the unloading branch of the curve (P—h) [1, 2] (Fig. 

1). Taking into account (1) and (3), for the quantity cot cot coti SR      we 

obtain 
 

*max

2

8
cot

P
E

S
 


,                                           (4) 

and the unloading branch (Fig. 1) is also represented by the following functional 

dependence: 
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1 max
max max

2
,

2

PS
P P h h

S

   
     
   

                              (5) 

 

max

2

max
max

max

2
, ,

2 h h

PdP S dP
h h S

dh P S dh 

 
    

 
 

which uses only experimentally measured values Pmax, hmax and S and the 

assumption of elastic unloading.  

Such a priori representation of the unloading branch, in essence, regularizes 

the definition of S by the formulas [12] 

  

 1 2

21

2 1

1

1

0, 0

N

i i N
i

iN
i

i

i

P

S 





 

   







, 

 max

max max

0,
2

i i
i i

h h P
P

P P


    ,  (6) 

where   ,i i ih P P h , 1,2,3,.....,i N  are the experimental values, which 

are the coordinates of the points of the unloading branch or its part (Fig. 1). 
 

 

 

Fig. 1. P(h) dependency diagram: 

sections of loading (1) and 

unloading (2) of the indenter; hf  

is the indentation depth (Fig. 2); 

he = 2Pmax/S  is the elastic 

component of the approach of the 

indenter and the sample. B(h*, P*) 

is the point of transition to 

unconstrained material flow 

under the indenter (see (13). 

 

 

 
Fig. 2. Computational (model) scheme (in a cylindrical coordinate 

system 0rφz) of the introduction of an elastic conical indenter 1 

into indentation 2; 3 is the initial surface of the sample 0z  ; 4 is 

the absolutely rigid equivalent indenter. 
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Thus, the stiffness S value determined by formula (6) continuously depends 

on the experimental data for the P(h) dependence and is stable to their small 

changes. Note that the value S in the method [1, 2] is determined by the 

“continuous stiffness measurement” (CSM) technique using small dynamic 

oscillations imposed on forces (or displacements). The use of this technique to 

the one-sided contact of the indenter and the sample requires additional 

justification, due to the significant difference in the stiffness of one-sided bonds 

during their loading and unloading during oscillations. 
 

Determination of the effective elastic modulus E* and hardness HM 

Relation (1) allows the following parametric representation [11, 14, 15]:  
 

* 2 cot ,
2

cot ,

P E a

h a


 


  

                                      (7) 

 

where the radius of the contact area a is a parameter. 

From this and by the definition of the quantities h
S
, h

C
 and g(r) we have the 

equalities 

 , 1 , cot , cot
2 2 2

e S C S C C e Ch h h h h h g a a h a h
   

         
 

.  (8) 

 

Taking into account (4), for the quantity cot SR  in the equation of the indent 

surface cotf SRz h r    we have 

*max

2

8
cot cot cot cotSR i i

P
E

S
       


,                     (9) 

 

and, since 0 cotf SRh a   , for the radius of the imprint we have 
cot

f

SR

h
a


. 

Hence, using the well-known relation 
*2S E a , to determine the value of 

E* we have the equation 
 

* *max

2

2 8
cot cot

f

SR i

h P
E E

S S
    


,                        (10) 

from which for the elastic modulus E* and hardness max

2

P
HM

a



 we obtain the 

formulas 

*

max
max

cot

4 2
2

iE S
P

h
S




    
     

,  

2

max

2

max
max

cot

4 2

iP
HM

P
h

S




    
      

,  (11) 

 

where max

*

maxmax

max

2cot

2
1 2

i PHM

E ShP

Sh




   
    

  

, and max max, ,P h S  are values 

determined from the experimental indentation diagram (P—h).  
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Note that since the elastic modulus E* does not depend on the plastic 

properties of the material, formula (11) should practically not depend (or 

"weakly" depend) on the choice of a point  max max,A h P  on the indentation 

diagram (Fig. 1), that is, calculations with it must be stable with respect to the 

position of this point with experimental data:  max max, ,h P S . Elementary 

algebraic transformations can show that formulas (11) are another, simpler, 

form of the corresponding formulas in [12] and, therefore, they give the same 

results as the formulas in this work. 
 

Determination of the yield point Y
S
, the characteristic relative size  

of the elastoplastic zone 
S

x = b a , and the volumetric deformation  

of the material ε
S
 in the region of contact of the indenter with the sample 

The estimation of the yield stress and the size of the elastoplastic zone 

under the indenter is carried out on the basis of the indentation model [13], the 

scheme of which is given in Fig. 3. If the elastic characteristics of the sample 

and indenter material ( ,S SE  , ,i iE  ), as well as the hardness HM are known 

(or determined by formulas (11)), then the system of transcendental equations 

for determining the yield stress Y
S
 and the characteristic relative size of the 

elastoplastic zone 1Sx b a   has the form [13]: 
 

 
 

   

   

3
2 1 2 cot

1 ,
3 1 6 1

2 cot cot
ln 1 2ln ,

3 1 2 1

S S
S

S S S

S

S S

E
x

Y

HM Y x

    
        


   

          

               (12) 

 

  3 1 2 2 lnS S

S

S

HM Y x

E

  
  , 

 

whose solution with respect to real unknown quantities (x, Y
S
) approximately 

determines the stress-strain state in the sample and the Tabor constant 

SC HM Y  (see the second equation of system (12)). Here the value 

2 determines the value of the angle at the top of the loaded conical indenter 

(Fig. 3) and  2cot cot 2 1i i iHM E     . 

Unfortunately, in the methodology [1, 2] for determining hardness HM and 

effective Young's modulus E*, there are no a priori recommendations for 

choosing a point  max max,A h P  on the diagram (P—h) when plastic 

deformations are sufficiently developed (that is, there is no criterion for 

sufficient development of plastic deformations). It seems that such a priori 

recommendations are difficult to define. In this regard, the a posteriori 

assessments of the force 
*

maxP P  gain importance when an unrestrained 

plastic flow under the indenter begins. 
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Fig. 3. Model scheme (in a spherical 

coordinate system with center 0) of 

zones under the indenter with 

different stress-strain states of the 

sample material: r ≤ a is the hydro-

static core; Sa r b   is the area 

of elastoplastic deformation; 

Sr b  is the area of elastic defor-

mation: 1 — conical contact surface 

of the indenter and the sample; 2 — 

sample surface; 3 — indenter under 

load with apex angle 2Ψ.  

 

 

Based on the model [13], the contact radius 0a  and the force 
*P  acting on 

the indenter, at which an unconstrained plastic flow begins under the indenter, 

a posteriori are estimated, respectively, by the formulas 
 

   

2
2

* 0
0 max max2

cot cot
1 , 1

2 1 2 1S S

a
a a P P P

a

    
                

.    (13) 

 

Force 
*

maxP P  corresponds to the approach 
*h h , determined from the 

diagram (P—h) (see Fig. 1). 

Remark 1. The above results are presented for the case of penetration of 

a cone with an apex angle 2i. The transition from pyramidal indenters to an 

equivalent conical one (and vice versa) can be performed using the condition 

of equality of the projection areas of the imprints left by different indenters 

with the same penetration volume (the same penetration depth for pyramidal 

and conical indenters). This condition leads to the following relationship 

between the tapering angles of equivalent conical, pyramidal (three- and four-

faced) indenters: 

2

4cot cot cot
2 27

i V B

 
     , 

where i, V, B are the tip angles of indenters: conical, tetrahedral (for 

example, Vickers, V = 68°) and trihedral (for example, Berkovich, γB = 65°), 

respectively. 

Remark 2. In (12), it is assumed that the Poisson's ratio of the sample 
S  

is known and is determined in tests independent (for example, by acoustic 

methods) from the experimental diagram (P—h) (Fig. 1). 
 

Plasticity characteristic H  and representative deformation r  

The magnitude of the plasticity characteristic H  is determined by the 

formulas [16, 17]  
 

H p t   , lnsint B   , 0p t e    ,   1 1 2 /e S S SHM E     ,(14) 
 

where , ,e p t    are, respectively, elastic, plastic and total average in the contact 

area linear (in the direction of the force P, see Fig. 2) deformations, γВ = 65о. 
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The contact area refers to that part of the flat surface of the specimen that comes 

into contact with the indenter after deformation. In formulas (14), the quantity 

lnsin 0.098, 65t B i         is constant and is determined by the 

geometry of the contacting bodies (indenter and sample) before their 

deformation. If for sufficiently developed plastic deformations we neglect the 

material compressibility (volumetric deformation 
11 22 33 0    ), then the 

value εt = −0,098 determines with good accuracy the average linear 

compressive deformation in the contact area in the direction of the force that 

acts on the indenter (Fig. 2), similar to uniaxial tension-compression. Therefore, 

this value can be considered as a representative (characteristic) deformation 

under uniaxial compression, as suggested by Tabor and Johnson [15]. This 

deformation corresponds to both the yield strength Y
S
 in Table 2 and the hard-

ness value HM = CY
S
, as the average value of the contact pressure under the 

indenter. In this case, the value of C is determined by the complex bulk stress-

strain state of the sample under the indenter, which differs significantly from 

uniaxial compression. The structure of a representative deformation 

r e p      is approximately estimated by the formula 
 

 1 ,e H r p H r        .                                  (15)   
 

If the average total linear deformation and its components in the contact 

area of the indenter and the sample are determined from the deformed scheme in 

accordance with the formulas [17] 
 

t e p     , 
2ln 1 cot 0p SR      , 

*cot cot 2SR i HM E    ,  (16) 

  1 1 2e S S

S

HM

E
       ,  

2 2

*

1 11 i S

i SE E E

 
  , ,H p t H       

 

where 2 SR  is the angle at the apex of the residual indentation in the sample 

after unloading the conical indenter, εe, εp, εt are, respectively, elastic, plastic 

and total average over the contact area, linear (in the direction of force P, see 

Fig. 2) deformations, then the value of εt will not be the same (constant) for all 

materials. However, as shown in [13], its average value 0.060t    (for a 

large group of materials when indenting with a diamond Vickers indenter) has a 

small standard deviation 0.003   and is almost constant. Formulas (16), in 

fact, are analogs of the formulas that determine the longitudinal deformation of 

a bar from its enlarged cross section under uniaxial compression. 

 

Examples of determination of elastic moduli, hardness of materials, yield 

stress and characteristic size of the elastoplastic zone under the indenter 
 

To validate the obtained relations, samples of fused silica FS and a single 

crystal of tungsten (111) W with a purity of 99,99% (material with a high shear 

modulus) were tested. The tests were carried out with a Nano Indenter G200 

nanohardness tester with a diamond  1141 ГПа, 0.07i iE     Berkovich 

indenter ( 65B   ) at loads of maxP  97 and 193 mN.  
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T a b l e   1. Experimental data for 

indentation   for  single  crystal  (111)  

tungsten (W) and fused silica (FS) 

[12] 
 

Sample 

Pmax hmax S 

(6) P* (13) h* 

mN mN MN/m 

W1 
97 970 

1.742 
66 745 

W2 
193 1410 

2.350 
130 1074 

FS1 
97 898 

0.3065 
61 695 

FS2 
193 1289 

0.399 
119 986 

 

The test results ( max max, ,P h S  values for formulas (11)) are taken from [12], 

where their detailed description is given. Experimental diagrams of indenter 

penetration for fused silica and tungsten obtained at loads Pmax = 97 and 

193 mN are shown in Fig. 4. The complete theoretical unloading branches of 

the diagrams, constructed according to formula (1), are also given here. 

The calculation results according to the proposed method using the test data 

are shown in Table 2. It is known that the elastic modulus of tungsten is 

409 GPa, and that of fused quartz is 72 GPa. The modulus of elasticity for fused 

silica using our technique turned out to be markedly higher than 72 GPa. 

Perhaps this is a consequence of the fact that when the indenter penetrates the 

fused quartz, the material is compacted (about 20% [12]) in the contact zone, 

[ 0.19, 0.17]S     (Table 1). 

 

 
     a                                                                 b 

 

Fig. 4. Diagram of penetration of the Berkovich indenter for fused quartz and single 

crystal (111) tungsten: Pmax = 97 (a) and 193 mN (b): 1 — unloading branch of 

diagrams, eq. (1) [12]; 2 — point (P*, h*) of the beginning of unconstrained plastic 

flow under the indenter (Table 1). 

https://portal.issn.org/resource/issn/1025-6415
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T a b l e  2. Results of calculations for nanoindentation of fused silica 

FS (s = 0.17) and (111) plane of a tungsten single crystal W (s =  0.28) 
 

Sample 

E*, 

GPa 

(11) 

HM, 

GPa 

(11) 

Es, 

GPa 

bs/a 

(12) 
H  

(16) 

H  

(14) 

Ys, 

GPa 

(12) 

C S  

(12) 

W1 340 4.70 445 2.81 0.900 0.940 1.67 2.81 –0.0037 

W2 316 4.43 401 2.76 0.895 0.937 1.60 2.77 –0.0039 

FS1 83 9.10 87 1.08 0.113 0.180 9.82 0.93 –0.1707 

FS2 77 9.19 80 1.06 0.080 0.102 10.25 0.90 –0.1947 

 

Conclusions 

An extended characterization of materials based on experimental 

continuous diagrams of instrumental indentation is proposed, which includes 

the determination of the following properties: moduli of elasticity, hardness, 

yield stress, characteristic size of the elastoplastic zone under the indenter, 

volumetric compressibility of the material under the indenter, characteristic of 

plasticity, representative deformation and its structure. A posteriori, the position 

of the point (on the experimental indentation diagram) of the beginning of the 

unconstrained flow of the material under the indenter was estimated. 
 

References 

1. Oliver, W. C., Pharr, G. M. (1992). An improved technique for determining hardness and 

elastic modulus using load and displacement sensing indentation experiments. J. Mater. 

Res., Vol. 7, No. 6, pp. 1564—1583. https://doi.org/10.1557/JMR.1992.1564  

2. Oliver, W. C., Pharr, G. M. (2004). Measurement of hardness and elastic modulus by 

instrumented indentation: Advances in understanding and refinements to methodology. J. 

Mater. Res., Vol. 19, No. 1,  pp. 3—20. https://doi.org/10.1557/jmr.2004.19.1.3  

3. Bulychev, S. I., Alekhin, V. P., Shorshorov, M. K., Ternovskii, A. P., Shnyrev, G. D. 

(1975). Determination of Young's modulus according to indentation diagram. 

Industrial Laboratory, Vol. 41, pp. 1409—1412. 

4. Shorshorov, M. K., Bulychev, S. I., Alekhin, V. P. (1981). Work of plastic and elastic 

deformation during indenter indentation. Soviet Physics - Doklady, Vol. 26, pp. 769—771. 

5. Firstov, S. A., Gorban', V. F., Pechkovskii, E. P. (2009). Novaya metodologiya 

obrabotki i analiza rezul'tatov avtomaticheskogo indentirovaniya materialov. New 

methodology for processing and analyzing the results of automatic indentation of 

materials. Kyiv: Logos, 83 p. [in Russian]. 

6. Hay, J. C., Bolshakov, A., Pharr, G. M. (1999). A critical examination of the 

fundamental relations used in the analysis of nanoindentation data. J. Mater. Res., 

Vol. 14, No. 6, pp. 2296—2305. doi: https://doi.org/10.1557/JMR.1999.0306  

7. Veprek, S., Mukherjee, S., Mannling, H.-D., He, J. (2003). On the reliability of the 

measurements of mechanical properties of superhard coatings. Mater. Sci. and Enginee-

ring, Vol. A 340, pp. 292—297. doi: https://doi.org/10.1016/S0921-5093(02)00195-8  

8. Cao, Y. P., Dao, M., Lu, J. (2007). A precise correcting method for the study of the 

superhard  material  using  nanoindentation  tests.  J. Mater. Res., Vol. 22, No. 5,  

pp. 1255—1264. doi: https://doi.org/10.1557/jmr.2007.0150  

https://portal.issn.org/resource/issn/1025-6415
https://doi.org/10.1557/JMR.1992.1564
https://doi.org/10.1557/jmr.2004.19.1.3
https://doi.org/10.1557/JMR.1999.0306
https://doi.org/10.1016/S0921-5093(02)00195-8
https://doi.org/10.1557/jmr.2007.0150


ISSN 2709-510X. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2021, № 3               

 
23 

9. Veprek-Heijman, M. G. J., Veprek, R. G., Argon, A. S., Parks, D. M., Veprek, S. (2009). 

Non-linear finite element constitutive modeling of indentation into super- and ultrahard 

materials: The plastic deformation of the diamond tip and the ratio of hardness to tensile 

yield strength of super- and ultrahard nanocomposites. Surface & Coat. Techn, Vol. 203, 

pp. 3385—3391. doi: https://doi.org/10.1016/j.surfcoat.2009.04.028  

10. Hay, J. L., Pharr, G. M. (2000). Instrumented Indentation Testing. ASM Hand¬book. Vol. 

8: Mechanical Testing and Evaluation, 10th Edition, ASM International, Materials Park, 

OH., pp. 232—243. https://doi.org/10.31399/asm.hb.v08.a0003273  

11. Borodich, F. M. (2014). The hertz-type and adhesive contact problems for depth-

sensing indentation. Adv. Appl. Mechanics, Vol. 47, Burlington: Academic Press, 

pp. 225—366. doi: https://doi.org/10.1016/B978-0-12-800130-1.00003-5  

12. Galanov, B. A., Dub, S. N. (2017). Critical Comments to the Oliver-Pharr 

Measurement Technique of Hardness and Elastic Modulus by Instrumented 

Indentations and Refinement of Its Basic Relations. J. of Superhard Mater., Vol. 39, 

No. 6, pp. 373—389. doi: https://doi.org/10.3103/S1063457617060016  

13. Galanov, B. A., Ivanov, S. M., Kartuzov, V. V. (2020). Improved core model of the 

indentation for the experimental determination of mechanical properties of elastic-

plastic materials and its application. Mechanics Mater., Vol. 150, pp. 103545. doi: 

https://doi.org/10.1016/j.mechmat.2020.103545  

14. Sneddon, I. N. (1948). Boussinesq's Problem for a Rigid Cone. Proc. Cambridge 

Philos. Soc., Vol. 44, pp. 492—507. https://doi.org/10.1017/S0305004100024518  

15. Johnson, K. L. (1985). Contact Mechanics. Cambridge: Cambridge University 

Press, 452 p. https://doi.org/10.1017/CBO9781139171731  

16. Milman, Y. V., Galanov, B. A., Chugunova, S. I. (1993). Plasticity characteristic 

obtained through hardness measurement. Acta Metall. Mater., Vol. 41, pp. 2523—

2532. doi: https://doi.org/10.1016/0956-7151(93)90122-9  

17. Galanov, B. A., Milman, Y. V., Chugunova, S. I., Goncharova, I. V. (1999). 

Investigation of mechanical properties of high-hardness materials by indentation. J. 

Superhard Mater., Vol. 21, pp. 23—35. 
 

Розширена характеризація матеріалів на основі безперервних 

діаграм інструментального індентування 
 

Б. О. Галанов, С. М. Іванов*, В. В. Картузов 
 

Институт проблем материаловедения им. И. Н. Францевича НАН Украины 

*E-mail: ism@ipms.kiev.ua 
 

Критично переглядаються основні функціональні теоретичні співвідношення 

методу інструментального визначення твердості і пружних модулів, які 

розширюють список визначуваних властивостей матеріалів. Додатково (до 

традиційного визначення твердості та пружних модулів за неперервними 

діаграмами інструментального індентування) пропонується визначати границю 

течії, характеристику пластичності, характерний відносний розмір 

пружнопластичної зони під індентором, об’ємну деформацію матеріалу в 

області контакту індентора із зразком. Наведено практичну методику 

розрахунку властивостей. Результати ілюструються прикладами застосування 

запропонованої вдосконаленої методики. Діаграма індентування показує точку 

переходу до необмеженої течії матеріалу під індентором.  
 

Ключові слова: індентування, твердість, модулі пружності, контактна 

жорсткість, пружнопластичні деформації. 
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