Першопринципні методи обчислення лінійного коефіцієнта термічного розширення квазібінарних евтектичних систем

Д. А. Закарян^{*}, А. В. Хачатрян

Інститут проблем матеріалознавства ім. І. М. Францевича НАН України Україна, 03142, Київ, вул. Кржижановського, 3 *E-mail: zakarian.d.a.@gmail.com

Для обчислення лінійного коефіцієнта термічного розширення (ЛКТР) та його температурної залежності використано комбінацію методу апріорного псевдопотенціалу та квазігармонійного наближення (авторські методики). Після апроксимації результатів, отриманих для металоподібних матеріалів (карбідів, боридів, силіцидів, нитрідів), в аналітичній формі представлено ЛКТР. У разі квазібінарних евтектичних систем на основі карбідів, боридів, силіцидів для оцінки енергії взаємодії елементів двох компонентів введено поняття віртуального кристала (з віртуальною коміркою) по лінії дотику двох компонентів. Віртуальній комірці приписується об'єм, середній між об'ємами елементарних комірок двох компонентів з урахуванням їх концентраційного співвідношення. Компоненти, що входять до складу евтектики, зберігають свою кристалічну структуру, їх ЛКТР можна оцінити таким, як у чистих компонентів. Без урахування впливу міжфазної взаємодії ЛКТР евтектичної системи визначають за допомогою правила сумішей на основі ЛКТР компонентів з урахуванням їхньої об'ємної частки. Облік впливу міжфазної границі на теплове розширення оцінено за допомогою віртуальної комірки. Для визначення ЛКТР евтектичної системи пропонується співвідношення, яке зв'язує ЛКТР компонентів та межі стикування через концентраційне співвідношення. Такий метод більш реалістично визначає структуру квазібінарної евтектики. Спостерігається узгодженість розрахункових та експериментальних даних.

Ключові слова: енергія електрон-іонної системи, потенціал міжатомної взаємодії, квазігармонійне наближення, лінійний коефіцієнт термічного розширення, температура евтектики.

Вступ

Завдання обчислення лінійних коефіцієнтів термічного розширення (ЛКТР) композитів евтектичного складу набуває особливо актуального значення, коли порушується питання використання цих матеріалів в екстремальних експлуатаційних умовах. Через різницю ЛКТР компонентів у композиті з'являються поля внутрішньої напруги, неврахування яких може призвести до погіршення контролю рівня їх механічних властивостей і, відповідно, звужує область їх застосування. Тому доцільним є попередній розрахунок такої значущої характеристики матеріалу, як коефіцієнт термічного розширення, особливо за відсутності як експериментальних, так і теоретичних даних за значеннями зазначеного фізичного параметра.

Експериментальне визначення теплових характеристик композитів є складною технічною проблемою. В основному для оцінки ЛКТР використовують правило сумішей, виходячи зі значень ЛКТР компонентів.

Теорія та методи обчислення

Відповідно до термодинамічних законів у будь-якій стійкій системі, що знаходиться за постійних температури та тиску, термодинамічний потенціал повинен мати мінімальне значення. Для обчислення енергії матеріалу за різних температур використовуємо термодинамічну функцію чи вільну енергію F = U - TS (U— внутрішня енергія; T— температура; S— ентропія) [1].

У ході побудови термодинамічних потенціалів було показано, що замість поняття "парних міжатомних потенціалів" у виразі для термодинамічних потенціалів можна застосовувати поняття потенціалу взаємодії між представницькими елементами компонентів [2]. У результаті термодинамічний потенціал представляється як сума потенціалів, відповідальних за взаємодію між елементами кожного компонента і між елементами, що належать різним компонентам.

Термодинамічний потенціал системи за нульової температури збігається з основним станом квантової системи, тобто представляє внутрішню енергію електрон-іонної системи:

 $U = CU_{0A} + C^2U_{AA} + (1 - C)U_{0B} + (1 - C)^2U_{BB} + 2C(1 - C)U_{AB}$, (1) де U_{0A} і U_{0B} — енергії першого порядку з теорії збурень для компонентів A і B; C — концентрація компонента A. Якщо є система LaB₆—MeB₂, то U_{AA} , U_{BB} , U_{AB} представляють, відповідно, енергію взаємодії між елементами A—A (LaB₆—LaB₆), B—B (MeB₂—MeB₂), A—B (LaB₆—MeB₂).

Прийнято відраховувати енергію сплаву даної структури від середньої величини енергії чистих компонентів А і В з тією ж структурою. Цю частину енергії можна записати у вигляді

$$U_0 = CU_{0A} + (1 - C)U_{0B}, \qquad (2)$$

тоді енергія (на одну молекулу) двокомпонентної системи дорівнює $U = C^2 U_{AA} + (1 - C)^2 U_{BB} + 2C(1 - C) U_{AB}.$ (3)

Побудова псевдопотенціалів компонентів

Для з'єднань типу LaB₆ або MeB₂ на одну елементарну комірку припадає одна молекула. Через велику різницю радіусів бору і металу краще обчислювати енергію електрон-іонної системи, що припадає не на один атом, а на одну елементарну комірку. Тоді псевдопотенціал можна конструювати не для одного атома, а для сполуки загалом. Якщо в складних структурах (LaB₆ або MeB₂) початок координат поєднати з місцем розташування атомів La або Me (V, Ti, Cr, Zr, Hf, Nb), то атоми бору будуть розташовані на відстані $|\bar{\delta}_j|$ від початку координат і тоді псевдопотенціал з'єднання можна подати у вигляді

$$V(q) = \frac{1}{\alpha} \Big[\Omega_1 V_1(q) + \Omega_2 V_2(q) \sum_{j=1}^n \exp(-i\vec{q}\vec{\delta}_j) \Big], \tag{4}$$

де Ω_1 , V_1 та Ω_2 , V_2 — об'єми та псевдопотенціали атомів, що входять до складу сполуки; Ω — об'єм елементарної комірки; $\vec{\delta}_j$ — радіуси-вектори атомів бору щодо початку координат; n — число атомів бору в елементарній комірці. Подання матричного елемента псевдопотенціалу багатоатомних сполук у вигляді (4) фіксує розташування атомів бору щодо атома металу [2]. Для отримання псевдопотенціалу кристала

ISSN 2709-510Х. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2021, № 3

необхідно рівняння (4) помножити на структурний фактор S(q), який описує геометричне розташування з'єднання у всьому просторі кристала.

Повний потенціал з'єднання, що залежить від структури кристала, можна подати у вигляді [3]

$$\Phi(R) = \frac{2\Omega}{(2\pi)^{s}} \int [\Phi_{bs}(q)] \cdot \exp(i\vec{q}\vec{R})d\vec{q} + U_{E} =$$
$$= \frac{2\Omega}{(2\pi)^{s}} \int \left[\Phi_{bs}(q) + \frac{2\pi Z^{2}}{\Omega q^{2}} \right] \cdot \exp(i\vec{q}\vec{R})d\vec{q}.$$
(5)

Тут *R* — відстань між центрами молекул LaB₆, а характеристична функція зонної структури буде

$$\Phi_{\rm bs}(q) = (V(q))^2 \cdot \chi(q) \,\varepsilon(q). \tag{6}$$

Фігуруючі у формулі (6) функції $\chi(q)$ та $\epsilon(q)$ описують обміннокореляційні ефекти [3]. Виходячи з розподілу електронної щільності молекули в елементарній комірці, можна написати

$$Z = Z_{La} + Z_{B} \sum_{j} \exp(-i\vec{q}\vec{\delta}_{j}).$$
⁽⁷⁾

Присутність експоненти у співвідношенні (7) обумовлена тим, що зовнішні електрони бору більш локалізовані навколо своїх іонів, ніж електрони в металі. таким же чином конструюється псевдопотенціал для боридів перехідних металів MeB₂ (Me — V, Cr, Nb, Ta, Hf, Zr, Ti).

$$V_{\text{MeB}_2}(q) = \frac{1}{\rho_{\text{MeB}_2}} [\Omega_{\text{Me}} V_{\text{Me}}(q) + \Omega_{\text{B}} V_{\text{B}}(q) \sum_{j=1}^{2} \exp(-i\vec{q}\,\vec{\delta}_j)], \quad (8)$$

$$\vec{\delta}_1 = 2/3\vec{a} + 1/3\vec{b} + 1/2\vec{c}; \quad \vec{\delta}_2 = 1/3\vec{a} + 2/3\vec{b} + 1/2\vec{c}.$$
 (9)

Тут **a**, **b**, **c** — вектори гексагональної гратки. Після нескладних розрахунків [4] отримуємо

$$(V_{\text{MeB}_2})^2 \approx (V_{\text{Me}}(q) \ \Omega_{\text{Me}}/\Omega_{\text{MeB}_2} + 2 \cdot V_{\text{B}}(q) \ \Omega_{\text{B}}/\Omega_{\text{MeB}_2})^2, \tag{10}$$

$$Z^2_{MeB_2} \approx (Z_{Me} + 2Z_B)^2. \tag{11}$$

I аналогічно для LaB₆ —

$$(V_{\text{LaeB}_{6}})^{2} \approx (V_{\text{La}}(q) \frac{\Omega_{\text{La}}}{\Omega_{\text{LaB}_{6}}} + 6 V_{\text{B}}(q) \Omega_{\text{B}} / \Omega_{\text{LaB}_{6}})^{2}, \qquad (12)$$

$$Z_{LaB_6}^2 \approx (Z_{Me} + 6Z_B)^2$$
 (13)

Після підстановки (10), (11) (для MeB₂) і (12), (13) (для LaB₆) у співвідношення (5) маємо повну енергію з'єднання з урахуванням його структури. Проведений аналіз показав, що повна енергія сполуки (для окремих компонентів), яка залежить від типу кристалічної гратки, становить алгебраїчну суму парних взаємодій всіх атомів молекули [2, 4].

Обчислення потенціалу взаємодії різнотипних елементів А—В (LaB₆—MeB₂)

Для обліку міжфазної взаємодії вводимо поняття наближення віртуального кристала по всій межі стикування двох компонентів. Оскільки енергія взаємодії двох сполук (атом, молекула) не залежить від розташування інших елементів, а є функцією лише k_F (імпульс Фермі) чи Z/Ω , можна ввести поняття віртуальної комірки з об'ємом

$$\Omega = C \,\Omega_{\rm A} + (1 - C) \,\Omega_{\rm B} \tag{14}$$

та із зарядом

ISSN 2709-510Х. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2021, № 3

$$Z = C Z_{\rm A} + (1 - C) Z_{\rm B}, \tag{15}$$

де $\Omega_i (i = A; B)$ — об'єми компонентів, Z_A , Z_B число їх зовнішніх електронів.

Енергія електрон-іонної системи (за постійного об'єму) у разі віртуального кристала буде представлена у вигляді

$$U_{\rm V} = C^2 U_{\rm AA}^* + (1 - C)^2 U_{\rm BB}^* + 2C(1 - C) U_{\rm AB}.$$
 (16)

Тут U_{AA}^* , U_{RR}^* представляють, відповідно, енергію взаємодії між елементами А—А і В—В у віртуальному кристалі та обчислюються за звичайною методикою.

Енергію взаємодії між двома компонентами (U_{AB}) можна представити як суму парних потенціалів різнотипних елементів $\Phi_{AB}(\vec{R}_{li})$:

$$U_{AB} = \frac{1}{N} \sum_{l,j} \Phi_{AB}(\vec{R}_{lj}), \qquad (17)$$

де $\vec{R}_{lj} = \vec{R}_i(A) - \vec{R}_j(B)$ — відстань між сполуками *i* та *j*, що належать до компонентів A та B. Псевдопотенціал віртуального кристала дорівнюватиме $V_V = C V_A + (1 - C) V_B$. Використовуємо наближення, у якому не враховуються відхилення $V_A - V_V$; $V_B - V_V$ у вузлах елементарної комірки. В рамках цього наближення характеристична функція віртуального кристала буде

$$V_{bs}(q) = (V_V(q))^2 \cdot \chi_V(q) \varepsilon_V(q).$$
 (18)

Тут функції $\chi_{V}(q)$, $\varepsilon_{V}(q)$ описують екранування та кореляцію електронів для віртуального кристала і визначаються через об'єм елементарної комірки та кількість вільних електронів.

Для обчислення енергії взаємодії між різнотипними молекулами визначимо імпульс Фермі і використаємо апроксимацію для потенціалу взаємодії сполуки аналогічно представлень для атомів [3].

Імпульс Фермі [3] для кожного *i*-го компонента визначається за умови

$$k_{\rm F}^{\rm i} = \frac{3\pi^2}{\Omega_{\rm i}} \cdot Z_{\rm i},\tag{19}$$

де Ω_i , Z_i — об'єми та число вільних електронів для *i*-го компонента. Для віртуального кристала у співвідношення (19) замість Ω_i та Z_i підставляємо значення зі співвідношення (14) і (15) та отримуємо

$$\Phi_{\rm AB}(R) \approx \left[18\pi Z_{\rm A} Z_{\rm B} \frac{V_{\rm A}(2k_{\rm F})V_{\rm B}(2k_{\rm F})}{k_{\rm F}^2} \right] \frac{\cos(2k_{\rm F}R)}{(2k_{\rm F}R)^3} \,. \tag{20}$$

Тут V_A і V_B — псевдопотенціали компонентів A та B за умови $q = 2k_{\rm F}$.

Обчислення енергії взаємодії між елементами за ненульової температури

Одним із можливих способів обчислення коефіцієнта термічного розширення компонентів є метод, заснований на визначенні залежності повної енергії електрон-іонної системи від параметрів кристалічних ґраток за різних температур [5]. Для обчислення енергії електрон-іонної системи кристалів за нульових температур використовується метод псевдопотенціалів.

ISSN 2709-510X. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2021, № 3

Повну енергію кристалічного матеріалу можна представити як суму енергії електрон-іонної системи за нормальної температури T = 0 і енергії теплових коливань іонів за температури $T \neq 0$ ($U = U_0 + U_T$).

Обчислюємо енергію електрон-іонної системи за температури $T_0 = 0$. Із залежності енергії електрон-іонної системи від об'єму знаходимо мінімальну енергію та об'єм гратки $U_0(\Omega_0, T_0)$.

Обчислення енергії електрон-іонної системи у другому порядку теорії збурень за псевдопотенціалом означає використання гармонійного наближення. Але застосування такого наближення в динаміці ґрат недостатньо для обчислення деяких фізичних характеристик, пов'язаних зі зміною об'єму кристалічних ґраток з підвищенням температури. У той самий час відомо, що обчислення коливальної частини відповідних термодинамічних функцій з урахуванням ангармонізму виявляються складними [5]. Ці проблеми можна уникнути, якщо зробити припущення про залежність частот коливання від температури і об'єму.

Енергію теплових коливань матеріалів зі складною структурою пропонується обчислювати в рамках моделі Ейнштейна [6], яка дає надійні результати розрахунків, на відміну від моделі Дебая, що досить добре працює для простих кристалічних граток, але призводить до нестійких обчислювальних схем для складних структур. Для розгляду граток з базисом необхідно взяти до уваги також оптичні коливання. Частота їх мало залежить від хвильового вектора і тому тут краще застосовується модель Ейнштейна, в якій всім коливанням приписується однакова частота для енергії теплових коливань (на одну молекулу) за температури T. Відповідно до моделі Ейнштейна [6] атоми в кристалічній гратці коливаються з однаковою частотою, значення якої пропорційне до жорсткості матеріалу. Середнє значення енергії коливання гратки визначається рівністю

$$U_{\rm T} = \sum_{\rm q} \hbar \omega_{\rm q} / (\exp(\hbar \omega_{\rm q} / kT) - 1), \tag{21}$$

де підсумовування ведеться за всіма типами коливань і ω_q — частота коливань (відповідно до моделі Ейнштейна $\omega_q = \omega$ для всіх q). У разі структури з одним з'єднанням в елементарній комірці маємо 3N коливань (N -число комірок в об'ємі матеріалу) і частота коливань визначається співвідношенням

$$\omega = \sqrt{2\alpha^*/M}.$$
 (22)

Тут *M* — маса атома або молекули; α^{*} — силова постійна, яка визначається через другу похідну енергії за просторовою змінною

$$\alpha^* = \left(\frac{\partial^2 U}{\partial r^2}\right). \tag{23}$$

Спочатку обчислюємо силові постійні α_0^* за нульової температури. Енергію теплових коливань (21), розраховану за малих значень температури ($T_1 = \Delta T; \Delta T \rightarrow 0$) з силовими постійними α_0^* , додаємо до значення енергії U. У наступних кроках для обчислення повної енергії в рамках гармонійного наближення використовуємо нові силові постійні і, отже, частоти, що залежать від об'єму. В результаті одержуємо залежність енергії від температури. По мінімуму енергії $U = U(\Omega(T))$ визначаємо параметр гратки у рівноважному стані залежно від температури.

ISSN 2709-510X. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2021, № 3

Результати обчислень та їх обговорення

Спочатку розрахунки проводяться для окремих компонентів. Коефіцієнт термічного розширення обчислюється за формулою

$$\alpha = (a_T - a_0) / (Ta_0) . \tag{24}$$

Тут a_T , a_0 — параметри кристалічних граток за температури T і за нульової температури, якщо матеріал має кубічну кристалічну гратку. Для матеріалів, що не мають кубічних граток, вводиться усереднений параметр a_0 , який визначається через об'єм елементарної комірки Ω ($a_0 = (\Omega)^{1/3}$). У табл. 1 представлено розрахункові дані матеріалів (компонентів) за температури 300 К.

В результаті обчислень та застосування відповідної апроксимації отримано, що для металів, багатоелементних металевих сплавів (однофазних і без урахування магнетизму), боридів (LaB₆, MeB₂ (Me — перехідні метали IV—VI груп, AlB₁₂), карбідів, нітридів (TiC, ZrC, TiN, ZrN), силіцидів перехідних металів (MoSi₂, WSi₂, TiSi₂) залежність параметра гратки від температури описується співвідношенням

$$a_T = a_0 (1 + 0.032 (T/T_{\text{max}})^{\frac{2}{4}}),$$
 (25)

де *T*_{max} — температура плавлення матеріалу, а ЛКТР дорівнює

$$\alpha = 0.032 \left(\frac{T}{T_{\text{max}}}\right)^{1/4} / T_{\text{max}} \,. \tag{26}$$

Всі перераховані однофазні матеріали мають єдиний параметр гратки і температуру плавлення. До цієї категорії матеріалів можна віднести і міжфазну границю в модельному поданні з віртуальними кристалічними гратками і температурою плавлення (температурою евтектики). Розрахунки ЛКТР для віртуального кристала нічим не відрізняються від розрахунків для чистих компонентів.

З результатів обчислень отримуємо, що у перерахованих матеріалів теплове розширення описується одним і тим самим законом. У цих матеріалах за низьких і середніх температур в розширенні матеріалу беруть участь атоми металу, оскільки мають високу енергію електроніонної системи.

I '	I	1 1	
Матеріал	T _{max} , K	α·10 ⁶ /К (розрахунок)	α·10 ⁶ /К (експ. [7—9])
LaB ₆	2800	6,538	$6,4 \pm 0,5$
TiB ₂	3500	4,947	4,6
ZrB_2	3273	5,380	5,9
HfB ₂	3550	4,860	5,3
VB ₂	2673	6,929	7,9; 7,6
MoSi ₂	2303	8,348	8,25;
В	2349	7,980	7,8
B ₄ C	2623	7,090	9,5 (300—1100 K)
AlB ₁₂	2473	7,460	

Таблиця 1. Розрахункові значення лінійного коефіцієнта термічного розширення

ISSN 2709-510X. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2021, № 3

Групи атомів неметалів, що знаходяться в міжвузліях, розташовані в атомних площинах (MeB₂) або в комплексах октаедра (LaB₆), беруть участь у тепловому розширенні за більш високих температур через їх сильний зв'язок між собою.

За високих температур втрачається різниця між різними типами зв'язку й залишається лише хімічний зв'язок між атомами.

Обчислення ЛКТР евтектичних систем

Для обчислення ЛКТР евтектичної системи необхідно визначити мінімум повної енергії $U = U_0 + U_T$ за параметром граток і знайти її значення в рівноважному стані системи за кожного значення температури. Це неважко здійснити для однофазної системи. У разі евтектичних систем присутні дві фази (компоненти A та B), які мають різні кристалічні гратки, отже й різні параметри, а також контактна границя між ними.

Лінійний коефіцієнт термічного розширення евтектичної системи без урахування впливу міжфазної взаємодії визначають за допомогою правила сумішей на основі ЛКТР компонентів з урахуванням їхньої об'ємної частки. Для обліку впливу міжфазної границі на теплове розширення оцінюємо ЛКТР за формулою, де замість об'ємних часток компонентів враховується їх концентраційне співвідношення

$$\bar{\alpha} = C^2 \alpha_{\rm A} + (1 - C)^2 \alpha_{\rm B} + 2C(1 - C)\alpha_{\rm AB}, \tag{27}$$

де α_{A} , α_{B} , α_{AB} представляють ЛКТР чистих компонентів і межі стикування. З підвищенням температури змінюється відстань між центрами елементів, що утворюють границю контакту, яка описується за допомогою α_{AB} . Для віртуального кристала ЛКТР визначатиметься через співвідношення

$$\alpha_{\rm V} = C^2 \alpha_{\rm A}^* + (1 - C)^2 \alpha_{\rm R}^* + 2C(1 - C) \alpha_{\rm AB}.$$
(28)

Тут α_A^* , α_B^* — ЛКТР компонентів, отримані через енергію взаємодії елементів А—А і В—В у віртуальному кристалі.

В результаті розрахунків маємо ЛКТР для систем евтектичного складу за температури 300 К за допомогою формул (27) та (28) з урахуванням впливу границі контакту, які наведено у табл. 2.

Значення ЛКТР, отримані за допомогою співвідношення (28), збігаються з результатами, одержаними за допомогою формули (26), де максимальна температура дорівнює температурі евтектики. Відмінність даних обчислень за допомогою співвідношень (27) і (28) у тому, що у

Таблиця 2. Розрахункові значення ЛКТР квазібінарних систем, обчислені за формулами (27) та (28)

Система	<i>Т</i> пл, К	С	$\alpha_{c} \cdot 10^{6}/K$ (27)	$\alpha_{c} \cdot 10^{6}/K$ (28)
LaB ₆ —TiB ₂	2680	0,700	6,575	6,906
LaB_6 — ZrB_2	2750	0,750	6,547	6,687
LaB ₆ —HfB ₂	2770	0,765	6,446	6,627
LaB ₆ —VB ₂	2580	0,490	6,972	7,242
MoSi ₂ —TiB ₂	2160	0,850	8,471	9,044
MoSi ₂ —ZrB ₂	2170	0,892	8,434	8,980
MoSi ₂ —HfB ₂	2210	0,925	8,380	8,790

ISSN 2709-510Х. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2021, № 3

співвідношенні (27) ЛКТР обчислено з урахуванням кристалічної структури компонентів, а дані віртуальної комірки використані тільки для обчислення α_{AB} , а в (28) всі коефіцієнти обчислено за допомогою даних віртуальної комірки.

В той же час ЛКТР евтектичної системи, розрахований за правилом

Т	a	б	Л	И	Ц	Я	3.	ЛКТР
ев	гек	тич	ни	x ci	асте	м ро	озрах	ованих
3 a	П	рав	ило)M	cyM	иіше	ей (с	піввід-
но	ше	ння	ı (29)))				

Система	δ_{A}	$\alpha_c \cdot 10^6 \text{ K}^{-1}$
LaB ₆ —TiB ₂	0,893	6,3673
LaB_6 — ZrB_2	0,837	6,4026
LaB ₆ —HfB ₂	0,873	6,3214

сумішей, визначається за допомогою об'ємних часток (δ_A , δ_B) та ЛКТР (α_A, α_B) кожного компонента:

$$\alpha_{\rm c} = \alpha_{\rm A} \,\delta_{\rm A} + \,\alpha_{\rm B} \,\delta_{\rm B} \,. \tag{29}$$

У табл. З представлено розрахункові значення об'ємних часток та ЛКТР евтектичної системи без урахування впливу міжфазних границь.

Зіставляючи значення ЛКТР, обчислених за формулами (27), (28) і (29), знаходимо, що вони досить близькі (враховуючи великий розкид експериментальних даних ЛКТР одного й того елемента, отриманих різними авторами). Максимальне значення ЛКТР отримуємо, якщо системі приписати гомогенну структуру, близьке до цього значення ЛКТР, розраховане за формулою (27), що більш реалістично описує структуру квазібінарної евтектики.

Для оцінки зміни конструкції композита за високих температур бажано враховувати максимальне значення ЛКТР, тобто використовувати формулу (26). Перевіркою запропонованого підходу може бути лише узгодженість розрахункових та експериментальних даних для евтектичних систем.

Для системи Мо—С з евтектичною концентрацією 0,82 Мо та температурою плавлення $T_{nn} = 2888$ К експериментально отримано $\bar{\alpha} \cdot 10^6$ K⁻¹ = = 10,1 ± 0,6 в інтервалі температур 2350—2800 К [10]. Розрахункові дані (26) складають $\bar{\alpha} \cdot 10^6$ K⁻¹ = 10,5 за температури 2350 К, $\bar{\alpha} \cdot 10^6$ K⁻¹ = 10,99 — за температури 2800 К, що узгоджується з експериментом [10].

На жаль, дані ЛКТР по евтектичних системах дуже мізерні. Про правильність формули (26) для оцінки ЛКТР композитів можна судити за близькими значеннями ЛКТР, розрахованими за правилом сумішей та за допомогою співвідношення (26).

Висновки

Лінійні коефіцієнти термічного розширення евтектичних систем з металевим або ковалентно-металевим зв'язком можна оцінити по всьому інтервалу температур за допомогою співвідношення, отриманого після апроксимації результатів обчислень з перших принципів для металів, багатоелементних металевих сплавів, боридів, карбідів, силіцидів, з тією різницею, що у формулі (26) для визначення ЛКТР замість параметра максимальної температури введено температуру евтектики. Якщо матеріалу властиві ковалентні або ковалентно-іонні зв'язки, то ЛКТР можна обчислити за допомогою формули (26) тільки за високих температур.

Цитована література

- 1. Сомов А.И., Тихоновский А.И. Эвтектические композиции. Москва: Металлургия, 1973. 304 с.
- Закарян Д.А. Першопринципні методи розрахунку физичних характеристик тугоплавких бинарних евтектичних композитів. Дис. ... д-ра за спеціальністю фізика твердого тіла. Київ: Ін-т пробл. матеріалознавства НАН України, 2018.
- 3. Хейне В., Коэн М., Уэйр Д. Теория псевдопотенциала. Москва: Мир, 1973. 557 с.
- 4. Закарян Д.А., Хачатрян А.В. Моделирование межмолекулярного взаимодействия в системе LaB₆—MeB₂ в рамках метода псевдопотенциалов. Допов. HAHУ. 2013. № 1. С. 77—82.
- 5. Закарян Д.А., Картузов В.В., Хачатрян А.В. Модель квзигармонического приближения в теории псевдопотенциалов. *Допов. НАНУ*. 2016. № 4. С. 55—61. <u>http://dx.doi.org/10.15407/dopovidi2016.04.055</u>
- 6. Займан Дж. Принципы теории твердого тела. Москва: Мир, 1966. 400 с.
- 7. Серебрякова Т.И., Неронов В.А., Пешев П.Д. Высокотемпературные бориды. Москва: Металлургия, 1991. 367 с.
- 8. Новицкий Л., Кожевников И. Теплофизические свойства материалов при низких температурах. Москва: Машиностроение, 1975. 345 с.
- 9. List of Thermal Expansion Coefficients (CTE) for Natural and Engineered Materials.
- 10. Сенченко В.Н., Беликов Р.С. Исследование теплового расширения эвтектических систем Re—С и Мо—С вблизи температур плавления. Вестник объединенного института высокой температуры. 2019. Т. 3, № 2. С. 22—25. doi: 10.33849 / 2019204

References

- 1. Somov, A. I., Tihonovskiy, A. I. (1973). Eutectic structures. Moscow: Metallurgiya, 304 p. [in Russian].
- 2. Zakaryan, D. A. (2018). First-principles methods for calculating the physical characteristics of refractory binary eutectic composites. Thesis for doctor's degree by speciality solid state physics. Isititue for Problems of Materials Science of the National Academy of Science of Ukraine, Kiyv [in Ukrainian].
- 3. Heyne, B., Cohen, M., Weir, D. (1973). Theory of pseudopotential. Moscow: Mir, 557 p. [in Russian].
- Zakaryan, D. A., Hachatryan, A. V. (2013). Modeling of intermolecular interaction in the system LaB₆—MeB₂ with in the pseudopotential method. Dopov. Nan. Akad. Nayk. Ukr., No. 4, pp. 77—82 [in Russian].
- Zakaryan, D. A., Kartuzov, V. V., Hachatryan, A. V. (2016). Quasi-harmonic approximation model in the theory of pseudopotentials. Dopov. Nan. Akad. Nayk. Ukr., No. 4, pp. 55–61 [in Russian]. http://dx.doi.org/10.15407/dopovidi2016.04.055
- 6. Ziman, J. M. (1966). Principles of the theory of solids. Moscow: Mir, 400 p. [in Russian].
- 7. Serebryakova, T. I., Neronov, V. A., Peshev, P. D. (1991). High-temperature borides. Moscow: Metallurgiya, 367 p. [in Russian].
- 8. Novitskiy, L., Kozhevnikov, I. (1975). Thermophysical properties of materials at low temperatures. Moscow: Mashinostroenie, 345 p. [in Russian].
- 9. List of Thermal Expansion Coefficients (CTE) for Natural and Engineered Materials.
- Senchenko, V. N., Belikov, R. S. (2019). Investigation of the thermal expansion of the Re—C and Mo—C eutectic systems near the melting temperatures. Vestnik ob'edinennogo instituta visokoy temperatury, T. 3, No. 2, pp. 22—25 [in Russian]. doi: <u>https://doi.org/10.33849/2019204</u>

First principle methods for calculating the linear coefficient of thermal expansion of quasi-binary eutectic systems

D. A. Zakarian*, A. V. Khachatrian

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv *E-mail: zakarian.d.a.@gmail.com

To calculate the linear coefficient of thermal expansion (LCTE) and its temperature dependence, a combination of the method of a priori pseudopotential and quasiharmonic approximation (author's methods) is used. After approximating the results obtained for metal-like materials (carbides, borides, silicides), the LCTE is presented in an analytical form. In the case of quasi-binary eutectic systems based on carbides, borides, silicides, to estimate the interaction energy of the elements of two components, the concept of a virtual crystal (with a virtual cell) along the line of contact of two components is introduced. A virtual cell is assigned a volume average between the volume of a unit cell of two components, taking into account their concentration ratio. The components that make up the eutectic retain their crystal structure, their LCTE can be estimated as for pure components. Without taking into account the influence of interphase interaction, the LCTE of the eutectic system is determined using the rule of mixtures based on the LCTE components, taking into account their volume fraction. Taking into account the influence of the interface on thermal expansion is estimated by the virtual cell assigned to it. To determine the LCTE of the eutectic system, a ratio is proposed that connects the LCTE components and the docking boundaries through the concentration ratio. This method more realistically describes the structure of a quasibinary eutectic. There is a consistency between the calculated and experimental data.

Keywords: electron-ion system energy, interatomic interaction potential, quasiharmonic approximation, linear coefficient of thermal expansion, eutectic temperature.