Conferences

Ab-initio investigations of icosahedral boron compounds with Al, Mg, C, O, Si atoms

  

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
l.ovsiannikova@ipms.kyiv.ua
Usp. materialozn. 2024, 8/9:3-12
https://doi.org/10.15407/materials2024.08-09.001

Abstract

The geometry and cohesive energy of isolated clusters — fragments of icosahedral boron compounds — with Al, Mg, C, O, Si substitution atoms have been calculated within the framework of DFT electron density theory using the Gamess software package. Electron density distribution between atoms has been investigated. The bulk modulus of the B12 cluster has been calculated on the basis of quantum chemical calculations and a thermodynamic series of cluster hardness has been constructed: HB22O2 > HВ22C2 > HВ24 > HВ22Si2 > HB22Al2 > HB22Mg2. The calculated bulk modulus and hardness values based on the results of the first-principles study of the clusters are in good agreement with the experimental data for compounds with similar chemical compositions. The technique is applicable to the prediction of the choice of substitutional atoms in icosahedral boron groupings.

 


Download full text

ISOLATED CLUSTER MODEL, BORIDES, BORON, BULK MODULUS, HARDNESS

References

1. Oganov, A. R., Chen, J., Gatti, C., Ma, Y., Ma, Y., Glass, C. W., Liu, Z., Yu, T., Kurakevych, O. O. & Solozhenko, V. L. (2009). Ionic high-pressure form of elemental boron. Nature, Vol. 457 (7231), pp. 863—867. https://doi.org/10.1038/nature07736

2. Oganov, A. R., Solozhenko, V. L. (2009). Boron: a hunt for superhard polymorphs. J. Superhard Mater., Vol. 31, pp. 285—291. https://doi.org/10.3103/S1063457609050013

3. Albert, B., & Hillebrecht, H. (2009). Boron: elementary challenge for experimenters and theoreticians. Angew. Chem. Int. Ed., Vol. 48 (46), pp. 8640— 8668. https://doi.org/10.1002/anie.200903246

4. Khan, A. U., Domnich, V., & Haber, R. A. (2017). Boron carbide-based armors: Problems and possible solutions. Amer. Ceram. Soc. Bull., Vol. 96 (6), pp. 30—35. https://www.researchgate.net/publication/318947893_Boron_carbidebased_armors_Problems_and_possible_solutions

5. Domnich, V., Reynaud, S., Haber, R. A., & Chhowalla, M. (2011). Boron carbide: structure, properties, and stability under stress. J. Amer. Ceram. Soc., Vol. 94 (11), pp. 3605—3628. https://doi.org/10.1111/j.1551-2916.2011.04865.x

6. Cook, B. A., Harringa, J. L., Lewis, T. L., & Russell, A. M. (2000). A new class of ultra-hard materials based on AlMgB14. Scripta Mater., Vol. 42 (6), pp. 597—602. https://doi.org/10.1016/S1359-6462(99)00400-5

7. Jiang, X., Zhao, J., Wu, A., Bai, Y., & Jiang, X. (2010). Mechanical and electronic properties of B12-based ternary crystals of orthorhombic phase. J. Phys.: Cond. Mater., Vol. 22 (31), pp. 315503. https://doi.org/10.1088/0953- 8984/22/31/315503

8. Kevorkijan, V., Skapin, S. D., Jelen, M., Krnel, K., & Meden, A. (2006). Processing and characterization of AlMgB14—xTiB2 composites. Amer. Ceram. Soc. Bull., Vol. 85, pp. 9501—9517.

9. He, D., Zhao, Y., Daemen, L., Qian, J., Shen, T. D., & Zerda, T. W. (2002). Boron suboxide: As hard as cubic boron nitride. Appl. Phys. Lett., Vol. 81 (4), pp. 643— 645. https://doi.org/10.1063/1.1494860

10. Ivashchenko, V. I., Shevchenko, V. I., & Turchi, P. E. A. (2009). First-principles study of the atomic and electronic structures of crystalline and amorphous B4C. Phys. Rev. B, Vol. 80 (23), pp. 208—235. https://doi.org/10.1103/PhysRevB.80.235208

11. Kartuzov, V., Rozhenko, N., Efimova, E., & Danilyuk, V. M. (2020). Applying simulation results of high-boron compounds of structure at the atomic level to estimate their chemical hardness. Usp. Materialozn., No. 1, pp. 8—16 [in Ukrainian]. https://doi.org/10.15407/materials2020.01.008

12. Ovsiannikova, L. I., Lashkarev, G. V., Kartuzov, V. V., Myroniuk, D. V., Dranchuk, M. V., & Ievtushenko, A. I. (2021). The study of the behavior of Al impurity in ZnO lattice by a fullerene like model. Phys. Chem. Solid State, Vol. 22 (2), pp. 204—208. https://doi.org/10.15330/pcss.22.2.204-208

13. Ovsiannikova, L. I., Rozhenko, N. M. (2021). The estimation of energy and elastic properties of TiAlNb materials based on results of first principles calculations. Usp. Materialozn., No. 3, pp. 55—65 [in Ukrainian]. https://doi.org/10.15407/materials2021.03.055

14. Rozhenko, N., Ovsiannikova, L., & Kartuzov, V. (2024). Estimation of the lattice parameter and lattice distortion based on the results of Ab initio study of structural fragments of TiVZrNbMo, TiVZrNbHf, and TiVZrNbTa multicomponent alloys. Defect and Diffusion Forum, Vol. 431, pp. 13—19. Trans Tech Publications Ltd. http://dx.doi.org/10.4028/p-4Am5dM

15. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus, T. L., Dupuis, M. & Montgomery Jr. J. A. (1993). General atomic and molecular electronic structure system. J. Comput. Chem., Vol. 14 (11), pp. 1347—1363. https://doi.org/10.1002/jcc.540141112

16. Chemcraft — graphical software for visualization of quantum chemistry computations. Version 1.8, build 682. Retrieved from https://www.chemcraftprog.com

17. Bokiy, G. B. (1971). Crystal chemistry. Moskva: Nauka [in Russian].

18. Brazhkin, V. V., Lyapin, A. G., & Hemley, R. J. (2002). Harder than diamond: Dreams and reality. Phil. Mag. A, Vol. 82 (2), pp. 231—253. https://doi.org/10.1080/01418610208239596

19. Mukhanov, V. A., Kurakevych, O. O., & Solozhenko, V. L. (2010). Thermodynamic model of hardness: Particular case of boron-rich solids. J. Superhard Mater., Vol. 32, pp. 167—176. https://doi.org/10.3103/S1063457610030032

20. Murrell, J. N., Kettle, S. F. A., & Tedder, J. M. (1969). Valence theory. 2nd ed. London; New York, J. Wiley. 428 p. ISBN-10 : 0471626880 ISBN-13 : 978- 0471626886.

21. Gilman, J. J., Cumberland, R. W., & Kaner, R. B. (2006). Design of hard crystals. J. Refract. Metals Hard Mater., Vol. 24 (1—2), pp. 1—5. https://doi.org/10.1016/j.ijrmhm.2005.05.015

22. Livshits, B. G. (1959). Physical properties of metals and alloys. Moskva: Mashgiz [in Russian]

23. Kittel, Ch. (1978). Introduction to solid state physics. Moskva: Nauka [in Russian]. URL: https://kzf.kpi.ua/wp-content/uploads/2021/09/kittel.pdf

24. Ormont, B. F. (1956). Relation between the chemical and mechanical strength of very hard materials. Dokl. Akad. Nauk SSSR, Vol. 106 (4), pp. 686—690. [in Russian].