Conferences

Dependence of lattice distortion on temperature in CrCoNiFeMn alloy

   

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
nil2903@gmail.com
Usp. materialozn. 2024, 8/9:13-29
https://doi.org/10.15407/materials2024.08-09.002

Abstract

The dependence of the average lattice distortion on temperature in the multicomponent alloy CrCoNiFeMn was investigated by computer simulation. The features of this dependence are related to the temperature dependences of interatomic distances and elastic moduli. These dependences are resulted from the anharmonicity of the interaction between atoms, i.e. the asymmetry of the interatomic potential function relative to its minimum. There are such dependences of interatomic distances and elastic moduli for the atoms of the components inside the alloy CrCoNiFeMn on temperature, each of which lies between the corresponding dependencies for the pure component and the alloy and is similar to them, while corresponding atomic size misfit and elastic modulus misfit result in lattice distortion which increases with temperature and can compensate for shear modulus decrease. Thus, it can explain the compensation of shear modulus decrease with increasing temperature, which is actually observed in experiments, where there is a “plateau” of the temperature dependence of the yield strength. This confirms the hypothesis that such compensation can depend only on the atom displacement as a result of thermal vibrations, which leads to a shift in the equilibrium position of atoms and thermal expansion of the material when the temperature rises.


Download full text

LATTICE DISTORSION, MULTICOMPONENT ALLOY, SOLID SOLUTION, TEMPERATURE

References

1. Miracle, D. B. & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Mater., Vol. 122, pp. 448—511. https://doi.org/10.1016/j.actamat.2016.08.081

2. George, E. P., Curtin, W. A. & Tasan, C. C. (2020). High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater., Vol. 188, pp. 435—474. https://doi.org/10.1016/j.actamat.2019.12.015

3. Lugovy, M., Slyunyayev, V. & Brodnikovskyy, M. (2021). Solid solution strengthening in multicomponent fcc and bcc alloys: Analytical approach. Progress in Natural Science: Mater. Int., Vol. 31, pp. 95—104. https://doi.org/10.1016/j.pnsc.2020.11.006

4. Lugovy, M., Verbylo, D. & Brodnikovskyy, M. (2021). Modelling of shear stress field in glide plane in substitutional solid solutions. Usp. Materialozn., No. 3, pp. 24—37 [in Ukrainian]. https://doi.org/10.15407/materials2021.03.024

5. Nabarro, F. (1976). Solution and precipitation hardening. In P. Hirsch (Author), The Physics of Metals, pp. 152—188. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511760020.007

6. Labusch, R. (1981). Physical aspects of precipitation- and solid solution-hardening. Czech. J. Phys., Vol. 31, pp. 165—176. https://doi.org/10.1007/BF01959439

7. Varvenne, C., Luque, A. & Curtin, W. A. (2016). Theory of strengthening in fcc high entropy alloys. Acta Mater., Vol. 118, pp. 164—176. https://doi.org/10.1016/j.actamat.2016.07.040

8. Varvenne, C., Leyson, G. P. M., Ghazisaeidi, M. & Curtin, W. A. (2017). Solute strengthening in random alloys. Acta Mater., Vol. 124, pp. 660—683. https://doi.org/10.1016/j.actamat.2016.09.046

9. Nöhring, W. G. & Curtin, W. A. (2019). Correlation of microdistortions with misfit volumes in High Entropy Alloys. Scripta Mater., Vol. 168, pp. 119—123. https://doi.org/10.1016/j.scriptamat.2019.04.012

10. Bracq, G., Laurent-Brocq, M., Varvenne, C., Perrière, L., Curtin, W. A., Joubert, J. - M. & Guillot, I. (2019). Combining experiments and modeling  to explore the solid solution strengthening of high and medium entropy alloys. Acta Mater., Vol. 177, pp. 266—279. https://doi.org/10.1016/j.actamat.2019.06.050

11. Zaiser, M. (2002). Dislocation motion in a random solid solution. Philos. Mag. A, Vol. 82, No. 15, pp. 2869—2883. https://doi.org/10.1080/01418610208240071

12. Zhai, J. - H. & Zaiser, M. (2019). Properties of dislocation lines in crystals with strong atomic-scale disorder. Mater. Sci. Engineering: A, Vol. 740—741, pp. 285— 294. https://doi.org/10.1016/j.msea.2018.10.010

13. Pasianot, R. & Farkas, D. (2020). Atomistic modeling of dislocations in a random quinary high-entropy alloy. Comp. Mater. Sci., Vol. 173, pp. 109366. https://doi.org/10.1016/j.commatsci.2019.109366

14. Lugovy, M., Slyunyayev, V., Brodnikovskyy, M. & Firstov, S. O. (2017). Calculation of solid solution strengthening in multicomponent high temperature alloys. Elektronnaya mikroskopiya i prochnost materialov, Kyiv: IPM NAN Ukrainy, Iss. 23, pp. 3—9 [in Ukrainian].

15. Lugovy, M., Slyunyayev, V. & Brodnikovskyy, M. (2019). Additivity principle for thermal and athermal components of solid solution strengthening in multicomponent alloys. Elektronnaya mikroskopiya i prochnost materialov, Kyiv: IPM NAN Ukrainy, Iss. 25, pp. 26—34 [in Russian].

16. Lugovy, M., Verbylo, D. & Brodnikovskyy, M. (2021). Shape of dislocation line in stochastic shear stress field. Usp. Materialozn., No. 2, pp. 19—34 [in Ukrainian]. https://doi.org/10.15407/materials2021.02.019

17. Lugovy, M., Verbylo, D. & Brodnikovskyy, M. (2022). Two components of shear stress field in glide plane in multicomponent alloys. Usp. materialozn., No. 4/5, pp. 12—24 [in Ukrainian]. https://doi.org/10.15407/materials2022.04-05.012

18. Lugovy, M., Verbylo, D. & Brodnikovskyy, M. (2022). Evolution of dislocation line shape in multicomponent alloys under loading. Usp. Materialozn., No. 4/5, pp. 36—50 [in Ukrainian]. https://doi.org/10.15407/materials2022.04-05.036

19. Firstov, S. O. & Rogul, T. G. (2022). “Plateau” on temperature dependence of the critical shear stress in binary and multicomponent solid solutions and in pure metals. Metallofiz. Noveishie Tekhnol., Vol. 44, pp. 127—140 [in Ukrainian]. https://doi.org/10.15407/mfint.44.01.0127

20. Podolskiy, A. V., Tabachnikova, E. D., Voloschuk, V. V., Gorban, V. F., Krapivka, N. A. & Firstov, S. O. (2018). Mechanical properties and thermally activated plasticity of the Ti30Zr25Hf15Nb20Ta10 high entropy alloy at temperatures 4.2— 350 K. Mater. Sci. Engineering: A, Vol. 710, pp. 136—141. https://doi.org/10.1016/j.msea.2017.10.073

21. Firstov, S. O., Rogul, T. G., Krapivka, N. A. & Chugunova, S. I. (2018). Thermoactivation analysis of temperature dependence of a flow stress in solid solutions with a B.C.C. lattice. Metallofiz. Noveishie Tekhnol., Vol. 40, pp. 219— 234 [in Russian]. https://doi.org/10.15407/mfint.40.02.0219

22. Firstov, S. O. & Rogul, T. G. (2017). Thermoactivation analysis of the flow-stress– temperature dependence in the F.C.C. solid solutions. Metallofiz. Noveishie Tekhnol., Vol. 39, pp. 33—48 [in Russian]. https://doi.org/10.15407/mfint.39.01.0033

23. Okamoto, N. L., Yuge, K., Tanaka, K., Inui, H. & George, E. P. (2016). Atomic displacement in the CrMnFeCoNi high-entropy alloy – A scaling factor to predict solid solution strengthening. AIP Advances, Vol. 6, pp. 125008. https://doi.org/10.1063/1.4971371

24. Toda-Caraballo, I., Wrobel, J. S., Dudarev, S. L., Nguyen-Manh, D. & Rivera-Diaz-del-Castillo, P. E. (2015). Interatomic spacing distribution in multicomponent alloys. Acta Mater., Vol. 97, pp. 156—169. https://doi.org/10.1016/j.actamat.2015.07.010

25. Feynman, R. P. (1998). Statistical mechanics: A set of lectures. Boca Raton: CRC Press. https://doi.org/10.1201/9780429493034

26. Zakarian, D., Khachatrian, A., Firstov, S. (2019). Universal temperature dependence of Young’s modulus. Metal Powder Report, Vol. 74, No. 4, рр. 204— 206. https://doi.org/10.1016/j.mprp.2018.12.079

27. Firstov, S. O., Lugovskyi, Yu. F. (2023). Temperature dependence of the Young's modulus of metals with different crystal lattices in a wide temperature range. Usp. Materialozn., No. 6, pp. 3—14 [in Ukrainian]. https://doi.org/10.15407/materials2023.06.003

28. Firstov, S. O., Sarzhan, G. F. (2014). Temperature dependence of diffusion contstant. Elektronnaya mikroskopiya i prochnost materialov, Kyiv: IPM NAN Ukrainy, Vyp. 20, pp. 71—75 [in Russian].

29. Varshni, Y. P. (1970). Temperature dependence of the elastic constants. Phys. Rev. B, Vol. 2, pp. 3952—3958. https://doi.org/10.1103/PhysRevB.2.3952

30. Wachtman, J. B., Jr., Tefft, W. E., Lam, D. G., Jr. & Apstein, C. S. (1961). Exponential temperature dependence of Young's modulus for several oxides. Phys. Rev., Vol. 122, pp. 1754. https://doi.org/10.1103/PhysRev.122.1754

31. Labusch, R. (1970). A statistical theory of solid solution hardening. Phys. Stat. Sol., Vol. 41, pp. 659—669. https://doi.org/10.1002/pssb.19700410221

32. Touloukian, Y. S., Kirky, R. K., Taylor, R. E. & Desai, P. D. (1975). Thermophysical properties of matter, Thermal expansion: Metallic elements and alloys, TPRC Data Books. New York: Plenum Press. https://doi.org/10.1007/978-1-4757-1622-1

33. Laplanche, G., Gadaud, P., Horst, O., Otto, F., Eggeler, G. & George, E. P. (2015). Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys Comp., Vol. 623, pp. 348—353. https://doi.org/10.1016/j.jallcom.2014.11.061