Конференції

Properties of ZnO—Zn conglomerates grown on unpolished Si substrates by carbothermal reduction using concentrated solar radiation

Y. O. Kovalskyi 1*,
    
S. P. Starik 2,
 
V. V. Strelchuk 3,
  

1 Інститут проблем матеріалознавства ім. І. М. Францевича НАН України , Київ
2 Інститут надтвердих матеріалів ім. В.М.Бакуля НАНУ, Київ
3 Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, Київ
y.kovalskyi@ipms.kyiv.ua

Usp. materialozn. 2025, 10/11:4-12
https://doi.org/10.15407/materials/-

Анотація

ZnO is a promising direct wide bandgapfunctional semiconductor material for optoelectronics and photovoltaics. The growth of ordered ZnO nanostructures (NS) with a diverse morphology and a high specific surface area is relevant for creating LEDs, gas and biosensors, hybrid solar cells, photocatalysts, etc. ZnO NS with different morphology of nanostructures can be produced in the process of carbothermal synthesis due to the reduction of zinc oxide powder with carbon at relatively low temperatures of ~1000 °C when various types of inertial electric heaters or tube furnaces are used to evaporate the ZnO/C precursor. The different pressure gradients of zinc and oxygen vapor violate the stoichiometric ratio in ZnO. Therefore, to deposit ordered stoichiometric ZnO NS of various morphologies, it is an urgent task to develop methods for rapid evaporation of the precursor, for example, using a solar radiation concentrator. Previously, we have used concentrated solar irradiation to evaporate various precursors and grow ZnO NS with different morphologies: hexagons, spheres, and needles. In this work, we investigated the carbothermal reduction process with using concentrated solar radiation for the growth of ZnO—Zn NS. This approach ensures a high heating rate of the precursor since the temperature in the concentrator focus instantly reaches 1000 °C, which allows for the achievement of saturated zinc vapor in a few minutes for the further formation of ZnO—Zn conglomerates of NS. The influence of the ratio of the mass fraction of ZnO powder to the mass fraction of C powder (ZnO/C) in the precursor, which was changed as 0,33 : 1 and 2 : 1, and the effect of the distance of the substrate from the precursor (parameter L) on the structure and morphology of ZnO—Zn conglomerates grown on unpolished Si substrates by the method of carbothermal reduction using concentrated solar radiation were investigated.

Keywords: ZnO—Zn conglomerates, structure, morphology, photoluminescence, carbothermal reduction.


Посилання

1. Shtepliuk, I., Khranovskyy, V., Ievtushenko, A., Yakimova, R. (2021). Temperature dependent photoluminescence of ZnO thin films grown on off-axis SiC substrates by APMOCVD. Materials, Vol. 14 (4), pp. 1035. https://doi.org/10.3390/ma14041035

2. Taleb, S., M. van Lingen, W., Acuautla, M. (2024). Toward high quality tactile sensors using ZnO/P (VDF-TrFE) flexible piezoelectric composite films. Mater. Adv., Vol. 5, pp. 7671—7678. https://doi.org/10.1039/d4ma00283k

3. Karpyna, V., Ievtushenko, A., Kolomys, O., Lytvyn, O., Strelchuk, V., Tkach, V., Starik, S., Baturin, V., Karpenko, О. (2020). Raman and photoluminescence study of Al, N-codoped ZnO films deposited at oxygen-rich conditions by magnetron sputtering. Phys. Stat. Solid., Vol. 257, pp. 1900788. https://doi.org/10.1002/pssb.201900788

4. Zhang, W., Zhao, X., Sun, Q., Gao, W., Yang, X., Wang, X. (2023). Optical, electrical and thermal stability properties of Al and F co-doped ZnO thin films prepared by sol-gel spin-coating. Thin Solid Films, https://doi.org/10.1016/j.tsf.2023.139889, Vol. 776, pp. 139889.

5. Ievtushenko, A., Khyzhun, O., Karpyna, V., Bykov, O., Tkach, V., Strelchuk, V., Kolomys, O., Rarata, S., Baturin, V., Karpenko, О. and Lashkarev, G. (2019). The effect of Zn3N2 phase decomposition on the properties of highly-doped ZnO : Al, N films. Thin Solid Films, https://doi.org/10.1016/j.tsf.2018.11.052 Vol. 669, pp. 605—612.

6. Khranovskyy, V., Yakimova, R., Karlsson, F. S., Syed, A., Holtz, P.-O., Urgessa, Z. N., Oluwafemi, O. S., Both, J. R. (2012). Comparative PL study of individual ZnO nanorods, grown by APMOCVD and CBD techniques. Phys. B: Condensed Matter., Vol. 407, pp. 1538—1542. https://doi.org/10.1016/j.physb.2011.09.080

7. Chem. Baibara, O., Radchenko, V., Karpyna, V., Ievtushenko, A. (2021). A review of the some aspects of the development of ZnO-based photocatalysts for a variety of applications. Phys. Solid State, Vol. https://doi.org/10.15330/pcss.22.3.585—594 22 (3), pp. 585—594.

8. Ievtushenko, A., Tkach, V., Strelchuk, V., Petrosian, L., Kolomys, O., Kutsay, O., Garashchenko, V., Olifan, O., Korichev, S., Lashkarev, G. and Khranovskyy, V. (2017). Solar explosive evaporation growth of ZnO nanostructures. Appl. Sci., Vol. 7, pp. 383. https://doi.org/10.3390/app7040383

9. Mortezaali, A., Moradi, R. (2014). The correlation between the substrate temperature and morphological ZnO nanostructures for H2S gas sensors. Sensors and Actuators A: Physical, https://doi.org/10.1016/j.sna.2013.11.027 Vol. 206, pp. 30—34.

10. Labhane, P. K., Sonawane, S. H., Sonawane, G. H., Patsl, S. P., Huse, V. R. (2018). Snfluence of Mg dopsng on ZnO nanoparticles decorated on grapheme oxide (GO) crumpled paper-like sheet and its high photocatalytic performance under sunlight. J. Phys. Chem. Solids, Vol. 114, pp. 71—82. https://doi.org/10.1016/j.jpcs.2017.11.017