Conferences

Modelling of shear stress field in glide plane in substitutional solid solutions

   

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
nil2903@gmail.com
Usp. materialozn. 2021, 3:24-37
https://doi.org/10.15407/materials2021.03.024

Abstract

The formation of stochastic shear stress field in the glide plane in the substitutional solid solution was investigated by computer simulation. If the atoms in the crystal lattice nodes of the substitutional solid solution are considered as a kind of point defects in the virtual solvent medium, the shear stress distribution in the glide plane can be calculated based on the interaction of edge dislocation and such defects. For concentrated solid solutions, the shear stress will be a normally distributed random value with zero mathematical expectation. The standard deviation of this distribution will be the greater the greater the effective distortion of crystalline lattice of the alloy. In the case of dilute solid solution, where one of the components has a predominant content, the simulation gives shear stress distribution in the glide plane, where large peaks are separated from each other by wide areas of near-zero stresses. Thus, there are separate discrete obstacles in the form of large stress peaks for the edge dislocation in the glide plane in dilute solid solution, and the space between the peaks is practically stress-free. The average distance between large peaks correlates with the average distance between the atoms of those components that are few in solution, if total atomic fraction of these components is considered. Thus, the proposed modeling gives a very realistic shear stress distribution in the glide plane for concentrated and dilute substitutional solid solutions with fcc and bcc structures. This can be useful in further modeling the yield strength in multicomponent alloys.


Download full text

DISLOCATION, DISTORTIONS, SHEAR STRESSES

References

1. Miracle, D. B. & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Mater., Vol. 122, pp. 448—511. doi: https://doi.org/10.1016/j.actamat.2016.08.081

2. George, E. P., Curtin, W. A. & Tasan, C. C. (2020). High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater., Vol. 188, pp. 435— 474. doi: https://doi.org/10.1016/j.actamat.2019.12.015

3. Nabarro, F. (1976). Solution and precipitation hardening. The Physics of Metals (pp. 152— 188), Cambridge: Cambridge University Press. doi: https://doi.org/10.1017/CBO9780511760020.007

4. Labusch, R. (1981). Physical aspects of precipitation- and solid solution-hardening. Czech. J. Phys., Vol. 31, pp. 165—176. doi: https://doi.org/10.1007/BF01959439

5. Leyson, G., Curtin, W., Hector, L. & Woodward, C. F. (2010). Quantitative prediction of solute strengthening in aluminium alloys. Nature Mater., Vol. 9, pp. 750—755. doi: https://doi.org/10.1038/nmat2813

6. Leyson, G. P. M., Hector, L. G. & Curtin, W. A. (2012). Solute strengthening from first principles and application to aluminum alloys. Acta Mater., Vol. 60, No. 9, pp. 3873—3884. doi: https://doi.org/10.1016/j.actamat.2012.03.037

7. Leyson, G. P. M. & Curtin, W. A. (2013). Friedel vs. Labusch: the strong/weak pinning transition in solute strengthened metals. Philos. Mag., Vol. 93, No. 19, pp. 2428—2444. doi: https://doi.org/10.1080/14786435.2013.776718

8. Leyson, G. P. M. & Curtin, W. A. (2016). Solute strengthening at high temperatures, Modelling Simul. Mater. Sci. Eng., Vol. 24, pp. 065005. doi: https://doi.org/10.1088/0965- 0393/24/6/065005

9. Varvenne, C., Luque, A. & Curtin, W. A. (2016). Theory of strengthening in fcc high entropy alloys. Acta Mater., Vol. 118, pp. 164—176. doi: https://doi.org/10.1016/j.actamat.2016.07.040

10. Varvenne, C., Leyson, G. P. M., Ghazisaeidi, M. & Curtin, W. A. (2017). Solute strengthening in random alloys. Acta Mater., Vol. 124, pp. 660—683. doi: https://doi.org/10.1016/j.actamat.2016.09.046

11. Nöhring, W. G., & Curtin, W. A. (2019). Correlation of microdistortions with misfit volumes in High Entropy Alloys. Scripta Mater., Vol. 168, pp. 119—123. doi: https://doi.org/10.1016/j.scriptamat.2019.04.012

12. Bracq, G., Laurent-Brocq, M., Varvenne, C., Perrière, L., Curtin, W. A., Joubert, J. - M. & Guillot, I. (2019). Combining experiments and modeling to explore the solid solution strengthening of high and medium entropy alloys. Acta Mater., Vol. 177, pp. 266—279. doi: https://doi.org/10.1016/j.actamat.2019.06.050

13. Hu, Y., Szajewski, B. A., Rodney, D. & Curtin, W. A. (2020). Atomistic dislocation core energies and calibration of non-singular discrete dislocation dynamics. Modelling Simul. Mater. Sci. Eng., Vol. 28, pp. 015005. doi: https://doi.org/10.1088/1361-651X/ab5489

14. Zaiser, M. (2002). Dislocation motion in a random solid solution. Philos. Mag. A, Vol. 82, No. 15, pp. 2869—2883. doi: https://doi.org/10.1080/01418610208240071 

15. Zhai, J. - H. & Zaiser, M. (2019). Properties of dislocation lines in crystals with strong atomic-scale disorder. Mater. Sci. Eng.: A, Vol. 740—741, pp. 285—294. doi: https://doi.org/10.1016/j.msea.2018.10.010

16. Péterffy, G., Ispánovity, P. D., Foster, M. E., Zhou, X. & Sills, R. B. (2020). Length scales and scale-free dynamics of dislocations in dense solid solutions. Mater. Theory, Vol. 4, Article No. 6. doi: https://doi.org/10.1186/s41313-020-00023-z

17. Pasianot, R. & Farkas, D. (2020). Atomistic modeling of dislocations in a random quinary high-entropy alloy. Comp. Mater. Sci., Vol. 173, pp. 109366. doi: https://doi.org/10.1016/j.commatsci.2019.109366

18. Lugovy, M., Slyunyayev, V. & Brodnikovskyy, M. (2021). Solid solution strengthening in multicomponent fcc and bcc alloys: Analytical Approach. Progress in Natural Science: Materials International, Vol. 31, pp. 95—104. doi: https://doi.org/10.1016/j.pnsc.2020.11.006

19. Lugovy, M., Slyunyayev, V., Brodnikovskyy, M. & Firstov, S. O. (2017). Calculation of solid solution strengthening in multicomponent high temperature alloys. Elektronnaya mikroskopiya i prochnost materialov, Kyiv: IPM NAN Ukrainy, Vyp. 23, pp. 3—9 [in Ukrainian].

20. Lugovy, M., Slyunyayev, V. & Brodnikovskyy, M. (2019). Additivity principle for thermal and athermal components of solid solution strengthening in multicomponent alloys. Elektronnaya mikroskopiya i prochnost materialov, Kyiv: IPM NAN Ukrainy, Vyp. 25, pp. 26—34 [in Russian].

21. Lugovy, M., Verbylo, D. & Brodnikovskyy, M. (2021). Shape of dislocation line in stochastic shear stress field. Uspihy materialoznavstva, Kyiv: ІPM NAN Ukrainy, Vyp. 2, pp. 19—34 [in Ukrainian]. doi: https://doi.org/10.15407/materials2021.02.019

22. Gremaud, G. (2004). Overview on dislocation-point defect interaction: the brownian picture of dislocation motion. Mater. Sci. Eng. A, Vol. 370, pp. 191—198. doi: https://doi.org/10.1016/j.msea.2003.04.005

23. Argon, A. S. (2008). Strengthening mechanisms in crystal plasticity. Oxford: Oxford University Press. doi: https://doi.org/10.1093/acprof:oso/9780198516002.001.0001

24. Hirth, J. P. & Lothe, J. (1982). Theory of dislocations, New York: Wiley.

25. Messerschmidt, U. (2010). Dislocation dynamics during plastic deformation, Berlin Heidelberg: Springer-Verlag. doi: https://doi.org/10.1007/978-3-642-03177-9

26. Stepanov, N. D., Shaysultanov, D. G., Tikhonovsky, M. A., Salishchev, G. A. (2015). Tensile properties of the Cr—Fe—Ni—Mn non-equiatomic multicomponent alloys with different Cr contents. Mater. Des., Vol. 87, pp. 60—65. doi: https://doi.org/10.1016/j.matdes.2015.08.007

27. Toda-Caraballo, I. & Rivera-Diaz-del-Castillo, P.E. (2015). Modelling solid solution hardening in high entropy alloys. Acta Mater., Vol. 85, pp. 14—23. doi: https://doi.org/10.1016/j.actamat.2014.11.014