Conferences

Evolution of dislocation line shape in multicomponent alloys under loading

   

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
nil2903@gmail.com
Usp. materialozn. 2022, 4/5:36-50
https://doi.org/10.15407/materials2022.04-05.036

Abstract

The evolution of the dislocation line shape in a multicomponent alloy CrCoNiFeMn under loading was investigated by the method of discrete dislocation dynamics. It was found in a numerical experiment that the best approximation for the shape of the average bulge of the dislocation line would be a sinusoidal shape rather than a parabolic or arc shape. The equilibrium form of dislocation at zero load fits well into a band with a width of three correlation lengths of the short-wave component of the shear stress field created by dissolved atoms in the glide plane. In this case the dislocation line waviness on the scale of the correlation length of the long-wave component is not observed. It has been found that dislocation segments can overcome internal stress barriers with external applied stress assistance. This is an irreversible process of new equilibrium bulges formation. One of these bulges becomes nonequilibrium, increases and releases the dislocation from the initial fixation at a critical stress, which can be conditionally considered to be the yield strength. The external stress, which assists to the dislocation segments to overcome the internal stress barriers, can to some extent compensate for the short-wave component of the shear stress field. Then, as the numerical experiment shows, the dislocation line waviness on the scale of the correlation length of the long-wave component will be activated. Thus, the two components of the shear stress field affect the shape of the dislocation line separately and sequentially with increasing external load.


Download full text

DISLOCATION, GLIDE PLANE., SHEAR STRESSES, SOLID SOLUTION

References

1. Miracle, D. B. & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Mater., Vol. 122, pp. 448—511. doi: https://doi.org/10.1016/j.actamat.2016.08.081

2. George, E. P., Curtin, W. A. & Tasan, C. C. (2020). High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater., Vol. 188, pp. 435—474. doi: https://doi.org/10.1016/j.actamat.2019.12.015

3. Nabarro, F. (1976). Solution and precipitation hardening. In P. Hirsch (Author), The Physics of Metals. Cambridge: Cambridge University Press, pp. 152—188. doi: https://doi.org/10.1017/CBO9780511760020.007

4. Labusch, R. (1981). Physical aspects of precipitation- and solid solution-hardening. Czech. J. Phys., Vol.31, pp.165—176. doi: https://doi.org/10.1007/BF01959439

5. Leyson, G., Curtin, W., Hector, L. & Woodward, C. F. (2010). Quantitative prediction of solute strengthening in aluminium alloys. Nature Mater., Vol.9, pp. 750—755. doi: https://doi.org/10.1038/nmat2813

6. Leyson, G. P. M., Hector, L. G. & Curtin, W. A. (2012). Solute strengthening from first principles and application to aluminum alloys. Acta Mater., Vol. 60, No. 9, pp. 3873—3884. doi: https://doi.org/10.1016/j.actamat.2012.03.037

7. Leyson, G. P. M. & Curtin, W. A. (2013). Friedel vs. Labusch: the strong/weak pinning transition in solute strengthened metals. Philos. Mag., Vol. 93, No. 19, pp. 2428—2444. doi: https://doi.org/10.1080/14786435.2013.776718

8. Leyson, G. P. M. & Curtin, W. A. (2016).Solute strengthening at high temperatures.Modelling Simul. Mater. Sci. Eng., Vol.24, pp. 065005. doi: https://doi.org/10.1088/0965-0393/24/6/065005

9. Varvenne, C., Luque, A. & Curtin, W. A. (2016). Theory of strengthening in fcc high entropy alloys. Acta Mater., Vol. 118, pp. 164—176. doi: https://doi.org/10.1016/j.actamat.2016.07.040

10. Varvenne, C., Leyson, G. P. M., Ghazisaeidi, M. & Curtin, W. A. (2017). Solute strengthening in random alloys. Acta Mater., Vol. 124, pp. 660—683. doi: https://doi.org/10.1016/j.actamat.2016.09.046

11. Nöhring, W. G., & Curtin, W. A. (2019). Correlation of microdistortions with misfit volumes in High Entropy Alloys. Scripta Mater., Vol. 168, pp. 119—123. doi: https://doi.org/10.1016/j.scriptamat.2019.04.012

12. Bracq, G., Laurent-Brocq, M., Varvenne, C., Perrière, L., Curtin, W. A., Joubert, J. - M.& Guillot, I. (2019). Combining experiments and modeling to explore the solid solution strengthening of high and medium entropy alloys. Acta Mater., Vol. 177, pp. 266—279. doi: https://doi.org/10.1016/j.actamat.2019.06.050

13. Hu, Y., Szajewski, B. A., Rodney, D.&Curtin, W. A. (2020). Atomistic dislocation core energies and calibration of non-singular discrete dislocation dynamics. Modelling Simul. Mater. Sci. Eng., Vol.28, pp. 015005. doi: https://doi.org/10.1088/1361-651X/ab5489

14. Zaiser, M. (2002). Dislocation motion in a random solid solution. Philos. Mag. A, Vol. 82, No. 15, pp. 2869—2883. doi: https://doi.org/10.1080/01418610208240071

15. Zhai, J. - H. & Zaiser, M. (2019). Properties of dislocation lines in crystals with strong atomic-scale disorder. Mater. Sci. Engineering: A, Vol. 740—741, pp. 285—294. doi: https://doi.org/10.1016/j.msea.2018.10.010

16. Péterffy, G., Ispánovity, P. D., Foster, M. E., Zhou, X. & Sills, R. B. (2020). Length scales and scale-free dynamics of dislocations in dense solid solutions. Mater. Theory, Vol.4, Article No.6. doi: https://doi.org/10.1186/s41313-020-00023-z

17. Pasianot, R. & Farkas, D. (2020). Atomistic modeling of dislocations in a random quinary high-entropy alloy. Comp. Mater. Sci., Vol. 173, pp. 109366. doi: https://doi.org/10.1016/j.commatsci.2019.109366

18. Lugovy, M., Slyunyayev, V. &Brodnikovskyy, M. (2021).Solid solution strengthening in multicomponent fcc and bcc alloys: Analytical approach. Progress in Natural Science: Materials International, Vol. 31, pp. 95—104. doi: https://doi.org/10.1016/j.pnsc.2020.11.006

19. Lugovy, M., Slyunyayev, V., Brodnikovskyy, M. &Firstov, S. O. (2017). Calculation of solid solution strengthening in multicomponent high temperature alloys. Elektronnaya mikroskopiya i prochnost materialov, Kyiv: IPM NAN Ukrainy, Vyp. 23, pp. 3—9 [in Ukrainian].

20. Lugovy, M., Slyunyayev, V. & Brodnikovskyy, M. (2019). Additivity principle for thermal and athermal components of solid solution strengthening in multicomponent alloys. Elektronnaya mikroskopiya i prochnost materialov, Kyiv: IPM NAN Ukrainy, Vyp. 25, pp. 26—4 [in Russian].

21. Lugovy, M., Verbylo, D. & Brodnikovskyy, M. (2021).Shape of dislocation line in stochastic shearstress field.Uspihymaterialoznavstva, Kyiv: ІPMNANUkrainy, Vyp. 2, pp. 19—34 [inUkrainian]. doi: https://doi.org/10.15407/materials2021.02.019