Конференції

Abnormal superelasticity of intermetallic Ti3Sn: a brief overview

    

Інститут проблем матеріалознавства ім. І. М. Францевича НАН України , Київ
yupodrezov@ukr.net
Usp. materialozn. 2025, 10/11:13-26
https://doi.org/10.15407/materials/-

Анотація

In recent years, intensive research has been conducted to development materials with biocompatible mechanical behavior for use in transplantology. Particular attention is paid to the improvement of β- and α+β titanium alloys alloyed with other metals. However, a literature review has shown that a characteristic feature of biological tissues is a J-shaped load curve, while most superelastic metallic materials have S-shaped load curve. In addition, known titanium alloys have elastic characteristics higher than those of bone tissue. The review presents results that demonstrate that the Ti3Sn-based alloys developed by the authors are an exception, exhibiting unusual mechanical behavior, namely a J-shaped load curve. In addition, unlike known titanium alloys, Ti3Sn-based alloys have elastic characteristics close to those of biological tissues. Depending on the composition and microstructure, their elastic modulus varies in the range of 4-40 GPa. This behavior was established for the binary intermetallic Ti75,5Sn24,5 and alloys based on it, doped with Zr, Al, and Dy. The lowest value of 4 GPa is demonstrated by the intermetallic Ti75,5Sn24,5. The presented results are confirmed by quasi-static bending, compression and tensile tests, as well as by methods of dynamic mechanical analysis and resonant ultrasonic spectroscopy, which demonstrates the reproducibility of the effect. A decrease in the apparent modulus of elasticity with increasing load was also found, which, however, was completely reversible. The physical reasons for this behavior are phase-structural rearrangements during deformation, associated with the martensitic transformation from the hexagonal P63/mmc to the orthorhombic Cmcm phase, which has a twinned self-accommodated microstructure. The direction of future research is determined.

Keywords: intermetallics, mechanical behavior, elasticity.


Посилання

1. Kornilov, I. I., Nartova, T. T. (1960). Heat resistance of alloys of the titanium-tin system. Izv. AN SSSR, OTN, No. 5, pp. 133—136 [in Russian].

2. Bai, A. S., Lainer, D. I., Slesareva, E. N., Tsypin, M. I. (1970). Oxidation of titanium and its alloys. Moskow: Metallurgiya, 320 p. [in Russian].

3. Hashimoto, T, Nakamura, M., Takeuchi, S. (1990). Plastic deformation of Ti3Sn. Mater. Trans. JIM, Vol. 31, pp. 195—199. https://doi.org/10.2320/matertrans1989.31.195

4. Wong, C. R., Fleischer, R. L. (1994). Low frequency damping and ultrasonic attenuation in Ti3Sn-based alloys. J. Mater. Res., Vol. 9, pp. 1441—1448. https://doi.org/10.1557/JMR.1994.1441

5. Bulanova, M., Podrezov, Yu., Fartushna, Yu. (2006). Phase composition, structure and mechanical properties of Ti–Dy–Si–Sn alloys. Intermetallics, Vol. 14, pp. 435—443. https://doi.org/10.1016/j.intermet.2005.08.004

6. Vdovychenko, O. V., Bulanova, M. V., Fartushna, Yu. V., Shcheretsky, A. A. (2010). Dynamic mechanical behavior of intermetallide Ti3Sn. Scr. Mater., Vol. 62, pp. 758—761. https://doi.org/10.1016/j.scriptamat.2010.01.036

7. Ivanova, O., Karpets, M., Yavari, A. R., Georgarakis, K., Podrezov, Yu. (2014). In- situ X-Ray diffraction study of the phase transition in the non-stoichiometric intermetallic compound Ti3Sn. J. Alloys Compd., Vol. 582, pp. 360—363. https://doi.org/10.1016/j.jallcom.2013.07.198

8. Ivanova, O., Yavari, A. R., Georgarakis, K., Podrezov, Yu. (2014). Room temperature strain recovery into non-stoichiometric intermetallic compound Ti3Sn. J. Alloys Compd., Vol. 617, pp. 34—38. https://doi.org/10.1016/j.jallcom.2014.03.195

9. Ivanova, O. M. (2014). Analysis of the transformation strain associated with the hexagonal-to-orthorhombic transition in Ti3Sn. Еlectronnaya mikroskopiya ta mitsnist materialiv, Iss. 20, pp. 83—92.

10. Vdovychenko, O., Ivanova, O., Podrezov, Yu., Bulanova, M., Fartushna, Yu. (2017). Mechanical behavior of homogeneous and nearly homogeneous Ti3Sn: Role of composition and microstructure. Mater. Des., Vol. 125, pp. 26—34. https://doi.org/10.1016/j.matdes.2017.03.074

11. Ivanova, O., Shcheretsky, O., Podrezov, Yu., Karpets, M. (2017). Young’s modulus and damping capacity of Ti3Sn intermetallic compoundwith 1 at% and 3 at% of Zr and Al additions. Mater. Sci. Eng. A, Vol. 683, pp. 252—255. https://doi.org/10.1016/j.msea.2016.12.030

12. Biomechanics of Soft Tissues Principles and Applications / Ed. Adil Al-Mayah (2014). CRC Press Taylor & Francis Group, 169 p. http://www.crcpress.com

13. Stoppa, M., Chiolerio, A., Sensors, A. (2014). Wearable electronics and smart textiles. A Critical Rev., Vol. 14, pp. 11957—11992. https://doi.org/10.3390/s140711957

14. Jang, K. (2017). Self-assembled three dimensional network designs for soft electronics. Nat Commun. https://doi.org/10.1038/ncomms7566

15. Khang, D. Y., Jiang, H. Q., Huang, Y., Rogers, J. A. (2006). Stretchable form of single-crystal silicon for hig-performance helectronics on rubber substrates. Science, Vol. A 311, pp. 208—212. https://doi.org/10.1126/science.1121401

16. Ma, Y., Feng, X., Rogers, J. A., Huang, Y., Zhang, Y. (2017). Design and application of 'J-shaped' stress-strain behavior in stretchable electronics: a review. Lab Chip., Vol. 17, pp. 1689—1704. https://doi.org/10.1039/c7lc00289k

17. Anene, F. A., Aiza Jaafar, C. N., Zainol, I., Azmah Hanim, M. A., Suraya, M. T. (2021). Biomedical materials: A review of titanium based alloys. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., Vol. 235, pp. 3792—3805. https://doi.org/10.1177/0954406220967694

18. Biesiekierski, A., Lin, J., Munir, K., Ozan, S., Li, Y., Wen, C. (2018). An investigation of the mechanical and microstructural evolution of a TiNbZr alloy with varied ageing time. Sci. Rep., Vol. 8, pp. 5737. https://doi.org/10.1038/s41598-018-24155-y

19. Torres-Sanchez, C., Wang, J., Norrito, M., Zani, L., Conway, P. P. (2020). Addition of Sn to TiNb alloys to improve mechanical performance and surface properties conducive to enhanced cell activity. Mater. Sci. Eng. C., Vol. 115, pp. 110839. https://doi.org/10.1016/j.msec.2020.110839

20. Hanada, S., Masahashi, N., Semboshi, S., Jung, T. K. (2021). Low Young’s modulus of cold groove-rolled β-Ti–Nb–Sn alloys for orthopedic applications. Mater. Sci. Eng. A, Vol. 802, pp. 140645. https://doi.org/10.1016/j.msea.2020.140645

21. Azmat, A., Tufail, M., Chandio, A. D. (2021). Synthesis and characterization of Ti—Sn alloy for orthopedic applications. Materials, Vol. 14, pp. 7660. https://doi.org/10.3390/ma14247660

22. Li, P., Zhang, H., Tong, T., He, Z. (2019). The rapidly solidified β-type Ti–Fe–Sn alloys with high specific strength and low elastic modulus J. Alloys Compd., Vol. 786, pp. 986—994. https://doi.org/10.1016/j.jallcom.2019.01.346

23. Yang, Y., Guo, X., Dong, Z. (2021). Effect of Nb on microstructure and mechanical properties of Ti–xNb–4Zr–8Sn alloys. Mater. Sci. Eng. A, Vol. 825, pp. 141741. https://doi.org/10.1016/j.msea.2021.141741

24. Li, P., Ma, X., Jia, Y., Meng, F., Tang, L., He, Zh. (2019). Microstructure and mechanical properties of rapidly solidified β-Type Ti–Fe–Sn–Mo alloys with high specific strength and low elastic modulus Metals, Vol. 9, pp 1135. https://doi.org/10.3390/met9111135