Конференції

Thermokinetic of the formation of α-Al2O3-nano from hydrated forms of γ-, γ’-, θ-, κ-Al2O3-nano powders at 570—1470 K

           

Інститут проблем матеріалознавства ім. І. М. Францевича НАН України , Київ
Garbuz.v1950@Gmail.com
Usp. materialozn. 2025, 10/11:100-117
https://doi.org/10.15407/materials2025.10-11.100

Анотація

Hydrated powders γ-, γ '-, θ-, κ-Al2O3-nanowere for the first timedirectly precipitated from alkaline solutions of Na [Al (OH)4], by-products of α-AlB12 synthesis, using nitric acid (at pH = 5,0—5,5). Precipitates were washed and dried at 570 K (SВЕТ = 213m2g-1, d = 5—10 nm). The powders, in the form of two parallel series, underwent step air treatment (SAT) for 2 hours at 570—1470 K with a step of 50—100 K. The samples of the first series («1») were heated in series (T0 → T1 → T2 → ··· Tn). The second (“2”) —once (T0 → T1; T0 → T2; ··· T0 → Tn). The formation of α-Al2O3-nano oxide occurs during three parallel reactions: dehydration, phase transition γ → α-Al2O3-nano and growth of α-Al2O3-nano particles. The samples were measured using chemical analysis methods (elemental and chemical phase composition), X-ray phase analysis (phase composition), X-ray diffractometric of the coherent scattering region hkl012 α-Al2O3-nano at 1470K (average size of α-Al2O3 crystallites), thermal desorption method nitrogen (Sspecific, BET) and X-ray fluorescence analysis (mass fraction of product and impurities). At 570–720 K, the activation energy of the dehydration of the two OH groups are EaAl(OH)3→AlO(OH), H2O ↑ = 59,4 ± 0,5 kJ · mol-1. At 820—1070 K, the last OH-group decomposes at a rate of 2,13 · 10–4— 4,93 ·10–4 mol · s-1  and an activation energy with in EaAlO(OH) →Al2O3, 0,5H2O ↑ = 13,2 ± 0,8 kJ · mol- 1. At 770—970 K (first), the activation energy of the phase transition is Ea, γ → Α-Al2O3 = 23,9 ± 1,0 kJ · mol-1. At 1070—1170 K Ea, γ → Α-Al2O3 = 83,5 ± 0,8 kJ · mol-1. It agrees with the known heat of transformation ΔН γ →Α-Al2O3 = 86,2 kJ · mol-1. Dimensional characteristics of crystallites (10,4—48 nm); specific surface area of powders (213—8,6 m2· · g-1, BET); thermokinetic parameters of thermal growth of α-Al2O3-nano crystallites (V α-Al2O3 =  1,44 · 10-3—6,67 · 10-3 nm · s-1; E α-Al2O3 = 38,7 ±2,1 kJ · mol-1; A0, α-Al2O3 = 0,80  ± 0,02 s-1 at 1220 –1370 K) along the temperature scale 570—1470 K were determined and calculated. When SAT ~ 1170 K for ~2 hours, the phase ratio γ-Al2O3 / α-Al2O3 ≈ 1 : 1. This ratio causes a high content of surface 5-coordinated ionic polyhedral27Al3+, as places for attachment of catalytically active atoms, such as Pt.

Keywords: thermal kinetics, phase transition, powders, γ → α-Al2O3-nano, dehydration, thermal growth of crystallites.


Посилання

1. Aluminum oxide-hydroxide AlO(OH). https://www.benchchem.com/product/b075778

2. Mammadov, M. Gurbanov, L. Ahmadzade, A. Abishov, M. A. (2023). Thermoluminescence properties of nano-alumina with two different particle sizes. Phys. Chem. Solid State, Vol. 24, No. 3. pp. 584—588.

3. Jowhari, S. A. Farha, Al-Said, Abuhoza, A. and Donya, H. (2022). Dosimetric studies of pure and Ag-doped alumina as nanodosimeter for high gammaradiation doses. Mater. Today Proc., Vol. 65, pp. 2615.. https://doi.org/10.1016/J.MATPR.2022.04.879

4. Jiatai, Wang, Duan, Zhao, Geng, Zhou, Caihong, Zhang, Peng, Zhang, Xiaoyi, Hou. (2020). Synthesis of nano-sized γ-Al2O3 with controllable size by simple homogeneous precipitation method. Mater. Lett., Vol. 279, pp. 128476. https://doi.org/10.1016/j.matlet.2020.128476

5. Yu, Yin, Xing-Hua, Ma, Jingwei, Li, Shuling, Zhang, Zihao, Yin, Minghao, Ma and Feng, Guo. (2024). Tribological and corrosion properties of Al2O3@Y2O3-reinforced Ni60A composite coatings deposited using laser cladding. Coatings, Vol. 14 (10),  pp. 1334. https://doi.org/10.3390/coatings14101334

6. Xiaoli, Huang, Xiaoqing, Zhou, Junfeng, Li, Bo, Yue, Haonan, Dong, Yanxi, Luo. (2024). Effect of Zr–Y double doping and Al2O3 coating on properties of nickel-rich monomer LiNi0.6Co0.2Mn0.2O2 cathode material for Li-Ion batteries. Integrated Ferroelectrics. Vol. 240, Iss. 6—7, pp. 1024—1033. https://doi.org/10.1080/10584587.2024.2327937

7. Domnich, V., Reynaud, S., Haber, R. A., Chhowalla, M. (2011). Boron Carbide: structure; properties; and stability under stress. J. Amer. Ceram. Soc., Vol. 94 (11), pp. 3605—3628.

8. Stachin, J. D., Pyzik, A., Carrol, D. (1992). Boron Carbide Aluminum Cermet is for Pressure Housing Applications. Naval Command, Control and Ocean Surveillance Center. RDT & E Division, San Diego, California 92152-5000, Technical Report 1574, pp. 192.

9. Yijun, Du', Shuyou, Li, Zhang', K., Lu', K. (1997). BN/Al composite formation by high energy ball milling. Scrypta Materialia, Vol. 36 (1), pp. 7—14.

10. Ehsan, Ghasali, Masoud, Alizadeh, Touradj, Ebadzadeh. (2015). Investigation on microstructural and mechanical properties of B4C–aluminum matrix composites prepared by microwave sintering. J. Mater. Res. Technol., Vol. 4 (4), pp. 411—415.

11. Wu, S., Xiao, G., Xue, L. (2015). Solid reaction between Al and B4C. Canadian Metallurgical Quarterly, Vol. 54 (2), pp. 247—249.

12. Firestein, K. L., Steinman, F. E., Golovin, I. S. (2015). Fabrication, characterization and mechanical properties of spark plasma sintered Al—BN nanoparticle composites. Mater. Sci. Engineering, Vol. 642, pp. 104—112.

13. Agus, Pramono, Lembit, Kommel, Lauri, Kollo, Renno, Veinthal. (2016). The aluminum based composite produced by self-propagating high temperature synthesis. Mater. Sci. (Medziagotira), Vol. 22 (1), pp. 1392—1320.

14. Qian, Zhao, Yunhong, Liang, Zhihui, Zhang. (2016). Microstructure and dry-sliding wear behavior of B4C ceramic particulate reinforced Al 5083 matrix composite. Metals, Vol. 6 (227), pp. 1—12. https://doi.org/10.3390/met6090227

15. Pat. 8,030,234 B2 US, IPC C043 35/563 (2006-01), C04B 35/58 (2006-01). Aluminum boron carbide composite and method to form said composite, Pyzik, Aleksander, Newman, Robert, Chartier, Mark, Wetzel, Amy, Haney, Christophe, Publ. Oct. 4, 2011.

16. Pat. 5,039,633 US, IPC C22C 29/04, Cl501/93; 75/ 244, B4C/Al cermets and method for making same, Pyzik, Aleksander, Nilsson, Robert, Publ. Aug. 13. 1991.

17. Patent of Ukraine № UA107193U. P.V.Mazur,V.B.Muratov,V.V.Garbuz,Ye.V.Kartuzov, O.O.Vasiliev.The method of obtaining AlB12 aluminum dodecaboride powder. 25.05.2016.

18. Patent of Ukraine № UA107259U. P.V.Mazur,V.B.Muratov,V.V.Garbuz,Ye.V.Kartuzov, O.O.Vasiliev.Impact-resistant ceramics based on aluminum dodecaboride.25.05.2026.

19. Düvel,A., Romanova, E., Sharifi, M. (2011). Mechanically induced phase transformation of γ-Al2O3 into α-Al2O3. Access to structurally disordered γ-Al2O3  with a controllable amount of pentacoordinated Al sites. J. Phys. Chem. C, Vol. 115 (46), pp. 22770—22780. https://pubs.acs.org/doi/abs/10.1021/jp206077r

20. Mironenko, R. M., Belskaya, O. B., Maevskaya, O. V. (2013) Effect of surface modification of γ-Al2O3 using oxalate complexes of aluminium on the formation and properties of platinum centres of Pt/Al2O3. Catalysts Chemistry for Sustainable Development, Vol. 21, pp. 241—249. https://www.sibran.ru/upload/iblock/64d/64d61c5662455ad2c362bd6d0e04bd0c.pdf

21. Ja, Hun Kwak, Jian, Zhi Hu, Adrienne, C., Lukaski, Do, Heui, Kim. (2008). The role of penta coordinated Al3+ ions in the high temperature phase transformation of Al2O3. J. Phys. Chem. C, Vol. 112 (25), pp. 9486—9492. https://doi.org/10.1021/jp802631u

22. Remy G. (1963) Course of inorganic chemistry. Moscow, IL, Vol. 1, pp. 392–395 [In Russiаn].

23. V.A.Dubok, V.I.Kornilova, L.E.Pechenkovskaya L.E., et.al. (1988) Improvement of methods of chemical analysis of refractory compounds and metal alloys. Kyiv, Naukova Dumka. 40 P. [In Russiаn].

24. IUPACGreen Book (1993). Quantities, Unitsand Symbol sin Physical Chemistry. Secondedition, pp. 56—57.

25. Garbuz, V. V., Kuzmenko, L. N., Petrova, V. A., Silinska, T. A., Terentieva, T. M. (2019). Thermal oxidation kinetics of multi-walled carbon nanotubes in an oxygen flow. Poroshkova Metallurgiya, Vol. 58, https://doi.org/10.1007/s11106-019-00058-z

26. Garbuz V.V., Petrova V.A., Romanova L.A.(2018) Determination of the activation energy of oxidation of free carbon in industrial boron carbide powders. In: “Materials Science of Refractory Compounds”, May 22-24, 2018, Kyiv, Ukraine. P.185.[In Russian]

27. Garbuz V.V., Petrova V.A.,Yakovlev A.V., Kuzmenko L.N., Herovimchuk L.S., Avramchuk S.K., Shadskyh S.K. (2012) Method of pulse reductive extraction. Decomposition of micro- and nanopowders of layered and dense phases of boron nitride. Nanostructured Materials Science, N4, pp.34-39.[In Russian]

28. Garbuz V.V., Petrova V.A.,Kopan' A.R., Avramchuk S.K., Kuzmenko L.N.,Silinska T.A., Terentieva T.M. Method of reductive extraction for determining the enthalpy of decomposition reactions of various modifications of BN. (2019) Poroshkova Metallurgiya, N 9-10, pp.1-11. [In Ukrainian]

29. Garbuz, V. V., Kuzmenko, L. M., Petrova, V. A., Silinskaya, T. A., Terentyeva, T. M., Muratov, V. B., Vasiliev, O. O., Mazur, P. V., Kondrashev, O. I., Olifan, O. I. (2019). Thermokinetic peculiarities of the phase transition γ → α-nano-powder Al2O3 step heating in the area. 6-th Internat. conf. “HighMathTech” October 28—30 2019, pp. 118.

30. Garbuz, V. V., Kuzmenko, L. M., Petrova, V. A. . (2020). Thermokinetic model for the formation and oxidation of carbon nanoforms. Powder Metall Met. Ceram., Vol. 59, No. 3—4 (532), pp. 141—149. https://doi.org/10.1007/s11106-020-00147-4

31. ISO/TR – 11360: 2010(E). Nanotechnologies – Methodology for the classification andcategorizat ion of nanomaterials. Firsted.: 2010-07-15. ISO, 2010. 25 p. 07-15. ISO. 2010. 25 p.

32. Zeynep Taslicukur Ozturk, Nilgun Kuskonmaz. (2018). The gra in grow thin alumin a compacts sintered under high pressure. Int. J. Mater. Research., Vol. 12, No. 109, pp. 1172—1175. https://doi.org/10.3139/146.111719

33. Garbuz, V. V., Silinska, T. A., Lobunets, T. F. (2023). Submicron γ-, γ’-, θ-, and κ-Al2O3 powders from alkaline waste. Powder Metall. Met. Ceram. https://doi.org/10.1007/s11106-023-00339-8