Applying simulation results of high-boron compounds of structure at the atomic level to estimate their chemical hardness

   
V.M.Danilyuk
 

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
rzh.natali@gmail.com
Usp. materialozn. 2020, 1:8-16
https://doi.org/10.15407/materials2020.01.008

Abstract

Determining the macrocharacteristics of materials based on the results of ab initio calculations is one of the most relevant and promising areas of research. One of the most important performance characteristics of the material is its hardness. The presented approach to determining the chemical Vickers hardness of substances based on using ab initio calculated values of atomization energy and molar volume atomic clusters, which are elements of the structure of the studied compounds. Clusters of boron, aluminum and magnesium borides of different atomic structure, which are obtained using simulation modeling of their evolution, are considered. The results of quantum chemical calculations of the values of atomization energy and molar volume of the considered fragments, obtained using the Gaussian'03 software package in the framework of the theory of electron density functional in the B3LYP / STO-3G approximation, are presented. The hardness of materials, structural elements of which are tested atomic clusters, obtained by the developed approach are presented. The calculated hardness is compared with its values determined by both experimental and other theoretical methods. The comparison showed a high correlation of the obtained results with the experimental data already at the cluster size equal to 12—25 atoms. Analysis of the results of applying the proposed approach to various modifications of boron and some boron-containing compounds showed that quantum-chemical calculations of atomic energy and molar volume values within the cluster model provide the ability to establish reliable estimates of the hardness of existing compounds of this class. The developed approach, together with simulation modeling of the evolution of hypothetical phases, can also be applied to predict their hardness.


Download full text

BORIDES, BORON, CLUSTER MODEL, VICKERS HARDNESS.

References

1.Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven Jr.T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., FukudaR., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C. and Pople J.A. Gaussian 03, Revision B.03. Gaussian, Inc. Pittsburgh PA, 2003. 354 p.

2. Lisenko A.A., Bekenev V.L., Rozhenko N.M., D'yachkov P.N., Silenko P.M. Kvantovo-himicheskoe modelirovanie geometrii, stabil'nosti, jelektronnoj struktury i kolebatel'nyh spektrov fullerenopodobnyh kletok, dimerov i nanoprovoda na osnove SiC [Quantum chemical simulation of geometry, stability, electronic structure, and vibration spectra of the SiC based fullerene-type cages, dimers, and nanowires]. Nanostruktury. Matematicheskaja fizika i modelirovanie. 2010. Vol. 2, No. 2. P. 43-55 [in Russian].

3. Iljushin G.D. Modelirovanie processov samoorganizacii v kristalloobrazujushhih sistemah [Modeling self-organization processes in crystal-forming systems]. Moscow: Jeditorial URSS, 2003. 376 p. [in Russian].

4. Lisenko A.A., Ogorodnikov V.V., Kartuzov V.V. Pervoprincipnoe modelirovanie segmentacii nanoklasterov Ti14C13 i Ti13C14 [First principle self-assembly simulation of the Ti14C13 and Ti13C14 nanoclusters]. Matematicheskie modeli i vychislitel'nyj jeksperiment v materialovedenii. Kyiv: In-t probl. materialovedenija NAN Ukrainy. 2012. Issue 16. P. 80-91 [in Russian].

5. Kartuzov V.V., Rozhenko N.M. Imitacionnoe modelirovanie processov samoorganizacii bazovyh strukturnyh edinic v vysokoboristyh soedinenijah [Simulation of self-organization of basic structural units in the high-boron compounds]. Matematicheskie modeli i vychislitel'nyj jeksperiment v materialovedenii. Kyiv: In-t probl. materialovedenija NAN Ukrainy. 2017. Issue 19. P. 90-99 [in Russian].

6. Lisenko A.A., Bekenev V.L., Ogorodnjikov V.V., Kartuzov V.V. Computer simulation of high entropy multi-component alloys within cluster approach. Matematicheskie modeli i vychislitel'nyj jeksperiment v materialovedenii. Kyiv: In-t probl. materialovedenija NAN Ukrainy. 2012. Issue 14. P. 134-141.

7. Mukhanov V.A., Kurakevych O.O., Solozhenko V.L. Vzaimosvjaz' tverdosti i szhimaemosti veshhestv s ih stroeniem i termodinamicheskimi svojstvami [The interrelation between hardness and compressibility of substances and their structure and thermodynamic properties]. Sverhtverdye materialy. 2008. No. 6. P. 10-22 [in Russian].

8. Mukhanov V.A., Kurakevych O.O., Solozhenko V.L. Thermodynamic model of hardness: Particular case of boron-rich solids. Sverhtverdye materialy. 2010. No. 3. P. 33-45.
https://doi.org/10.3103/S1063457610030032

9. Boustani L. Structure and stability of small boron clusters. A density functional theoretical study. Chem. Phys. Lett. 1995. Vol. 240. P. 135-140: doi: 
https://doi.org/10.1016/0009-2614(95)00510-B

10. Niu J., Rao B.K., Jena P. Atomic and electronic structures of neutral and charged boron and boron-rich clusters. J. Chem. Phys. 1997. Vol. 107. P. 132-140: doi: 
https://doi.org/10.1063/1.474360

11. Ohishi Y., Kimura K., Yamaguchi M. Energy barrier of structure transition from icosahedral B12H6+ to planar B12H5+ and B12H4+ clusters. J. Phys.: Conf. Ser. 2009. Vol. 176. P. 012030-012036.
https://doi.org/10.1088/1742-6596/176/1/012030

12. Cagarejshvili G.V., Tavadze F.N. Poluprovodnikovyj bor [Semiconductor boron]. Moscow: Nauka, 1978. 78 p. [in Russian].

13. Sinteticheskie sverhtverdye materialy [Synthetic superhard materials]: V 3-h t. V.1. Sintez sverhtverdyh materialov. Kyiv: Nauk. dumka, 1986. 280 p. [in Russian].