Thermodynamic properties of melts of Bi—Eu system

 
V.A.Shevchuk,
   

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
sud.materials@ukr.net
Usp. materialozn. 2021, 2:90-100
https://doi.org/10.15407/materials2021.02.090

Abstract

The thermochemical properties of alloys were determined for the first time by calorimetry Bi—Eu system at a temperature of 1200 K in the range of 0 ≤ хBi ≤ 0,2 and 0,77 ≤ хBi ≤ 1,0. It is established that the minimum value of the enthalpy of mixing is equal to –61,7 ± 0,5 kJ / mol at xBi = 0,5. = –184,7 ± 16,7 kJ / mol, = –206,9 ± 21,8 kJ / mol. The activities of the components were calculated according to the model of an of the ideal associated solution (IAR), using the thermochemical properties of the melts of the Ві—Eu. system. It has been established that the activities of the components show large negative deviations from ideal solutions. To predict the enthalpies of formation of LnBi compounds, the available literature data on these parameters are analyzed and the most reliable ones are presented as a dependence on ΔfH = f(ZLn). It is established that the enthalpies of formation LnBi change smoothly and monotonically with the exception of Bi—Eu and Bi—Yb systems. This is due to the large size factors for the last two systems. To combine all the enthalpy data of Ln—Bi intermetallic formation of Ln—Bi systems depending on the sequence number Ln, we need similar values for the Eu—Bi compound. But at present they are not known, so based on the above, it was assumed that the value of the minimum enthalpy of mixing will be close to the enthalpy of formation of this compound. This hypothesis is confirmed by data on the enthalpies formation of phase YbBi and equiatomic melts of binary of Yb—Bi system. To confirm the thermodynamic data, we compare the known melting temperatures of the formed intermediate phases, known from the diagrams state Bi—Ln system. The obtained dependences correlate with ΔfH = f(ZLn ) і ΔV = f(ZLn). This means that the predictions of thermochemical properties accurately reflect the nature of the considered melts of the Bi—Eu system.


Download full text

BI, CALORIMETRY, COMPOUNDS, EU, LN, MELTS, MODEL OF IDEAL ASSOCIATED SOLUTIONS, THERMODYNAMIC PROPERTIES

References

1. Plokhikh, I. V., Charkin, D. O., Kuznetsov, A. N., Verchenko, V. Yu., Ignatiev, I. A., Kazakov, S. M., Tsirlin, A. A., Shevelkov, A. V. (2018). New clathrate-like compound Eu7 Bi Cu44 23-δ: synthesis, crystal and electronic structure, and the effect of As—for—Bi substitution on the magnetic propertiesIntermetallics. V. 98. P. 1—10.

2. Lebedev, V. A., Kober, V. I., Yamshchikov, L. F. (1989). Thermochemistry of alloys of rare earth and actinoid elements. reference. ed. Chelyabinsk: Metallurgy, Chelyabinsk. dept. C. 336.

3. Shevchenko, M. O., Berezutski, V. V., Ivanov, M. I., Kudin, V. G., Sudavtsova, V. S. (2015). Thermodynamic properties of alloys of the binary Al—Sm, Sm—Sn and ternary Al—Sm—Sn systems. J. Phase Equilib. Diff. Vol. 36 (1). P. 39—52.

4. Dinsdale, A. T. (1991). SGTE data for pure elements. Calphad. Vol. 15, No 4. Р. 319—427.

5. Borzone, G., Borsese, V., Capelli, A., Delfino, A., Ferro, R. (I974). Heat of Formation of La4Bi and LaBi compounds. Thermochimica Acta. Vol. 9. P. 313—317.

6. Borsese, A., Calabretta, A, and. Ferro, R. (1978). Heat of Formation of ceriumbismuth alloys. J. Less-Common Metals. Vol. 58. P. 31—36

7. Borsese, A., Ferro, R., Capelli, R. and Delfino, S. (1975). Heat of Formation of praseodymiuim-bismuth alloys. Thermochim. Acta, Vol. 11. P. 205—210.

8. Capelli, R., Delfino, S., Ferro, R. (1974). Heat of Formation of NeodymiumBismuth alloys. Thermochimica Acra. Vol. 8. P. 393—397.

9. Parodi, N., Ferro, R. (1993). Contribution to the Thermochemistry or rare earth phictides the Sm—Bi system. J. Face equilibria. Vol. 14 no 4.

10. Borzone, G., Borsese, A., Ferro, R. (19800. Heat of Formation of gallodiumBismuth alloys. Thermochimica Acta. Vol. 41. P. 175—180.

11. Borsese, A., Borzone, G., Ferro, R. (1977). Heat of Formation of Dysprosium— Bismuth alloys. J. Less-Common Metals. Vol. 55. P. 115—120.

12. Parodia, N., Borzone, G., Balduccib, G., Bruttib, S., Cicciolib, A.,* Giglib, G. (2003). Thermochemistry of holmium bismuthides. Intermetallics. Vol. 11. P. 1175—1181.

13. Parodi, R. G., Ferro, R., Cacciamani, G. (1994). “On the Thermochemistry of the rare earth compounds with the p-Block elements”. J. Face equilibria. Vol 15, No. 3.

14. Borzone, G., Ferro, R., Parodi, N., Saccone, A. (1995). Ytterbium bismuthides: ytterbium valency and thermodynamics. Gazz. Chim. Ital. Vol. 125. P. 263—270.

15. De Boer, F.R. Cohesion in Metals. Transition metal alloys. F.R. De Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen. in F.R. De Boer, D.G. Pettifor eds., Cohesion and structure Series, North-Holland, Amsterdam etc., 1988. P. 758.

16. Colinet, C., Pasturel, A. (1984). Enthalpies of formation of liquid and solid binary alloys of lead, antimony and bismuth with rare earth elements. J. Less-Common Metals. Vol. 102. P. 239—249.

17. Colinet, C. (1995). The thermodynamic properties of rare earth metallic systems // J. Alloys Compd. Vol. 225, P. 409—422.

18. Wang. Jinsan, Li, Changrong,*,Guoa Cuiping, Dua Zhenmin, Wub Bo. (2013).Thermodynamic assessment of the Bi—Er and the Bi—Dy systems. Thermochimica Acta. Vol. 566. P. 44—49.

19. Wang, S. L., Hu, Z. B., Gao, F., Wang, C. P., Liu, X. J. (2011). Thermodynamic assessments of the Bi—Tb and Bi-Y systems. J. Phase Equilib. Diff. Vol. 32 (5). P. 441—446. DOI: 10.1007/s11669-011-9939-1.

20. Djaballah, Y., Said Amer, A., Ugur, S., Ugur, G., Hidoussi, A., Belgacem— Bouzida, A. (2015). Thermodynamic description of the Bi—Cs and Bi—Tm system supported by first-principles calculations. CALPHAD. Vol. 48. P. 72—78. DOI: 10.1016/j.calphad.2014.11.002

21. Wang, C. P, Zhang, H. L, Tang, A. T, Panb, F. S., Liu, X. J. (2010). Thermodynamic assessments of the Bi—Nd and Bi—Tm systems. J. Alloys and Compounds. Vol. 502. P. 43—48

22. Wang, S. L., Gao, F., Ganc, S. X., Wang, C. P., Liu, X. J. (2011). Thermodynamic assessments of the Bi—Lu and Lu—Sb systems. CALPHAD. Vol. 35. P. 421—426.

23. Shevchenko, M. A., Ivanov, M. I., Berezutsky, V. V., Sudavtsova, V. S. (2016). Thermodynamic properties of alloys of the Bi—Yb dual system. Zhurn. phys. chemistry. Vol. 90, No. 4. P. 500—512.

24. Masalsky, T. B. (ed). (1990). Binary Alloy Phase Diagrams 2nd edn (Metals Park, OH: ASM International).