The mechanism of forming carbon nanostructures by electric arc-method

M.Т.Kartel 1,
H.O.Kaleniuk 1,
Yu. O. Tarasenko 1

1 Chuіko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17, General Naumov str. , Kyiv, 03164, Ukraine
2 I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Krzhizhanovsky str., 3, Kyiv, 03142, Ukraine

Surface. Section Nanomaterials and nanotechnologies, 2020, #12(27)


The regularities of the formation of nanostructures  during the evaporation of graphite by the electric ARC – method are studied. Described physicochemical processes in the synthesis reactor . At plasma temperatures taking into account the behavior of particles in electromagnetic fields with extreme temperature and pressure grants. A sequence of organization of matter in the process of forming a structure according to nano-dimensional characteristics is proposed.

The self-organization of systems during electric arc evaporation of graphite or graphite-containing electrodes has been studied. The mechanisms of formation of soluble (fullerenes and fullerene-like structures) and insoluble (nanocomposites, CNTs, graphenes) carbon nanostructures are considered. The processes occurring in the electric arc synthesis reactor are analyzed:

  • the process of distribution of charged particles in an electric arc at different times;
  • processes taking place at the anode;
  • the mechanism of carbon vapor formation during graphite evaporation;
  • processes in the gas phase and on the walls of the reactor under the conditions of an electric arc discharge;
  • model of the reactor space zones;
  • formation of carbon nanostructures in the gas phase and on the inner surface of the reactor.
  • use of doped electrodes and metal inserts (sleeves) as catalysts for the synthesis of carbon nanostructures.

The sequence of processes in the formation of spherical carbon molecules is studied, and the processes and structural transformations are considered.

In the research work, the products (fullerenes and fullerene-like structures, nanocomposites, VNT, graphenes) of electric arc synthesis are presented, and modern methods of analysis are used for their fixation and identification.



1. Strelko V. V., Nemoshkalenko V. V., Kartel N. T., Medvedev, S. L. (1983). On the state of the nitrogen atoms in the graphite lattice of activated carbons. Adsorption and Adsorbents, 11, 76-80.

2. Kartel M. T., Ivanov L. V., Kovalenko S. N., Tereschenko V. P. (2011). Carbon nanotubes: biorisks and biodefence. In Biodefence (pp. 11-22). Springer, Dordrecht.

3. Zakutevskij O. I., Psareva T. S., Strelko V. V., Kartel N. T. (2007). Sorption of U (VI) from aqueous solutions with carbon sorbents. Radiokhimiya, 49(1), 61-64.

4. Kartel M. T., Ivanov L. V., Lyapunov O. M., Nardid O. A., Okotrub A. V., Kirilyuk I. A., Cherkashina Y. O. (2015). Estimation of the effect of carbon nanotubes on the microviscosity of erythrocyte membranes by the spin probe method. Reports of the National Academy of Sciences of Ukraine, (3).

5. Kulyk K., Palianytsia B., Alexander J. D., Azizova L., Borysenko M., Kartel, M., ... & Kulik T. (2017). Kinetics of Valeric Acid Ketonization and Ketenization in Catalytic Pyrolysis on Nanosized SiO2, γ-Al2O3, CeO2/SiO2, Al2O3/SiO2 and TiO2/SiO2. ChemPhysChem, 18(14), 1943-1955.

6. Ivanov L. V., Lyapunov A. N., Kartel N. T., Nardid O. A., Okotrub A. V., Kirilyuk I. A., Cherkashina Ya. O. (2014). Delivery of lipophilic spin probes by carbon nanotubes to erythrocytes and blood plasma. Surface, 6(21), 292.

7. Kartel N. T., Puzy A. M., Strelko V. V. (1991). Porous structure of synthetic active carbons. In Studies in Surface Science and Catalysis (Vol. 62, pp. 439-447). Elsevier.

8. Ryabov S. I., Shostka G. D., Lukichev B. G., Strelko V. V., Spiridonov V. N., Kartel, N. T., Scherbitsky, A. B. (1984). Haemoperfusion in the treatment of chronic renal failure in patients on haemodialysis. International Urology and nephrology, 16(4), 345-360.

9. Gun'ko V. M., Turov V. V., Pakhlov E. M., Matkovsky A. K., Krupska T. V., Kartel M. T., Charmas B. (2018). Blends of amorphous/crystalline nanoalumina and hydrophobic amorphous nanosilica. Journal of Non-Crystalline Solids, 500, 351-358.

10. Karachevtseva L. A., Kartel M. T., Lytvynenko O. O., Onyshchenko V. F., Parshyn K. A., Stronska O. J. (2017). Polymer-nanoparticle coatings on macroporous silicon matrix. Adv. Mater. Lett, 8(4), 336.

11. Gunko G.S., Sementsov Yu.I., Melezhik O.V., Prikhod'ko G. P., Pyatkovskiy M.L., Gavrylyuk N.A., Kartel M.T. СVD-method and equipment for MWCNT obtaining. International Meeting «Clusters and nanostructured materials» (CNM-2), Uzhgorod, Ukraine, 2009, 158.

12. Sementsov Yu.I., Alekseeva T.A., Pyatkovsky M.L., Prikhodko G.P., Gavrilyuk N.A., Kartel N.T., Grabovskiy Yu.E., Gorchev V.F. , Chunikhin, A.Yu. Multiwall carbon nanotubes (CNT) deagglomeration and nanocomposite polymer/CNT production. IX International conference "Hydrogen materials science and chemistry of carbon nanomaterials". Yalta, AR Krimea, Ukraine, 2009, 782-785. [in Russian].

13. Shulga Yu.M., Baskakov S.A., Zolotarenko A.D., Kabachkov E.N., Muradyan V.E., Voilov D.N., Smirnov V.A., Martynenko V.M., Shchur D.V., Pomytkin A.P. Coloration of graphene oxide nanosheets and colored polymer compositions based on them, Nanosystems, nanomaterials, nanotechnologies, 2013, 11, V. 1, 161-171. [in Russian].

14. Zolotarenko An.D., Dubovoy A.G., Perekos A.E., Lavrenko V.A., Efimova T.V., Zalutsky V.P., Ruzhitskaya T.V., Kotko A.V., Zolotarenko Al.D. Influence of a magnetic field on the phase-structural state and magnetic properties of highly dispersed Fe powders obtained by electrospark dispersion. Nanosystems, Nanomaterials, Nanotechnology, 2013.11 (1.2), 131-140. [in Russian].

15. Zaginaichenko S.Yu., Shchur D.V., Gabdullin M.T., Dzhavadov N.F., Zolotarenko Al.D., Zolotarenko An.D., Al.D. Zolotarenko, Mamedova S.Kh., Omarova G.D., Mamedova Z.T. Features of pyrolytic synthesis and certification of carbon nanostructured materials, Alternative Energy and Ecology (ISJAEE), 2018, 19-21, p. 72-90. [in Russian].

16. Matysina Z.A., Zaginaichenko S.Yu., Schur D.V., Zolotarenko Al.D., Zolotarenko An.D., Gabdulin M.T. Hydrogen Sorption Properties of Potassium Alanate, Russian Physics Journal, 2018, 61 (2), р. 253-263.

17. Zolotarenko Al.D., Zolotarenko An.D., Lavrenko V.A., Zaginaichenko S.Yu., Shvachko N.A., Milto O.V., Molodkin V.B., Perekos A.E., Nadutov V.M., Tarasenko Yu.A., Encapsulated Ferromagnetic Nanoparticles in Carbon Shells, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II, 2011, р. 127-136.

18. Schur D.V., Veziroglu A., Zaginaychenko S.Yu., Matysina Z.A., Veziroglu T.N., Gabdullin MT, Ramazanov TS, D Zolonarenko An, Zolonarenko Al D, Theoretical studies of lithium-aluminum amid and ammonium as perspective hydrogen storage, International Journal of Hydrogen Energy, 2019, 44 (45), 24810-24820.

19. Lavrenko V.A., Podchernyaeva I.A., Shchur D.V., Zolotarenko An.D., Zolotarenko Al.D., Features of Physical and Chemical Adsorption During Interaction of Polycrystalline and Nanocrystalline Materials with Gases, Powder Metallurgy and Metal Ceramics, 2018, 1, р. 1-8.

20. Matysina Z.A., Zaginaichenko S.Yu., Shchur D.V., Zolotarenko A.D., Zolotarenko Al.D., Zolotarenko An.D., Gabdulin M.T. Bisaline and potassium alanates are promising hydrogen storage devices, International scientific journal Alternative energy and ecology, 2017, 13-15, p. 37-60. [in Russian].

21. Volodin A.A., Zolotarenko A.D., Belmesov A.A., Gerasimova E.V., Shchur D.V., Tarasov V.R., Zaginaichenko S.Yu., Doroshenko S.V., Zolotarenko A. D., Zolotarenko A. D. Electrically conductive composite materials based on metal oxides and carbon nanostructures, Nanosystems, nanomaterials, nanotechnology, 2014, 12, v. 4, p. 705-714. [in Russian].

22. Zolotarenko A.D., Shchur D.V., Savenko A.F., Skorokhod V.V. Features of the processes of arc synthesis of carbon nanomaterials, Coll. abstracts of the conference "Nanoscale systems: electronic, atomic structure and properties" (NANSIS-2004), Kiev: Academperiodika NAS of Ukraine, 2004, No. 1, p. 121. [in Russian].

23. Ualkhanova M., Perekos A.Y., Dubovoy A.G.,. Schur D.V, Zolotarenko Al. D., Zolotarenko An. D., Gavrylyuk N.A., Gabdullin M.T., Ramazanov T.S., Akhanova N., Orazbayev S. The Influence of Magnetic Field on Synthesis of Iron Nanoparticles, Journal of Nanoscience and Nanotechnology Applications, 2019,т.3, № 3., p. 1-18.

24. Schur D.V., Zolotarenko An.D., Zolotarenko Al.D., Zolotarenko O.P., Chimbai M.V., Akhanova N.Y., Sultangazina M., Zolotarenko E.P. Analysis and identification of platinum-containing nanoproducts of plasma-chemical synthesis in a gaseous medium, Physical Sciences and Technology. 2019, Volume 6, Number 1, p. 46-56. [in Russian].

25. Matysina Z.A., Zaginaichenko S.Yu., Schur D.V., Veziroglu T.N., Veziroglu A., Gabdullin M.T., Zolotarenko Al.D., Zolotarenko An.D. The mixed lithium-magnesium imide Li2Mg (NH)2 a promising and reliable hydrogen storage material, International Journal of Hydrogen Energy, 2018, т. 43, № 33, р. 16092-16106.

26. Kratshmer W. Solid C60: a new form of carbon // Nature. - 1990. - Vol. 347. - P. 354-388.

27. Ishlinsky A.Yu. New Polytechnic Dictionary. - M .: Big Russian Encyclopedia, 2000 . - p. 655 [in Russian].

28. Zolotarenko A. D. Features of the synthesis of carbon nanostructures and their hydrogen capacity. Dis. For a job. uch. Art. Cand. chem. Sciences, Kiev, 2009. [in Russian].

29. Schur D.V., Zaginaichenko S.Yu., Lysenko E.A., Golovchenko T.N. The forming peculiarities of C60 molecule. Proc. of Int. Conf. "Carbon Nanomaterials in Clean Energy Hydrogen Systems". - Netherlands: Springer, 2007. - P. 53-66.

30. Zolotarenko A.D., Zolotarenko A.D., Zolotarenko A.D., Voichuk G.A., Shchur D.V., Zaginaichenko S.Yu. Synthesis of endofullerenes by the arc method. Deposit // Nanosystems, nanomaterials, nanotechnologies, 2005. - Vol. 3. - No. 4. - P. 1133-1144. [in Russian].

31. Shulga Yu.M., Schur D.V., Baskakov S.A., Simanovskiy A.P., Rogozinskaya A.A., Rogozinskiy A.A., Mukhachev A.P. XRD Patterns of Cathode Deposits Formed in Electric arc Sputtering Zr-Me-Graphite Electrodes // Proc. of NATO ARW "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. - Boston: Kluwer Academic Publishers, 2004. - V. 172. - P.137-142.

32. Shchur D.V., Zaginaichenko S.Yu., Matysina Z.A. Carbon Nanomaterials and Phase Transformations in Them; Science and education, monograph, Dnepropetrovsk, 2007, 680p. [in Russian].

33. Bogdanov A.A., Deininger D., Dyuzhev G.A. ZhTF.-2000.-T.70, No. 5.-P.1. [in Russian].

34. Zolotarenko An.D., ZolotarenkoAl.D., Schur D.V., Zaginaichenko S.Yu., The Peculiarities of Nanostructures Formation in Liquid Phase "Carbon Nanomaterials in Clean Energy Hydrogen Systems". - Netherlands: Springer, 2011,Chapter 11 - P.137-150.

35. Shchur D.V., Zaginaichenko S.Yu., Skorokhod V.V. To the mechanism of formation of carbon nanostructures. Collection of abstracts of the ICHMS-2005 conference, Sudak, Crimea. - p. 534-537. [in Russian].

36. Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu., Adejv V.M., Kotko A.V., Bogolepov V.A., Savenko A.F., Zolotarenko A.D. Production of carbon nanostructures by arc synthesis in the liquid phase // Carbon, 2007. - Vol. 45. - № 6. - P. 1322-1329.

37. Tenne R., Margulis L., Genut M., Hodes G. Pelyhedral and cylindrical structures of tungsten disulphide // Nature, 1992. - Vol. 360. - P. 444-446.

38. Chopra N.G., Luyken R.J., Cherrey K., Crespi V.H., Cohen M.L., Louie S.G., Zettl A. // Science, 1995. - Vol. 269. - 966 p.

39. Hacohen Y.R., Grunbaum E., Tenne R., Sloan J., Hutchison J.L. Cage structures and nanotubes of NiCl2 // Nature, 1998. - Vol. 395. - P. 336-337.

40. Cote M., Cohen M.L., Chadi D.J. Theoretical study of the structural and electronic properties of GaSe nanotubes // Phys. Rev. B. 1998. - Vol. 58. - P. 4277-4280.

41. Dubovoy A.G., Perekos A.E., Chuistov K.V. Structure and magnetic properties of small amorphous particles of metal alloy Fe-15 at.% // Metallofizika. - 1984. - T. 6, No. 5. - P. 129-131. [in Russian].

42. Dubovoy A.G., Zalutsky V.P., Ignatiev I.Yu. Structure, magnetic properties and thermal stability of small amorphous particles and an amorphous ribbon of a metal alloy Fe-15 at.% // Metallofizika.- 1986.- T. 8, No. 4. - P. 101-103. [in Russian].

43. Chuistov K.V., Perekos A.E., Zalutsky V.P. et al. Influence of production conditions on the structural state, phase composition and dispersion of electroerosive powders of iron and alloys on its basis // Metallofizika i newest technologies. - 1996. - T. 18, no. 8. - P. 18-25. [in Russian].

44. Chuistov K.V., Perekos A.E. Structure and properties of small metal particles. I. Phase-structural state and magnetic characteristics (review) // Metallophysics and latest technologies. - 1997. - T. 19, No. 1. - P. 36-53. [in Russian].

45. Prigogine I.R., Kondenudi D.I. Modern thermodynamics, Moscow: Mir, 2002, 456 p. [in Russian].

46. Zolotarenko A.D. Effect of the Nature of the Reactor Wall Material on Morphology and Structure of Products Resulted from arc Graphite Sputtering / A.D. Zolotarenko, A.F. Savenko, A.N. Antropov, M.I. Maystrenko, R.N. Nikulenko, A.Yu. Vlasenko, V.K. Pishuk, V.V. Skorokhod, D.V. Schur, A.N. Stepanchuk, P.A. Boyko; Proc. of NATO ARW "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials.-Boston:Kluwer Academic Publishers, 2004. -V. 172. -P.217-223.

47. Klimontovich Yu.L., Kinetic theory of electromagnetic processes. M .: Science. 1980 .- 377 p. [in Russian].

48. Polak L.S. Non-equilibrium chemical kinetics and its applications. M.: Nauka, 1979. -248 p. [in Russian].

49. Polak L.S., Mikhailov A.S. Self-organization in nonequilibrium physicochemical systems. M.: Nauka, 1983.-286p. [in Russian].

50. Melikhov I.. Physicochemical evolution of solids. M .: Binom. 2014.-312 p. [in Russian].

51. Klimontovich Yu.L. Turbulent motion and the structure of chaos: A new approach to the statistical theory of open systems. M .: Science. 1990.-320 p. [in Russian].

52. Saranchuk V. I., M. A. Ilyashov, V. V. Oshovsky, E. V. Saranchuk. Carbon: unknown about known. Donetsk-2006. UK Center. -400 s. Mechanisms of the realized crystallization of carbon modifications / -P.22. [in Russian].

53. Kobayashi N., Introduction to nanotechnology, Moscow Binom. 2008, - 134p. [in Russian].

54. Kats E.A. Fullerenes, carbon nanotubes and nanoclusters: Genealogy of forms and ideas. - M .: URSS. Publishing house LCI, 2008 .- 296 p. [in Russian].

55. Zaulichny Ya.V., Petrovskaya S.S., Graivoronskaya E.A., Solonin Yu.M. Carbon nanomaterials: electronic structure and processes of structure formation, Kiev Naukova Dumka 2012 -277 p. [in Russian].

56. Butyrin GM, Highly porous carbon materials. Moscow. "Chemistry". 1976 .-192 p.

57. Dyachkov PN, Carbon nanotubes: structure, properties, application. Moscow. Binomial. 2006 .-293 p. [in Russian].

58. Ponomarenko VS, Nazarov YF, Svidersky VP, Ibragimov IM Nanotechnology and its innovative development: a monograph. Kharkiv. VD "Inzhek". - 2008. - 280 p. [in Ukrainian].

59. Sementsov YI, Revo SL, Ivanenko KO, Thermoexpanded graphite. Kyiv SPE "Interservice", 2016, -241 p. [in Ukrainian].

60. Sementsov YI, Formation of structure and properties of sp2-carbon nanomaterials and functional composites with their participation. Kyiv "SPE Interservice", 2019. -364 p. [in Ukrainian].

61. Sergeev G.B., Nanochemistry. Moscow, Ed. Moscow State University, 2003 .-288 p. [in Russian].

62. Suzdalev IP, Nanotechnology: physicochemistry of nanoclusters, nanostructures and nanomaterials. Moscow .: KomKniga, 2009.-592 p. [in Russian].

63. Kartel N.T., Taraseko Yu.A. Zeolites and carbon materials. Chapter 22-28 "Surface Physics and Chemistry". Book II. Surface chemistry (in 3 volumes) .- T.2. - S. 754-967 / Ed. Kartel N.T. and Lobanova V.The. - Kiev: Institute of Surface Chemistry. A.A. Chuiko NAS of Ukraine; LLC "NPP Interservice", 2018. -T.2. - 476. [in Russian].

64. Tarkovskaya I. A., One hundred "professions" of coal. Kiev: Naukova Dumka. -1970. -200 p. [in Russian].

65. Tereshchenko V.P., Kartel N.T. Medical and biological effects of nanoparticles: realities and forecasts. - K .: Naukova Dumka. - 2010 .- 240 p. [in Russian].

66. Trefilov V. I., Shchur D. V., Tarasov B. P., Shulga Yu. M., Chernogorenko A. V., Pishuk V. K., Zaginaichenko S. Yu. Fullerenes - the basis of materials of the future. ADEF - Ukraine Kiev. - 2001 .- 148 p. [in Russian].

67. Shpak AP, Kunitsky YA, Prokopenko VA, Smyk SY, Processes of self-organization in materials of different nature. Kyiv, - 2004. - 113 p. [in Ukrainian].

68. Al.D. Zolotarenko, Gavrilyuk NA , An.D. Золотаренко, O.P. Золотаренко, М.В. Chimbay, A.D. Zolotarenko DV Rat 3D printing of products from biocompatible materials. Proceedings of the 19th International Conference ICHMS-2019 "Hydrogen materials science and chemistry of carbon nanomaterials", Odessa, Ukraine. Published in 2020, p. 356. [in Russian].

69. Al.D. Zolotarenko, Gavrilyuk NA , Gorelov MB , Sementsov Yu.I. , An.D. Золотаренко, O.P. Золотаренко, М.В. Chimbay, A.D. Zolotarenko. Composites based on polypropylene for 3D printing; International Conference ICHMS-2019 "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials", Odessa, Ukraine. Published in 2020, p. 357. [in Russian].

70. An.D. Zolotarenko, Gavrilyuk N.A. , Gorelov M.B. , Al D. Zolotarenko, O. P. Zolotarenko, M.V. Chimbay, A.D. Dmitry V. Zolotarenko Schur. Carbon nanostructures as fillers for polymers for 3D printing; International Conference ICHMS-2019 "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials", Odessa, Ukraine. Published in 2020, p. 358. [in Russian].