Conferences

STRUCTURE AND PROPERTIES OF NANOSCALE AND MESOSCOPIC MATERIALS

O.Zolotarenko 1*,
  
N.Y.Akhanova 3,
   
M.T.Gabdullin 3,
 
M.Ualkhanova 4,
 
N.A.Gavrylyuk 1,
  
Yu.O.Tarasenko 1,
 
I.V.Zagorulko 5,
  

1 Chuіko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17, General Naumov str. , Kyiv, 03164, Ukraine
2 I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Omeliana Pritsaka str.,3, Kyiv, 03142, Ukraine
3 Kazakh-British Technical University, 59 Tole bi Str., Almaty, 050000
4 Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty, 050040
5 G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, 36 Academician Vernadsky Blvd., Kyiv, 03142, Ukraine
O.D.Zolotarenko@gmail.com

METALLOPHYSICS AND ADVANCED TECHNOLOGIES, 2021, Т.10, #43
https://doi.org/10.15407/mfint.43.10.1417.

Abstract

Electrically conductive carbon-oxide composites based on Al2O3 and TiO2, intended for 3D printing (CJP), are obtained, and the dependences of the obtained composites conductivity on the preparation conditions and types of used carbon nanostructures (CNS) are investigated. The structure and phase composition of the samples are studied by transmission electron microscopy, and their surface is studied using a field emission scanning electron microscope. The electrical conductivity of the materials is determined with a potentiostat using. The optimal conditions for the formation of composites based on Al2O3 or TiO2 oxides with CNSs and nanofibers by processing mixtures in a planetary ball mixer, which would be ideal for preparing materials for 3D printing (CJP), have been determined. The dependence of the electrical conductivity of composites on the content of carbon nanomaterials (1–5% wt.) has been established. It is shown that the addition of 3 wt.% CNTs to oxides leads to a sharp increase in electrical conductivity from 5.0⋅10−8 to 2.8⋅10−4 S/cm for Al2O3 and from 5.0⋅10−6 to 2.2⋅10−2 S/cm for TiO2. It has been proved that composites based on carbon monoxide are promising carriers for catalysts for electrode processes in electrochemical devices. It is re-vealed that the Pt/TiO2–CNT catalyst with a CNT content of 5% wt. has the best catalytic activity in the reduction of oxygen in the fuel cell cathode simulating the electrode. 3D printing technology (CJP) of an electrically conductive composite (ceramics-CNT) can be used to modify of ceramic fuel cells. In addition, the use of CJP technology will allow to reduce the production cost of electrodes for fuel cells. A composite with 5% wt. CNTs is the most effective. A composite with a CNT content of 3% wt. has a smaller number of extended carbon structures, which ensures the transfer of electrons, and in samples with 15% wt. and 50% wt. CNTs, the low efficiency of the Pt catalyst may be associated with difficulties in contacting the reaction environment due to large amount of carbon material.


References

1. D. V. Schur and V. A. Lavrenko, Vacuum, 44, No. 9: 897 (1993).

2. D. V. Schur, A. Veziroglu, S. Y. Zaginaychenko, Z. A. Matysina, T. N. Veziroglu, M. T. Gabdullin, T. S. Ramazanov, An. D. Zolotarenko, and Al. D. Zolotarenko, International Journal of Hydrogen Energy, 44, No. 45: 24810 (2019).

3. Z. A. Matysina, S. Y. Zaginajchenko, D. V. Shhur, A. D. Zolotarenko, Al. D. Zolotarenko, and T. M. Gabdullin, Alternativnaya Energetika i Ekologiya, 13–15: 37 (2017) (in Russian). 4. Z. A. Matysina, S. Y. Zaginaichenko, D. V. Schur, T. N. Veziroglu, A. Veziroglu, M. T. Gabdullin, Al. D. Zolotarenko, and An. D. Zolotarenko, International Journal of Hydrogen Energy, 43, No. 33: 16092 (2018).

5. Z. A. Matysina, S. Y. Zaginaichenko, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, and M. T. Gabdullin, Russian Physics Journal, 61, No. 2: 253 (2018).

6. N. S. Anikina, D. V. Schur, S. Y. Zaginaichenko, A. D. Zolotarenko, and O. Ya. Krivushenko, Proc. of 10th International Conference ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Sept. 22–28, 2007) (Sudak, Crimea, Ukraine: 2007).

7. Z. A. Matysina, S. Yu. Zaginaychenko, and D. V. Schur, Rastvorimost Primesey v Metallakh, Splavakh, Intermetallidakh, Fulleritakh [Solubility of Impurities in Metals, Alloys, Intermetallics, Fullerites] (Dnepropetrovsk: Nauka i Obrazovanie: 2006) (in Russian).

8. D. V. Schur, S. Y. Zaginaichenko, A. F. Savenko, V. A. Bogolepov, N. S. Anikina, A. D. Zolotarenko, Z. A. Matysina, N. Veziroglu, and N. E. Scryabina, International Journal of Hydrogen Energy, 36, No. 1: 1143 (2011).

9. D. V. Schur, A. D. Zolotarenko, A. D. Zolotarenko, O. P. Zolotarenko, M. V. Chimbai, N. Y. Akhanova, M. Sultangazina, and E. P. Zolotarenko, Physical Sciences and Technology, 6, No. 1–2: 46 (2019).

10. A. A. Volodin, A. D. Zolotarenko, A. A. Bel’mesov, E. V. Gerasimova, D. V. Schur, V. R. Tarasov, S. Yu. Zaginaichenko, S. V. Doroshenko, An. D. Zolotarenko, and Al. D. Zolotarenko, Nanosistemy, Nanomaterialy, Nanotehnologii, 12, No. 4: 705 (2014).

11. V. A. Lavrenko, I. A. Podchernyaeva, D. V. Shchur, An. D. Zolotarenko, and Al. D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 56, No. 9–10: 504 (2018).

12. N. Akhanova, S. Orazbayev, M. Ualkhanova, A. Y. Perekos, A. G. Dubovoy, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, N. A. Gavrylyuk, M. T. Gabdullin, and T. S. Ramazanov, Journal of Nanoscience and Nanotechnology Applications, 3, No. 3: 1 (2019).

13. A. G. Dubovoj, A. E. Perekos, V. A. Lavrenko, Yu. M. Rudenko, T. V. Efimova, V. P. Zalustkii, T. V. Rushitskaya, A. V. Kotko, Al. D. Zolotarenko, and An. D. Zolotarenko, Nanosistemy, Nanomaterialy, Nanotehnologii, 11, No. 1: 131 (2013) (in Russian).

14. S. Yu. Zaginajchenko, D. V. Schur, M. T. Gabdullin, N. F. Dzhavadov, Al. D. Zolotarenko, An. D. Zolotarenko, A. D. Zolotarenko, S. H. Mamedova, G. D. Omarova, and Z. T. Mamedova, Alternativnaya Energetika i Ekologiya (ISJAEE), No. 19–21: 72 (2018) (in Russian).

15. N. S. Anikina, O. Ya. Krivushhenko, D. V. Schur, S. Yu. Zaginajchenko, S. S. Chuprov, K. A. Mil’to, and A. D. Zolotarenko, Proc. of IX Int. Conf. ‘Hydrogen Material Science and Chemistry of Metal Hydrides’ (Sept. 5–11, 2005) (Sevastopol, Crimea, Ukraine), p. 848 (in Russian).

16. N. S. Anikina, D. V. Schur, S. Y. Zaginaichenko, and A. D. Zolotarenko, Proc. of 10th International Conference ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Sept. 22–28, 2007) (Sudak, Crimea, Ukraine: 2007).

17. D. V. Schur, S. Y. Zaginaichenko, and A. D. Zolotarenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science Series, 85 (2008).

18. D. V. Schur, Z. S. Yu., E. A. Lysenko, T. N. Golovchenko, and N. F. Javadov, Carbon Nanomaterials in Clean Energy Hydrogen Systems (2008).

19. D. V. Schur, N. S. Astratov, A. P. Pomytkin, and A. D. Zolotarenko, Trudy VIII Mezhdunarodnoj Konferentsii Vodorodnoe Materialovedenie i Himiya (Sept. 14–20, 2003) (Sudak, Crimea, Ukraine: 2003) p. 424 (in Russian).

20. Y. M. Shul’ga, S. A. Baskakov, A. D. Zolotarenko, E. N. Kabachkov, V. E. Muradjan, D. N. Voilov, V. A. Smirnov, V. M. Martynenko, D. V. Schur, and A. P. Pomytkin, Nanosistemy, Nanomaterialy, Nanotekhnologii, 11, No. 1: 161 (2013) (in Russian).

21. Y. I. Sementsov, N. A. Gavriluk, G. P. Prikhod’ko, and T. A. Aleksyeyeva, Carbon Nanomaterials in Clean Energy Hydrogen Systems, 327 (2008).

22. Y. I. Sementsov, N. A. Gavrilyuk, G. P. Prikhod’ko, and A. V. Melezhyk, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, 757 (2007).

23. G. P. Prihod’ko, N. A. Gavriljuk, L. V. Dijakon, N. P. Kulish, A. V. Melezhik, and Yu. I. Semencov, Nanosistemy, Nanomaterialy, Nanotekhnologii, 4: 1081 (2006) (in Russian). 24. Yu. I. Sementsov, T. A. Alekseeva, M. L. Pjatkovskij, and G. P. Prihod’ko, N. A. Gavrilyuk, N. T. Kartel, Yu. E. Grabovskiy, V. F. Gorchev, and A. Yu. Chunikhin, Proc. IX International conference ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Sept. 9–13, 2009) (Yalta, Crimea, Ukraine: 2009), p. 782 (in Russian).

25. I. P. Dmytrenko, N. P. Kulish, L. V. Diyakon, N. I. Belyi, L. A. Bulavin, and I. Yu. Prylutskyy, Proc. 8th Biennial International Workshop Fullerenes and Atomic Clusters IWFAC (July 2–7, 2007) (Saint-Petersburg, Russia: 2007), p. 178.

26. Yu. Sementsov, N. Gavriluk, T. Aleksyeyeva, and O. Lasarenko, Nanosystems, Nanomaterials, Nanotechnologies, 5, No. 2: 351 (2007).

27. Kompozyty: Pidruchnyk z ASM [Composites: A Textbook on ASM] (Eds. D. B. Miracle and S. L. Donaldson) (ASM International: The Materials Information Company: 2001). 28. J. A. Arsecularatne and L. C. Zhang, Recent Patents on Nanotechnology, 1, No. 3: 176 (2007).

29. D. Eder, Chem. Rev., 110, No. 3: 1348 (2010).

30. Yu. Fan, L. Wang, J. Li, J. Li, S. Sun, F. Chen, L. Chen, and W. Jiang, Carbon, 48, No. 6: 1743 (2010).

31. A. M. Bondar and I. Iordache, J. Optoelectron. Adv. Mater., 8, No. 2: 631 (2006).

32. F-H. Su, Z.-Z. Zhang, K. Wang, W. Jiang. X.-H. Men, and W.-M.Liu, Composites Part A: Applied Science and Manufacturing, 37, No. 9: 1351 (2006).

33. B. Fényi, N. Hegman, F. Wéber, P. Arató, and Cs. Balázsi, Processing and Application of Ceramics, 1, Iss. 1–2: 57 (2007).

34. G-B. Zheng, H. Sano, and Y. Uchiyama, Composites Part B: Engineering, 42, No. 8: 2158 (2011).

35. S. Guo, R. Sivakumar, H. Kitazawa, and Y. Kagawa, J. Am. Ceram. Soc., 90, No. 5: 1667 (2007).

36. J. Yu, J. Fan, and B. Cheng, Journal of Power Sources, 196, No. 18: 7891 (2011).

37. O. Yu. Ivanshina, M. E. Tamm, E. V. Gerasimova, M. P. Kochugaeva, M. N. Kirikova, S. V. Savilov, and L. V. Yashina, Inorganic Materials, 47, No. 6: 618 (2011).

38. C. Martínez, M. Canle L., M. I. Fernández, J. A. Santaballa, and J. Faria, Applied Catalysis B: Environmental, 102: Iss. 3: 563 (2011).

39. X. L. Li, C. Li, Y. Zhang, D. P. Chu, W. I. Milne, and H. J. Fan, Nanoscale Res. Lett., 5, 1836 (2010).

40. L. Jiang and L. Gao, J. Mater. Chem., 15, Iss. 2: 260 (2005).

41. S.-L. Shi and J. Liang, J. Appl. Phys., 101: 023708 (2007).

42. Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, Nano Energy, 1, Iss. 1:107 (2012).

43. P. Yu. Butyagin and A. N. Streletskii, Physics of the Solid State, 47: 856 (2005).