Conferences

Zirconium dioxide stabilized with yttrium oxide and cerium oxide (8Ce2YSZ) for solid oxide fuel cell anode and electrolyzers application

    
R.Horda 2,
      
L.Kovalenko 3,
 
A.Bilous 3,
 
L.Khomenkova 4,
 
N.Korsunska 4,
  

1 I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
2 F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kyiv
3 Vernadsky Institute of General and Inorganic Chemistry of NAS of Ukraine, Kiyv
4 V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv
polishko.ihor@gmail.com

Usp. materialozn. 2022, 4/5:111-126
https://doi.org/10.15407//materials2022.04-05.111

Abstract

Solid oxide fuel cells (SOFC) are among the most promising technologies for the electricity generation due to their high ef iciency, reliability, flexibility in fuel selection, absence of valuable platinum group metal catalysts, safety and environmental friendliness.Typically, the SOFC is built on the basis of its anode, which is actually also its carrier. This is due to the researchers wish to minimize the ohmic resistance of the electrolyte layer via its thinning that is extremely critical for reducing SOFC operating temperature. In this regard, the anode must be strong enough both to make it easier to handle when making the whole cell and to ensure its stable operation. In addition to the carrier function, the anode shall provide sites for reacting gaseous fuel with oxygen ions, which are delivered through the electrolyte, and supplying the fuel gas components to the reaction sites and removing the fuel oxidation reaction products to the outside.The work deals with the comparative study of ceramic materials based on ZrO2 , co-stabilized with CeО2 and Y2O3 , and stabilized with Y2O3 to be used in producing the SOFC anode, and for further structural optimization for future SOFCs.8Ce2YSZ ceramic samples made by hydrothermal synthesis (with two dif erent modes of drying precipitation) have tetragonal phase and 6—8% residual porosity. The 8Ce2YSZ samples, showed the biaxial bending strength — 542 MPa and 486 MPa, respectively. The 8YSZ and 3YSZ samples have cubic phase with a strength of 181 MPa and tetragonal phase with a strength of 577 MPa, respectively at 1% porosity.The specific electrical conductivity of 8Ce2YSZ and 8YSZ is 1,1·10 -3 , 4·10 -3 S/cm, 1,2·10 -2 S/cm and 5,2·10 -3 , 2,7·10 -2 S/cm, 9,3·10 -2 S/cm at 600, 700, 800 °C, respectively.


Download full text

ANODE, ELECTROLYTE, IONIC CONDUCTIVITY, SOLID OXIDE FUEL CELL, STRENGTH, ZIRCONIA

References

1. Singhal, S.C.& Kendall, K. (2003). High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier, Oxford, U. K. 406 p. doi: https://doi.org/10.1016/B978-1-85617-387-2.X5016-8

2. Shaikh, S., Muchtar, A. &Somalu, M. (2015). A review on selection of anode materials for solid oxide fuel cells. Renewable and Sustainable Energy Reviews, Vol. 51, pp. 1—8. doi: https://doi.org/10.1016/j.rser.2015.05.069

3. Tietz, F., Buchkremer, H.-P.& Stover, D. (2002). Components manufacturing for solid oxide fuel cells. Solid State Ionics, Vol. 152—153, pp. 373—381. doi: https://doi.org/10.1016/S0167-2738(02)00344-2

4. Frandsen, H., Ramos, T., Faes, A. &Pihlatie, M. (2012). Optimization of the strength of SOFC anode supports. J. Europ. Ceram. Soc., Vol. 32, No. 5,pp. 1041—1052. doi: https://doi.org/10.1016/j.jeurceramsoc.2011.11.015

5. Gorte, R.J.&Vohs, J.M. (2003). Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. J. Catalysis., Vol. 216, No. 1—2, pp. 477—486. doi: https://doi.org/10.1016/S0021-9517(02)00121-5

6. Kawada, T., & Mizusaki, J. (2003). Current electrolytes and catalysts.Handbook of fuel cells-fundamentals, technology and application, Eds.: W. Vielstich et al. Fuel Cell Technology and Applications, Wiley and Sons, Chichester, England., Vol. 4. pp. 987. doi: https://doi.org/10.1002/9780470974001.f307080

7. Kilner, J.A.&Brook, R.J. (1982). A study of oxygen ion conductivity in doped nonstoichiometric oxides. Solid State Ionics., Vol. 6, pp. 237—252. doi: https://doi.org/10.1016/0167-2738(82)90045-5

8. Leea, D., Leea, I. &Jeona, T. (2005). Characterization of scandia stabilized zirconia prepared by glycine nitrate process and its performance as the electrolyte for IT-SOFC. Solid State Ionics, Vol. 176, No. 11—12, pp. 1021—1025. doi: https://doi.org/10.1016/j.ssi.2005.01.004

9. Molenda, J., Swierczek, K. &Zajac, W. (2007). Functional materials for the IT-SOFC.J. Power Sources, Vol. 173, pp. 657—670. doi: https://doi.org/10.1016/j.jpowsour.2007.05.085

10. Lee, C.H.& Choi, G.M. (2000). Electrical conductivity of CeO-doped YSZ. Solid State Ionics, Vol. 135, No. 1—4, pp. 653—661. doi: https://doi.org/10.1016/S0167-2738(00)00427-6

11. Hannink, R., Kelly, P.M.& Muddle, B.C. (2005). Transformation toughening in zirconia–containing ceramics. J. Amer. Ceram. Soc., Vol. 83, No. 3, pp. 461—487. doi: https://doi.org/10.1111/j.1151-2916.2000.tb01221.x

12. Vasilev, A.D., Firstov, S.A.&Shinkaruk, A.V. (1996). On the brittle-to-ductile transition of Y-PSZ single crystals. J. Europ.Ceram.Soc,Vol.16, pp. 953—959. doi: https://doi.org/10.1016/0955-2219(96)00013-1

13. Shevchenko, A. V., Ruban, A. K.& Dudnik, E. V. (2000). High-technology ceramics based on zirconium dioxide. Ogneup. Tekh. Keram. Vol. 9, pp. 2—8 [ib Russian].

14. Dudnik, E.V., Shevchenko, A.V., Ruban, A.K., Red`ko,V.P.& Lopato, L.M. (2011). Microstructural design of ZrO2—Y2O3—CeO2—Al2O3 materials. Powder Metallurgy and Metal Ceramics,Vol. 49, No. 9, pp. 528—536. doi: https://doi.org/10.1007/s11106-011-9267-3

15. Dudnik, O. V., Marek, I. O., Ruban, O. K., Redko, V.P., Danilenko, M.I., Korniy, S.A.& Melakh, L.M. (2020). Theory, manufacturing technology, and properties of powders and fibers effect of heat treatment on the structure and phase composition of the nanosized powder based on a ZrO2 solid solution. Powder Metallurgy and Metal Ceramics, Vol. 59, No. 1—2, pp. 1—8. doi: https://doi.org/10.1007/s11106-020-00132-x

16. Naito, H., Sakai, N.&Otake, T. (2000). Oxygen transport properties in ZrO2—CeO2—Y2O3 by SIMS analysis. Solid State Ionics,Vol. 135, pp. 669—673. doi: https://doi.org/10.1016/S0167-2738(00)00378-7

17. Yang, B.C., Go, D.& Oh, S. (2019). Atomic-layer-deposited ZrO2-doped CeO2 thin film for facilitating oxygen reduction reaction in solid oxide fuel cell. Appl. Surface Sci., Vol. 473, pp. 102—106. doi: https://doi.org/10.1016/j.apsusc.2018.12.142

18. Somacescu, S., Cioatera, N.&Osiceanu, P. (2019). Bimodal mesoporous NiO/CeO2—YSZ with enhanced carbon tolerance in catalytic partial oxidation of methane — potential IT-SOFCs anode. Appl. Catalysis B: Environmental., Vol. 241, pp. 393—406. doi: https://doi.org/10.1016/j.apcatb.2018.09.065

19. Method for determining apparent density, open and total porosity, water absorption. (2014). Moscow. Standartinform [in Russian].

20. Borger, A., Supancic, P.& Danzer, R. (2002). The ball on three balls test for strength testing of Brittle discs — Stress Distribution in the Disc. J. European Ceramic Soc, Vol. 22, pp. 1425—1436. doi: https://doi.org/10.1016/S0955-2219(01)00458-7

21. Nohut, S.A. (2012). General formulation for strength prediction of advanced ceramics by ball-on-three-balls (B3B)-test with different multiaxial failure criteria. Ceramics Intern., Vol. 38, pp. 2411—2420. doi: https://doi.org/10.1016/j.ceramint.2011.11.007

22. Brodnikovskyi, Y., McDonald, N., Polishko, I., Brodnikovskyi, D., Brodnikovska, I., Brychevskyi, M., Kovalenko, L., Vasylyev, O., Belous, A. & Steinberger-Wilckens, R. (2019). Properties of 10Sc1CeSZ—3,5YSZ (33, 40, 50% (wt.)) composite ceramics for SOFC application. Materials Today: Proceedings, Vol. 6, No. 2, pp. 26—35. doi: https://doi.org/10.1016/j.matpr.2018.10.071

23. Skoroshod, V.V. (1959). On the electrical conductivity of dispersed mixtures of non-conductors with conductors. Engineering Phys. J., Vol. 2, No. 8, pp. 51—58 [in Russian].

24. Belous, A.G., Kravchyk, K.V., Pashkova, E.V.&Bohnke, O. (2007). Influence of the chemical composition on structural properties and electrical conductivity of Y—Ce—ZrO. Chem. Mater., Vol. 19, No. 21, pp. 5179—5184. doi: https://doi.org/10.1021/cm070319j

25. Ghatee, M., Shariat, M.H. &Irvine, J.T.S. (2009). Investigation of electrical and mechanical properties of 3YSZ/8YSZ composite electrolytes. Solid State Ionics.,Vol. 180, pp. 57—62. doi: https://doi.org/10.1016/j.ssi.2008.10.006

26. Fabris, S., Paxton, A.T. & Finnis, M.W.(2002). A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater., Vol. 50, pp. 5171—5178. doi: https://doi.org/10.1016/S1359-6454(02)00385-3