Gallium oxide — a prospective multifunctional material of the fourth generation (review)

   

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
superngrig@ukr.net
Usp. materialozn. 2024, 8/9:66-81
https://doi.org/10.15407/materials2024.08-09.007

Abstract

This work is devoted to the analysis and systematization of the main information on the properties of gallium oxide and materials based on it and their practical application, as well as the prospects for further research of the specified actual oxide material. A review of literature data concerns general properties and structure of gallium oxide Ga2O3, various methods to produce Ga2O3 thin films, nanostructures, bulk crystals, powders, the application of gallium oxide in various fields of science and technology, including semiconductor field, electronic engineering, optoelectronics, the creation of composite transparent materials, etc. In the last thirty years or so, thanks to the progress in growing large-volume, high-quality gallium oxide crystals, this material with an ultra-wide band gap and a high critical breakdown field has gained significant application in the manufacture of the latest power electronics and high-voltage electronic devices. Important experimental studies, in particular, in terms of developing methods of metallization, joining similar materials, connecting electrical contacts, for example, by soldering, require the study of the wetting of these oxide materials by metal melts and the contact interaction at the interphase boundaries. Data on surface phenomena, in particular the wetting of gallium oxide by metals, are practically absent in the literature, and this requires further additional research.


Download full text

TRANSPARENT COMPOSITE MATERIALS, GALLIUM OXIDE, OPTOELECTRONICS, PHYSICAL PROPERTIES, POWER ELECTRONICS, SEMICONDUCTOR

References

1. Naumenko, M. V. (2023). Electronic power of nanostructures based on β-Ga2O3. Diss. for the degree of doctor of philosophy, Krivy Rig, 174 p. https://doi.org/10.31812/123456789/7081

2. Elektronnyy resurs: https://pubs.aip.org/aip/apm/ article/7/5/051103/ 122024/Deep-trap-spectra-of-Sn-doped-Ga2O3-grown-by

3. Elektronnyy resurs: https://powerwaywafer.com/gallium-oxide-semiconductor–material.html

4. Chemical encyclopedia (1990). Vol. 1. Мoskva: Bolchaya Great Soviet Encyclopedia, 623 p. [in Russion].

5. Lidin, P. A. (2000). Chemical properties of inorganic substances: Textbook manual for universities, 3 ed., Мoskva: Chemical, 480 p. [in Russion].

6. Nikolsky, B. P. (1966). Chemist’s Handbook. 2 ed., Мoskva—Leningrad: Chemical, Vol. 1, 1072 p. [in Russion].

7. Nikolsky, B. P. (1971). Chemist's Handbook. 3 ed., Leningrad: Chemical, Vol. 2, 1168 p. [in Russion].

8. Chiang, J. - L., Yadlapalli, B. K., Chen, M. - I., Wuu, D. - S. (2022). A review on gallium oxide materials from solution processes. Nanomaterials (Basel), Vol. 12 (20), p. 3601. doi: https://doi.org/10.3390/nano12203601

9. Marwoto, P., Sugianto, S., Wibowo, E., Marwoto, P. (2012). Growth of europium–doped gallium oxide (Ga2O3:Eu) thin films deposited by homemade DC magnetron sputtering. Theor. Appl. Phys., Vol. 6, pp. 17–28. doi: https://doi.org/10.1186/2251-7235-6-17

10. Minami, T. (2003). Oxide thin-film electroluminescent devices and materials. Solid-State Electronics, Vol. 47, p. 2237. -1 https://doi.org/10.1016/S0038-1101(03)00204-1

11. Chang, S. –J ., Wu, Y. - L., Weng, W. - Y., Lin, Y. - H., Hsieh, W. - K., Sheu, J. - K., Hsu, C. - L. (2014). Photoelectrochemical hydrogen generation. Electrochem. Soc., Vol. 161. H508.

12. Moos, N., Izu, R., Rettig, F., Reis, S., Shin, W., Matinfara, I. (2011). Resistive oxygen gas sensors for harsh environments. Sensors, Vol. 11 (4), pp. 3439–3465.

13. Oshima, Y., Villora, E. G., Kiyoshi Shimamura, K. (2015). Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy. J. Crystal Growth., Vol. 410, pp. 53–58. https://doi.org/10.1016/j.jcrysgro.2014.10.038

14. Bottiston, G. A., Gerbasi, R., Porchia, M., Bertoncello, R., Caccavale, F. (1996). Chemical vapour deposition and characterization of gallium oxide thin films. Thin Solid Films, Vol. 279, pp. 115–118. https://doi.org/10.1016/0040-6090(95)08161-5

15. Kawaharamura, T., Dang, G. T., Furuta, M. (2012). Development of “Mist CVD”, functional thin film. Jpn. Appl. Phys., Vol. 51, p. 040207.

16. Hao, J., Lou, Z., Renaud, I., Cocivera, M. (2004). Electroluminescence of europium–doped gallium oxide thin films. Thin Solid Films, Vol. 467, pp. 182–185. http://dx.doi.org/10.1016/j.tsf.2004.03.037

17. Ji, Z., Du, J., Fan, J., Wang, W. (2006). Gallium oxide films for filter and solar–blind UV detector. Opt. Mater. (Amst), Vol. 28, pp. 415–421.

18. Binions, R., Carmalt, C. J., Parkin, I. P., Pratt, K. F. E., Shaw, G. A. (2004). Synthesis of gallium oxide via interaction of gallium with iodide. Chem. Mater., Vol. 16, p. 2489.

19. Ravadgar, P., Horng, R. H., Wang, T. Y. (2012). Chloride epitaxy of β-Ga2O3 layers grown on c-sapphire substrates. ECS. Solid State Sci. Technol., Vol. 1, pp. 58–64.

20. Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T., Yamakoshi, S. (2012). Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single–crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett., Vol. 100, p. 013504. https://doi.org/10.1063/1.3674287

21. Villora, E. G., Shimamura, K., Kitamura, K., Aoki, K. (2006). Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3. Appl. Phys. Lett., Vol. 88, p. 031105.

22. Bordun, O. M., Bordun, B. O., Kuharskiy, I. Y., Medvid, I. I., Tsapovska, Zh. Ya., Leonov, D. S. (2018). Photoelectric power of thin β-Ga2O3 smelts. Nanosystems, nanomaterials, nanotechnologies, Vol. 16 (1), pp. 167–174 [in Ukrainian].

23. Bordun, O. M., Bordun, B. O., Kukharskyy, I. Y., Medvid, I. I., Zvizlo, I. S., Leonov, D. S. (2017). Influence of the obtaining conditions on the photoconductivity of thin β-Ga2O3 films. J. Appl. Spectrosic., Vol. 84 (1), pp. 483–490.

24. Maslov, V. N., Krymov, V. M., Blashenkov, M. N., Golovatenko, A. A., Nikolaev, V. I. (2014). β-Ga2O3 crystal growing from its own melt. Tech. Phys. Lett., Vol. 40, pp. 303–309.

25. Tomm, Y., Ko, J. M., Yoshikawa, A., Fukuda, T. (2001). Sapphire substrate induced effects on β-Ga2O3 thin films. Sol. Energy Mater. Sol. Cells., Vol. 66, pp. 369–375.

26. Ohira, S., Suzuki, N., Arai, N., Tanaka, M., Sugawara, T., Nakajima, K. Shishido, T. (2008). Photoconductivity of thin β-Ga2O3 and β-Ga2O3:Cr3+ films. Thin Solid Films, Vol. 516, pp. 5763–5770. https://doi.org/10.1016/j.tsf

27. Dabkowska, H. A., Dabkowski, A. B. (2010). Springer Handbook of Crystal Growth. Springer, 1817 p.

28. Aida, H., Nishiguchi, K., Takeda, H., Aota, N., Sunakawa, K., Yaguchi, Y. (2008). Growth of β-Ga2O3 single crystals by the edge-defined. Jpn. Appl. Phys., Vol. 47, pp. 8506–8510.

29. Luchehko, A. P. (2020). Nonequilibrium electronic photo- and thermostimulated processes in oxide materials of functional electronics based on gallium and aluminum. Diss. Sci. level of doctor of phys. and mathematical Sci., Lviv, Ukraine, 223 p. [in Ukrainian].

30. Tippins, H. (1965). Optical and microwave properties of trivalent chromium in β-Ga2O3. Phys. Rev., Vol. 137, p. A865.

31. Pearton, S., Yang, J., Cary, P. H., Ren, F., Kim, J., Tadjer, M. J., Mastro, M. A. (2018). A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev., Vol. 5, p. 011301. https://doi.org/10.1063/1.5006941

32. Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T., Yamakoshi, S. (2012). Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on singlecrystal β-Ga2O3 (010) substrates. Appl. Phys. Lett., Vol. 100, p. 013504. http://dx.doi.org/10.1063/1.3674287

33. Higashiwaki, M., Sasaki, K., Kamimura, T., Wong, M. N., Krishnamurthy, D. (2013). Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistor–son β-Ga2O3 (010) substrates and temperature dependence of their devicecha–racteristics. Appl. Phys. Lett., Vol. 103, p. 123511. doi:10.1063/1.4821858

34. Bartic, M., Toyoda, Y., Baban, C. - I., Ogita, M. (2016). Oxygen sensitivity in gallium oxide thin films and single crystals at high temperatures. Jpn. J. Appl. Phys., Vol. 45, P. 5186.

35. Fleischer, M., Hollbauer, L., Born, E., Meixner, H. (1997). Evidence for a phase transition of β-Ga2O3 at very low oxygen pressures Amer. Ceram. Soc., Vol. 80, pp. 2121–2125.

36. Fleischer, M., Giber, J., Meixner, H. (1992). H2-induced changes in electrical conductance of β-Ga2O3 thin-film systems. Appl. Phys., A 54, pp. 560–566.

37. Trinchi, A., Wlodarski, W., Li, Y. X. (2004). Hydrogen sensitive Ga2O3 Schottky diode sensor based on SiC. Sensors Actuators, B Chem., Vol. 100, pp. 94–98. https://doi.org/10.1016/j.snb.2003.12.028

38. Nakagomi, S., Yokoyama, K., Kokubun, Y. (2014). Devices based on series–connected Schottky junctions and β-Ga2O3/SiC heterojunctions characterized as hydrogen sensors. J. Sensors Sens. Syst., Vol. 3, pp. 231–239. https://doi.org/10.5194/jsss–3-231-2014

39. Kokubun, Y., Miura, K., Endo, F., Nakagomi, S. (2007). Sol-gel pre-pared β-Ga2O3 thin films for ultraviolet photodetectors. Appl. Phys. Lett., Vol. 90, p. 031912. https://doi.org/10.1063/1.2432946, 2007

40. Arnold, S., Prokes, S., Perkins, F., Zaghloul, M. (2009). Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor. Appl. Phys. Lett., Vol. 95, p. 103102. https://doi.org/10.1063/1.3223617

41. Hudgins, J. L., Simin, G. S., Santi, E., Khan, M. A. (2003). An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron, Vol. 18, p. 907. http://dx.doi.org/10.1109/TPEL.2003.810840%20

42. Hwang, W. S., Verma, A., Peelaers, H., Protasenko, V., Rouvimov, S., Xing, H., Seabaugh, A., Haensch, W., Walle, C. V., Galazka, Z. (2014). High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl. Phys. Lett., Vol. 104, p. 203111. https://doi.org/10.1063/1.4879800

43. Galii, P. V., Vasyltsiv1, V. I., Luchechko, A. P., Mazur, P., Nenchuk, T. M., Tsvetkova, O. V., Yarovets, I. R. (2018). Elemental-phase and structural studies of polycrystall ine surfaces of compounds of the β-Ga2O3—SnO2 system. J. Nanoand Electronic Physics, Vol. 10 (5), pp. 05039-1–05039-8 [in Ukrainian]. https://doi.org/ 10.21272/jnep.10(5).05039