Конференції

Effect of temperature on the damping properties of Mg—Al alloys in the high-amplitude range

     

Інститут проблем матеріалознавства ім. І. М. Францевича НАН України , Київ
omalka7049@gmail.com
Usp. materialozn. 2025, 10/11:37-49
https://doi.org/10.15407/materials/-

Анотація

For Mg and Mg-Al alloys, characteristics (tgβ, σ0,002 dv, εan ) in a wide range of mechanical vibration amplitudes from room temperature up to 300 °C were obtained. The independence of the conditional twinning limit σ0,002 dv from temperature in the range of 20—300 °C was observed and confirms the athermal mechanism of elastic twinning. The dependences of σ0,002 dv on the Al atom concentration, the previous deformation of the metal, and the temperature have been established. At room temperature, σ0,002 dv increases in proportion to the concentration of Al and is respectively: 11—12 MPa for pure magnesium, ~20 MPa for the alloy Mg—3Al, ~27 MPa for Mg—6Al and ~52 MPa for Mg—9Al. Previous plastic deformation of the material leads to an ambiguous increase in σ0.002dv. The dependence of the conven tional twinning limit on δ is linear and is associated with an increase in the dislocation density in pure magnesium. However, in Mg—Al alloys, an anomalous increase in σ0.002dv is observed at the initial stages of deformation, caused by aluminum atoms in the solid solution (Mg—3Al) and particles of the Mg17Al12 phase (Mg—9Al). At high temperatures (300 °C), strain hardening does not occur due to annealing of defects; the number of dislocations remains approximately the same, so σ0.002dv remains constant and is 11—12 MPa for Mg and Mg—3Al, 14—15 for Mg—6Al, and 12—13 for Mg—9Al. At intermediate temperatures of 100 and 200 °C, the onset of twinning depends on many factors that influence changes in the structural state of the metal. For example, the amount of Al in the solid solution, the number of particles of the strengthening phase Mg17Al12, the intensity of the preliminary deformation, and others. The damping capacity of alloys, caused by twinning-detwinning processes, always decreases with increasing temperature and aluminum atom concentration. The change in deformation mechanisms at high temperatures (300 °C and above) is associated with the replacement of elastic twinning with non-basic slip. This leads to a significant reduction or complete loss of the material's damping capacity.

Keywords: twinning, damping capacity, conditional twinning limit, inelastic deformation, loss tangent.


Посилання

1. Hutchinson W. B., Barnett M. R. (2010). Effective volues of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scr. Mater. Vol. 63, pp. 737-740. https://doi.org 110.1016/j. scriptamat. 2010.05.047.

2. Yujue Cui, Yunping Li, Shihai Sun, Hua Kang Bian, Hua Huang, Zhongchang Wang, Yuichiro Koizumi, Akihiko Chiba. (2015). Enhanced damping capacity of magnesium alloys by tensile twin boundaries. Scr. Mater, Vol. 101, pp. 8-11. https://doi.org. 110.1016/j. scriptamat. 2015.01.002.

3. Remy L. (1977). Twin-slip interaction in fcc crystals. Acta Mat, Vol. 25(6), pp. 711-714. https://doi. org. 110.1016/0001-6160 (77) 90013-x.

4. Cepeda – Jimenez C. M., Molina – Aldareguia T.M., Pe'res – Prado M. T. (2015). Origion of the twinning to slip transition with grain size refinement, with decreasing strain rate and with increasing temperature in magnesium. Acta Materialia, Vol. 88, pp. 232-244. https://doi.org/10.1016/j.actamat.2015.01.032

5. Chapuis A., Driver T. H. (2011). Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Mater, Vol. 59, pp. 1986—1994. https://doi.org/10.1016/j.actamat.2010.11.064

6. Zhang T., T. Toshi T., Mech T. Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. Phys. Solids. 2012. Vol. 60. P. 945—972.

7. Bettles C., Barnett M. (2012). Advances in Wrought Magnesium Alloys, Woodheod publishing, Cambridge, P 455.

8. Romanko P. M., Podrezov Yu. M., Marchenko N.М., Malka О.М., Maksymchuk І.М. (2023). Inelasticity and damping capacity of magnesium; Mg—Al alloys under conditions of cyclic high-amplitude loading. Uspihy materialoznavstva, No. 6, pp. 41—57.

9. Meyers M.A., Vohringer O., Lubarda V.A. (2001). The onset of twinning in metals: a constitutive description. Acta Mater, Vol. 49, pp. 4025—4039. https://doi.org/10.1016/S1359-6454(01)00300-7

10. Barnett M. R., Keshavarz Z., Beer A.G., Atwell P. (2004). Influence of grain size on the compressive deformation of wrought Mg—3Al—1Zn. Acta Mater, Vol. 52, pp. 5093—5103.

11. Oppedal Ma Q., Whittington B. Li, A. L., Horstemeyer W R., Marin S.T., Wang E. B., Horstemeyer P.T., Mater M. F. (2013). Sci. Eng, Vol. A 599, pp. 314.

12. Al-Samman T., Li X., Chowdhury S. G. (2010). Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy. Mater. Sci. Eng, Vol. https://doi.org/10.1016/j.msea.2010.02.008 A. 527, pp. 3450—3463.

13. Barnett M. R. (2003). A taylor model based description of the proof stress of magnesium AZ31 during hot working. Metall. Mater. Trans, Vol. A 34, pp. 1799—1806.

14. Menard Kevin P. (1999). Dynamic mechanical Analysis, CRC Press LLC, P 205. 15. Soldatov V. P. (1966). FMM, Vol. 22, 6, pp. 924—930.