Domain wall conduction in multiaxial ferroelectrics

 
Anna N. Morozovska,
 
George S. Svechnikov,
 
Peter Maksymovych,
 
Sergei V. Kalinin
 

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Omeliana Pritsaka str.,3, Kyiv, 03142, Ukraine
Physical Review B - Maryland, USA: American Physical Society (APS), 2012, #85
http://www.materials.kiev.ua/article/637

Abstract

The conductance of domain wall structures consisting of either stripes or cylindrical domains in multiaxial ferroelectric-semiconductors is analyzed. The effects of the flexoelectric coupling, domain size, wall tilt, and curvature on charge accumulation are analyzed using the Landau-Ginsburg Devonshire theory for polarization vector combined with the Poisson equation for charge distributions. The proximity and size effect of the electron and donor accumulation/depletion by thin stripe domains and cylindrical nanodomains are revealed. In contrast to thick domain stripes and wider cylindrical domains, in which the carrier accumulation (and so the static conductivity) sharply increases at the domain walls only, small nanodomains of radii less than 5–10 correlation lengths appeared conducting across the entire cross-section. Implications of such conductive nanosized channels may be promising for nanoelectronics.