Study of the fracture features of layered ceramics in its microvolumes by indentation methods

О.Zaporozhets 2,
V.Mykhailovskyi 2,

1 I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
2 G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Kyiv

Usp. materialozn. 2020, 1:98-113


Technology and modes of ZrB2—SiC layered ceramic composites manufacturing have been developed. The structures, elastic characteristics and strength properties of the materials under investigation have been studied. Effect of internal stress fields on fracture processes in the indentation area and mechanical properties of the ceramics in its microvolumes has been investigated both in layers and at their interfaces. Using values of contact tensile strength along different directions in layers of the composites, effective residual thermal stresses have been calculated (≈180 MPa). The obtained data on contact tensile strength and effective crack resistance, taking into consideration the contributions of residual stresses to their values, have been used for estimations of contact strength and crack resistance of the layer materials themselves. The fracture toughness measured by the three-point bending method is 3,3—3,7 MPa / m3/2. Analysis of the data obtained indicates that the spark notch provides a greater sharpness of the crack tip and better conditions for measuring K1c, while processing with a blade picks up a sharp thermal crack in the notch tip ... The elastic properties of the multilayer system (SiC—15% ZrB2) + (SiC—0% ZrB2) were studied using ultrasonic research methods. The values of the velocities of sound and elastic characteristics are sufficiently large and close to those expected from the models of the composite, which does not contain noticeable porosity and microcracks in the layers themselves and in the region of their boundaries. For directions along and across the plane of the layers, the values of Young's moduli differ by about 6%. For the directions of propagation of an ultrasonic wave along and across the layers, anisotropy of ultrasonic velocities of ~5% and elastic moduli of ~10—12% is observed, which may be due to the texture that develops in the structure of the layers during hot pressing. 

Download full text



1. Development and Properties of SiC-TiB2 Multilayered Composites. Proc. 6th Conf. and Exhib. Eur. Ceram. Soc. (Brighton, UK, 20-24 June 1999). Chameleon Press, 1999. 165 p.

2. Grigoriev O.N., Koroteev A.V., Klimenko A.V. Production and properties of multilayered SiC-TiB2 ceramics. Ogneupory Tekh. Keram. 2000. No. 11. P. 20-25.

3. Orlovskaya N., Lugovy M., Subbotin V., Radchenko A., Adams J., Cheda M., Shih J., Sankar J., Yarmolenko S. Robust design and manufacturing of ceramic laminates with controlled thermal residual stresses for enhanced toughness. J. Mater. Sci. 2005. No. 40. P. 5483-5490.

4. Gogotsi G., Lugovy M., Slyunyayev V. Fracture resistance of residually-stressed ceramic laminated structures. Strength Mater. 2004. No. 3. P. 291-303.

5. Orlovskaya N., Lugovy M., Subbotin V., Radchenko A., Adams J., Cheda M., Shih J., Sankar J., Yarmolenko S. Design and manufacturing B4C-SiC layered ceramics for armor applications. Ceramic Armor and Armor Systems (Ceramic Transactions). 2003. No. 151. P. 59-70.

6. Lugovy M., Orlovskaya N., Berroth K., Kuebler J. Macrostructural engineering of ceramic-matrix layered composites. Composite Sci. Techn. 1999. No. 8. P. 1429-1437.

7. Grigoriev O.N., Koroteev A.V., Maiboroda E.N., Berezhinsky I.L., Serdega B.K., Ostrovoi D.Yu., Piskunov V.G. Structure, nonlinear stress-strain state and strength of ceramic multilayered composites. Composites. 2006. Part B 37. P. 530-541.

8. Galanov B.A., Grigorev O.N. Analiticheskaya model indentirovaniya hrupkih materialov [Analytical model of indentation of brittle materials]. .Elektronnaya mikroskopiya i prochnost materialov. K.: In-t probl. materialovedeniya NAN Ukrainyi. 2006. Issue 13. P. 4 [in Russian].

9. Galanov B.A., Grigorev O.N., Trunova E.G. Statisticheskie harakteristiki kontaktnoy prochnosti keramiki [Statistical characteristics of the contact strength of ceramics]. Elektronnaya mikroskopiya i prochnost materialov K.: In-t probl. materialovedeniya NAN Ukrainyi, 2001. Issue 6. P. 125-139 [in Russian].

10. Grigorev O.N., Galanov B.A., Kotenko V.A., Ivanov S.M., Kovalchuk V.V., Lazhevskiy V.A. Kontaktnaya prochnost i treschinostoykost hrupkih materialov. [Contact strength and crack resistance of brittle materials]. Metallofizika i noveyshie tehnologii. 2005. № 8. P. 1001 [in Russian].

11. Broek D. Osnovyi mehaniki razrusheniya [Fundamentals of fracture mechanics]. Moscow: Vyisshaya shkola, 1980. 368 s. [in Russian].

12. Zaporozhets O.I., Lichko A.V., Nemoshkalenko V.V. A technology for non-destruc¬tive testing of metalworks. Met. Phys. Adv. Tech. 1999. No. 17. P. 961-971.

13. Berezhinskiy I.L., Berezhinskiy L.I., Grigorev O.N., Serdega B.K., Yuhimchik V.O. Issledovaniya ostatochnyih napryazheniy na granitse kontakta kompozitsionnyih materialov [Investigations of residual stresses at the contact boundary of composite materials]. Sovremennyie problemyi fizicheskogo materialovedeniya. K.: In-t probl. materialovedeniya NAN Ukrainyi. 2006. Issue 15. P. 51 [in Russian].

14. Eshelby J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Roy. Soc. 1957. No. 241. P. 376-396.

15. Grigorev O.N., Galanov B.A., Koroteev A.V., Melah L.M., Mosina T.V. Struktu-roobrazovanie i mehanicheskie svoystva diborida tsirkoniya v prisutstvii aktivi-ruyuschih spekanie dobavok [Structure formation and mechanical properties of zirconium diboride in the presence of additives activating sintering]. Elektronnaya mikroskopiya i prochnost materialov. K.: In-t probl. materialovedeniya NAN Ukrainyi. 2015. Issue 21. P. 111 [in Russian].