Conferences

Calculation of the linear coefficient of thermal expansion of multi-element, single-phase metal alloys from the first principles

 

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
khachatryan.h.v@gmail.com
Usp. materialozn. 2021, 2:10-18
https://doi.org/10.15407/materials2021.02.010

Abstract

One of the possible ways to calculate the coefficient of thermal expansion is a method based on determining the dependence of the total energy of the electron-ion system on the parameters of the crystal lattice at different temperatures. There is a relationship between the calculated values of the linear coefficients of thermal expansion and the melting point of the material. For metals and multi-element single-phase alloys, the dependence of the function V = α·Tmax on the parameter T/Тмах (α — the linear coefficients of thermal expansion, Tmax — melting point of the material) is obtained from the first principles, which has the same form for all single-phase multi-element metal alloys and is presented analytically. Using the method of pseudopotential and quasiharmonic approximation, the linear coefficients of thermal expansion of multielement metal alloys are calculated. The temperature dependence of the coefficient of thermal expansion, after approximating the results of the computational experiment, is presented in analytical form. The results were compared with known tabular data. To confirm the reliability of the model, the calculation was performed for a number of pure metals. The consistency of the calculated and experimental data on the coefficient of thermal expansion of single-phase alloys calculated from the first principles is observed. There is a relationship between the calculated values of the linear coefficients of thermal expansion and the melting point of the material. For metals and multielement single-phase alloys, the dependence of the function V = α·Tmax on the parameter T/Тмах (α — the linear coefficients of thermal expansion, Tmax — melting point of the material) is obtained from the first principles, which has the same form for all singlephase multi-element metal alloys and is presented analytically


Download full text

COEFFICIENT OF THERMAL EXPANSION, ELECTRON–ION SYSTEM, INTERATOMIC INTERACTION POTENTIAL, QUASI-HARMONICAPPROXIMATION, THE FORCE CONSTANTS

References

1. Zhenggang, Wu (2014). Temperature and Alloying Effects on the Mechanical Properties of Equiatomic FCC Solid Solution Alloys. (PhD diss.). University of Tennessee, USA.

2. Laplanche, G., Gadaud, P., Bärsch, C. & Demtröder, K., Reinhart, C., Schreuer, J., George, E.P. (2018). Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy. J. of Alloys and Compounds, V. 746, P. 244-255. https://doi.org/10.1016/j.jallcom.2018.02.251

3. Hang, Sh., Vida, A., Heczel, A. & Holmstron, E., Vitos L.(2017). Thermal Expansion, Elastic and Magnetic Properties of FeCoNiCu-Based High-Entropy Alloys Using First-Principle Theory. JOM, V.69, No 11, P. 2012-2017. https://doi.org/10.1007/s11837-017-2565-6

4. Hang, Sh., Vida, A., Wei, Li. (2017).Thermal expansion in FeCrCoNiGa highentropy alloy from theory and experiment. Appl. Phys. Lett., V. 110, (24): 241902. DOI: 10.1063/1.4985724 View online: https://doi.org/10.1063/1.4985724.

5. Zakarian D.A. Pershopryntsypni metody rozrakhunku fyzychnykh kharakterystyk tuhoplavkykh bynarnykh evtektychnykh kompozytiv. Dysertatsiia na zdobuttia ISSN 2709-510X. УСПІХИ МАТЕРІАЛОЗНАВСТВА, 2021, № 2 17 naukovoho stupenia doktora za spetsialnistiu fizyka tverdoho tila. / Instytut problem materialoznavstva Natsionalnoi akademii nauk Ukrainy, Kyiv, 2018. 280 p.

6. Zakarian, D., Kartuzov, V., Khachatrian, A. (2016). Quasiharmonic approximation model in the theory of pseudopotentials. Dopov, Nac. Akad. nauk. Ukr., V. 4. P. 55-61 [in Russian]. https://doi.org/10.15407/dopovidi2016.04.055

7. Belan-Gaiko, L.V., Bogdanov, V.I., Fuks, D.L. (1979). Calculation of elastic and thermal properties of alkali metals by the pseudopotential method. Izvestiya Vuzov, No 2. P. 25-38. [in Russian]. https://doi.org/10.1007/BF00892002

8. Zakaryan, D., Kartuzov, V., Khhachatrian, A. & Sair, A. (2011). Calculation of composition in LaB6-TiB2, LaB6-ZrB2 eutectics by means of pseudopotential method". J. European Ceramic Society, V. 31, No. 7, P. 1305-1308. https://doi.org/10.1016/j.jeurceramsoc.2011.01.023

9. Heine W., Cohen M., Weir D. Pseudopotential Theory. (1973). Moskva. Mir. [in Russian].

10. Kittel Ch. Introduction to Solid State Physics. (1976). Moskva. Nauka. [in Russian].

11. Zakaryan, D.A., Kartuzov, V.V., Khachatryan, A.V. (2015). Calculation of the basic physical and mechanical characteristics of high-entropy metal alloys. Matematicheskiye modeli i vychislitel'nyy eksperiment v materialovedenii, V.17, P. 56-61. [in Russian].

12. Novickiy L. Kozhevnikov I. Thermophysical properties of materials at low temperatures. (1975). Moskva. Mashinostroyeniye [in Russian]. http://thermalinfo.ru/svojstva-materialov/metally-i-splavy/koeffitsienty-teplovogorasshireniya-ktr-metallov

13. Van Bohemen, S.M.C. (2013). The nonlinear lattice expansion of iron alloys in the range 100-1600 K. Scripta Materialia, V. 69, P. 315-318. https://doi.org/10.1016/j.scriptamat.2013.05.009

14. Ryabukhin, A.G. (1999). Linear coefficient of thermal expansion of metals. Fizicheskaya himiya i tehnologiya neorganicheskih materialov, V. 3, P. 15-17. [in Russian].