Interaction in the systems Y2O3—Ln2O3 (Ln = Tb—Lu)

  

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
alina.makudera@gmail.com
Usp. materialozn. 2021, 2:72-78
https://doi.org/10.15407/materials2021.02.072

Abstract

Based on the analysis of literature data from experimentally constructed phase diagrams of Y2O3—Ln2O3 systems (Ln = Tb—Lu), as well as temperatures of polymorphic transformations of rare earth oxides (REE), tentativephase diagrams of Y2O3—Ln2O3 systems (Ln = Tb—Lu) were constructed in wide intervals of temperatures and concentrations. Prediction of the binaryphase diagrams structure of yttria — yttrium subgroup lanthanides systems was carried out on the basis of three principles: 1. Since double systems are formed by lanthanide oxides of one (yttrium) subgroup, it is very likely that in such systems continuous solid solutions will be formed between the components. 2. Intermediate binary phases are not formed in these systems. 3. The formation of continuous solid solutions occurs with a decrease in the temperatures of phase transformations in the solid state to a minimum shifted towards a lower transformation temperature of the system component. The forecast of the Y2O3—Ln2O3 systemsphase diagrams structure, where Ln = Tb—Lu, indicates the complete solubility of the components in the liquid and solid states. Binary compounds in the considered systems are not predicted. Phase transformations in the solid solutions on the basis of polymorphic modifications X, H, A, B and C of lanthanide oxides cascade at high temperatures by the peritectoid mechanism. Below 1850 °С regions of solid solutions with cubic C-structure of REE oxides are formed in the whole range of concentrationsin the systems.


Download full text

POLYMORPHS OF REE OXIDES, RARE EARTH OXIDES, STATE DIAGRAM, Y2O3

References

1. Pianassola, M., Loveday, M., McMurray, J. W.. Koschan, M., Melcher, Ch., Zhuravleva, M. (2020). Solid-state synthesis of multicomponent equiatomic rare-earth oxides. J. Am. Ceram. Soc. V. 103, pp. 2908—2918.

2. Gild, J, Zhang, Y, Harrington, T, Jiang, S, Hu, T, Quinn, M.C, Mellor, W. M., Zhou, N., Vecchio, K., Luo, J. (2016). High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. V. 6, No. 1, pp. 1—10.

3. Braic, M., Braic, V., Balaceanu, M., Zoita, C. N., Vladescu, A., Grigore, E. (2010). Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering. Surf. Coat. Technol., Vol. 204, pp. 2010—2014.

4. Lai, C. H., Cheng, K. H., Lin, S. J., Yeh, J. W. (2008). Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings. Surf. Coatings Technol., Vol. 202, No. 15, pp. 3732—3738.

5. Rost, C. M,, Sachet, E., Borman, T., Moballegh, A., Dickey, E. C., Hou, D. Jones, J. L., Curtarolo, S., Maria, J.-P. (2015). Entropy-stabilized oxides. Nat. Commun., Vol. 6, pp. 1—8.

6. Lakiza, S. M., Hrechanjuk, M. І., Ruban, О. К., Red`ko, V. P., Hlabaj, M. S., Myloserdov, О. B., Dudnik, О. V., Prokhorenko, S. V. (2018). Thermal barrier cjatings: current status, search andanalysis.Powder Metallurgy and Metal Ceramics. Vol. 57, No. 1–2, pp. 82—113.

7. Foex, M., Traverse, J.P. (1966). Remarques sur les transformations cristallines presentees a haute temperature par les sesquioxydes de terres rares. Rev. Int. Hautes Temp. Refract.Vol. 3. P. 429–453.

8. Zinkevich M. (2007). Thermodynamics of rare earth sesquioxides.Progr. Mater. Sci..Vol. 52, pp. 597—647.

9. Lopato, L. M., Shevchenko, А. V., Kuschevsky, А. Е., Tresvyatskij, S.G. (1974). Polymorphic transformation of rare earth elements oxides at high temperature. Izv. Akad. Nauk SSSR, Neorg. Mater., Vol. 10, No. 8, pp. 1481—1487[in Russian].

10. Stehniy, А. I., Shevchenko, А. V., Lopato, L. М. et al. (1979). Thermal analysis of oxides using solar radiation. Dokl. Akad. NaukUSSR. Ser. А. No. pp. 484—489 [in Russian]. 11. Shevchenko, A. V., Tkachenko, V. D., Lopato, L. М. (1986). Techniques for determining phase transition temperatures using solar radiation. Poroshkovaya Metallurgiya. No. 1, pp. 91—94 [in Russian].

12. Kocherzinsky, Yu.А., Shishkin, Е.А., Vasilenko, V.I. (1971). Apparatus for differential thermal analysis with a thermocouple sensor up to 2200 °С. Phase diagrams of the metal systems. Мoscov: Nauka, pp. 245—249 [in Russian].

13. Lopato, L. V., Shevchenko, А. V., Kuschevsky, А. Е. (1972). Investigation of high refractory oxidessystems.,Poroshkovaya Metallurgiya, No. 1, pp. 88—92 [in Russian].

14. MajsterI, М., Lopato, L. М., Shevchenko, А. V., Nigmanov, B. S. (1984). The system Y2O3— Er2O3.Izv. Akad. Nauk SSSR, Neorg. Mater.Vol. 20, No. 3, pp. 446—448 [in Russian].

15. Nigmanov, B. S., Shevchenko, А. V., Zajceva, Z. O., Lopato L. M. (1986). Interactionof Disprozia with Yttria.Neorg. Mater. Vol. 22, No. 5, pp. 780—783 [in Russian].

16. Glushkova, V. B., Adylov, G. T., Yusupova, S. G., Sigalov, L. M., Kravchinskaya M. V., Rakhimov, R. Kh. (1988). Phase relationships in YO1,5—TbO1,5 and Tb1,5—TbOx systems.Izv. Akad. Nauk SSSR, Neorg. Mater. Vol. 24, No. 5. pp. 795—799 [in Russian].