Конференції

Tentative construction of the liquidus surface of the Al2O3—TiO2— Gd2O3 phase diagram

    

Інститут проблем матеріалознавства ім. І. М. Францевича НАН України , Київ
tyshjana@ukr.net
Usp. materialozn. 2025, 10/11:66-72
https://doi.org/10.15407/materials/-

Анотація

One of the main development directions of the modern materials science is the creation of new oxide ceramic materials for mechanical engineering, energy, chemical, aerospace, electronics and other industries in multicomponent systems, including TiO2, Al2O3 and lanthanide oxides. The Al2O3—TiO2—Gd2O3 system, which contains the gadolinium oxide from the middleof the lanthanide series, was selected for the study. The established interaction regularities in the specified system will allow to predict the interaction and construct elements of phase diagrams of unstudied of the series Al2O3—TiO2—Ln2O3, (Ln = La, Gd, Er) systems. The authors have constructed tentative liquidus surface of the Al2O3—TiO2—Gd2O3 phase diagram. On the basis of the prediction, the presence of four four-phase invariant eutectic equilibria, three four-phase nonvariant transient equilibria, and three three phase nonvariant eutectic equilibria with the participation of a liquid were established. The maximum predicted liquidus temperature in the system is 2360 °C, which is the melting point of pure Gd2O3, and the minimum liquidus temperature is 1500 °C, which corresponds to the melting point of the three-phase eutectic E4L One of the main development directions of the modern materials science is the creation of new oxide ceramic materials for mechanical engineering, energy, chemical, aerospace, electronics and other industries in multicomponent systems, including TiO2, Al2O3 and lanthanide oxides. The Al2O3—TiO2—Gd2O3 system, which contains the gadolinium oxide from the middleof the lanthanide series, was selected for the study. The established interaction regularities in the specified system will allow to predict the interaction and construct elements of phase diagrams of unstudied of the series Al2O3—TiO2—Ln2O3, (Ln = La, Gd, Er) systems. The authors have constructed tentative liquidus surface of the Al2O3—TiO2—Gd2O3 phase diagram. On the basis of the prediction, the presence of four four-phase invariant eutectic equilibria, three four-phase nonvariant transient equilibria, and three three phase nonvariant eutectic equilibria with the participation of a liquid were established. The maximum predicted liquidus temperature in the system is 2360 °C, which is the melting point of pure Gd2O3, and the minimum liquidus temperature is 1500 °C, which corresponds to the melting point of the three-phase eutectic E4L   Gd2Ti2O7+Al2TiO5+TiO2. No new phases were found in the Al2O3—TiO2—Gd2O3 system. Interaction in a three-component system is predominantly eutectic in nature, which opens up a number of promising opportunities for creating materials for various purposes. These include, first and foremost, high-temperature structural composite materials based on directionally solidified two-phase and three-phase eutectics, materials for solid electrolytes (TOPE, oxygen sensors, films for electronic devices, etc.), immobilizing materials for the nuclear industry, viscous ceramics, catalyst carriers, highly wear-resistant and corrosion-resistant ceramics, as well as superrefractories. 

Keywords: oxides Al2O3, TiO2, Gd2O3, liquidus projection, phase diagram


Посилання

1. Pana, T.-M., Liao, P.-Y., Chang, K.-Y., Chi, L. (2013). Structural and sensing characteristics of Gd2Ti2O7, Er2TiO5 and Lu2Ti2O7 sensing membrane electrolyte insulator-semiconductor for bio-sensing applications. Electrochimica Acta, Vol. 89, pp. 798—806. https://doi.org/10.1016/j.electacta.2012.10.099

2. Christopher, J., Swamy, C. S. (1991). Surface characterization and catalytic activity of Ln2Ti2O7 (Ln = Y, Sm, Gd and Tb). Mater. Sci., Vol. 26, pp. 4966—4970. https://doi.org/10.1007/BF00549878

3. Hayun, S., Navrotsky, A. (2012). Formation enthalpies and heat capacities of rear earth titanates: RE2TiO5 (RE = La, Nd and Gd). Solid State Chem., Vol. 187, pp. 70—74. https://doi.org/10.1016/j.jssc.2011.12.033

4. Maitra, S., Bhattacharya, S., Sil, G., Mondal, S. (2002). Aluminium titanate ceramics-A review. Indian Ceram. Soc., Vol. 61, pp. 69—98. https://doi.org/10.1080/0371750X.2002.10800029

5. Cano, I. G., Dosta, S., Miguuel, J. R., Guilemany, J. M. (2007). Production and characterization of metastable Al2O3—TiO2 ceramic materials. J. Mater. Sci., Vol. 42, pp. 9331—9335. https://doi.org/10.1007/s10853-007-1871-8

6. Zang, F. X., Manoun, B., Saxena, S. K. (2006). Pressure-induced order-disorder transitions in pyrochlore RE2Ti2O7 (RE = Y, Gd). Mater. Lett., Vol. 60, pp. 2773— 2776. https://doi.org/10.1016/j.matlet.2006.01.095

7. Wang, Z., Zhou, G., Jiang, D., Wang, S. (2018). Recent development of A2B2O7 system transparent ceramics. J. Adv. Ceram., Vol. 7, pp. 289—306. https://doi.org/10.1007/s40145-018-0287-z

8. Mahapatra, A., Subudhi, S., Swain, S., Sahu, R., Negi, R. R., Samanta, B., Kumar, P. (2019). Electrical and optical properties of yttrium titanate thin films synthesized by sol-gel technique. Integrated Ferroelectrics, Vol. 203, pp. 43—51. https://doi.org/10.1080/10584587.2019.1674953

9. Elbarhoumi, H., Khlissa, F., Ben Rejeb, H., Martin, I. R., Garbout, A. (2025). Structural and luminescence properties of Dy3+ ion-substituted Ln2Ti2O7 (Ln  = Gd, Y) pyrochlore phosphors for white light applications. J. Luminescence, Vol. 280, pp. 121116. https://doi.org/10.1016/j.jlumin.2025.121116

10. Joseph, Lyjo, K., Dayas, K. R., Damodar, S., Bindu, K., Krishnankutty, K., Nampoori, V. P. N., Radhakrishnan, P. (2008). Photoluminescence studies on rare earth titanates prepared by self-propagating high temperature synthesis method. Spectrochimica Acta — Part A. Molecular and Biomolecular Spectroscopy, Vol. 71, pp. 1281—128515. https://doi.org/10.1016/j.saa.2008.03.030

11. Xue, H., Zhang, Y., Xu, J., Liu, X., Qian, Q., Xiao, L., Chen, Q. (2014). Facile one pot synthesis of porous Ln2Ti2O7 (Ln = Nd, Gd, Er) with photocatalytic degradation performance for methyl orange. Catalysis Communications, Vol. 51, pp. 72—76. https://doi.org/10.1016/j.catcom.2014.03.017

12. Abe, R., Higashi, M., Sayama, K., Abe, Y., Sugihara, H. (2006). Photocatalytic activity of R3MO7 and R2Ti2O7 (R = Y, Gd, La; M = Nb, Ta) for water splitting into H2 and O2. J. Phys. Chem. B, Vol. 110, pp. 2219—2226. https://doi.org/10.1021/jp0552933

13. Tyshchenko, Ja. S., Lakiza, S. N., Red’ko, V. P., Dudnik, O. V. (2017). Isothermal sections of the phase diagram of the Al2O3—TiO2—Y2O3 system at 1400 and 1550 °С. Powder. Metall. Met. Ceram., Vol. 55, pp. 698—706. https://doi.org/10.1007/s11106-017-9857-9

14. Tishchenko, Ya. S., Lakiza, S. M., Red'ko, V. P., Dudnik, O. V. (2017). Isothermal section of the Al2O3—TiO2—Gd2O3 phase diagram at 1400 °C. Powder. Metall. Met. Ceram., Vol. 56, pp. 88—93. https://doi.org/10.1007/s11106-017-9875-7

15. Lang, S., Fillmore, C., Maxwell, L. (1952). The system beryllia-alumina-titania: Phase relations and general physical properties of three-component porcelains. J. Res. Nat. Bur. Stand., Vol. 48, pp. 301—321. https://doi.org/10.6028/jres.048.038