Конференції

Consolidation features of a composite based on Al2O3, containing 41,5% (wt.) of ZrO2 solid solution

    
V. V. Gerashchenko 2,
     

1 Інститут проблем матеріалознавства ім. І. М. Францевича НАН України , Київ
2 Інститут надтвердих матеріалів ім. В.М.Бакуля НАНУ, Київ
Mega_marekirina@ukr.net

Usp. materialozn. 2025, 10/11:118-126
https://doi.org/10.15407/materials2025.10-11.118

Анотація

The consolidation features of ZTA composites of the composition (wt. %) 58,5Al2O3 — 41,5(ZrO2 (Y2O3, CeO2)) depending on the heat treatment temperature of the starting powders were investigated. The composition of the solid solution based on ZrO2 is (% (mol.)): 90ZrO2—2Y2O3—8 СеО2. The samples were formed using cold uniaxial pressing. The ceramics were sintered at 1600 °C in air for 1,5 hours. In ZTA composites, the effect of "topochemical memory” was manifested: the properties of the ceramics were primarily determined by the properties of the starting powders despite the using of complex physicochemical , mechanical and thermal effects. Plastic deformation under the formation of ZTA composites contributed to increasing of the compacts density up to 0,45. The relative density of sintered materials rised from 0,92 to 0,97 with an increasing of the heat treatment temperature of the starting powders from 400 to 1150 °C. The decreasing of the activity of the starting powders due to sintering during the heat treatment caused a sharp decrease up to 0,88 of the relative density of sintered ceramics. During sintering, the effect of “mutual inhibition” of the growth of α-Al2O3 and ZrO2 grains prevented the anomalous grains growth of α-Al2O3 regardless of the treatment temperature of the the starting powders. After sintering, a similar to eutectic orientation of the Al2O3 grains, up to 1 µm in size, was observed. The sintered ceramis produced from the powder after heat treatment at 1150 °C was characterized by the highest relative density up to 0,97. The microhardness of this ZTA composite is 190 MPa, K1c — 7 MPa·m0.5, Vickers hardness — 3,7 GPa. Improving the consolidation of ZTA composites of eutectic composition will allow to increase their strength behaviors for microstructural design of instrumental, structural and functional ceramics.

Keywords: Al2O3, ZrO2, composite, solid solution, ZTA-ceramics.


Посилання

1. Shevchenko, A. V., Ruban, A. K., Dudnik, Ye. V. (2000). Vysoko tekhnologichnaya keramika na osnove dioksida tsirkoniya. Ogneupory i tekhnicheskaya keramika, No. 9, pp. 2—8 [in Russian].

. Hannink, R. H. J., Kelly, P. M., Muddle, B. С. (2000). Transformation toughening in zirconia — containing ceramics. J. Amer. Ceram. Soc., Vol. 83, No. 3, pp. 461— 487.

3. Abbas, M. K. G., Ramesh, S., Tasfy, S. F. H., Sara, Lee, K. Y. (2023). A state-of the-art review on alumina toughened zirconia ceramic composites. Mater. Today Comm., Vol. 37, pp. 106964. https://doi.org/10.1016/j.mtcomm.2023.106964

4. Hu, Ch. Y., Yoon, T.−R. (2018). Recent updates for biomaterials used in total hip arthroplasty. Biomaterials Res., Vol. 22, pp. 22—33. 5. Chevalier, J., Gremillard, L. (2017). Zirconia as a Biomaterial. University of Lyon, Villeurbanne Cedex, Vol. 1, pp. 122—144.

6. Chevalier, J., Gremillard, L. (2009). Ceramics for medical applications: A picture for the next 20 years. J. Eur. Ceram. Soc., Vol. 29, Iss. 7, pp. 1245—1255.

7. Fakolujo, Ol., Merati, Al., Bielawski, M., Bolduc, M., Nganbe, M. (2016). Role of microstructural features in toughness improvement of zirconia toughened alumina. J. Minerals Mater. Characterization and Engineering, Vol. 4, pp. 87—102.

8. Chen, J., Xie, Z., Zeng, W., Wu, W. Toughening mechanisms of ZTA ceramics at cryogenic temperature (77 K). Ceram. Int. Режим доступа к документу: http://dx.doi.org/10.1016/j.ceramint. 2016.11.072

9. Marek, I. O., Dudnik, O. V., Korniy, S. A., Redko, V. P., Ruban, O. K. (2023). Effect of the ZrO2-based solid solution on the low-temperature phase stability of ZrO2—Y2O3—CeO2. Powder. Metall. Met. Ceram., Vol. 61, pp. 727—735.

10. Banik, S. R., Iqbal, I. M., Nath, R., Bora, L. J., Singh, B. K., Mandal, N., Sankar, M. R. (2019). State of the art on zirconia toughened alumina cutting tools. Materials Today: Proceedings, Vol. 18, pp. 2632—2641.

11. Basha, M. M., Basha, S. M., Singh, B. K., Mandal, N., Sankar, M. R. (2020). A review on synthesis of zirconia toughened alumina (ZTA) for cutting tool applications. Mater. Today: Proceedings, Vol. 26, Part 2, pp. 534—541.

12. Ouyang, J.-H., Ma, Y.-H., Henniche, A. (2017). Synthesis, densification and characterization of nanosized oxide ceramic powders with eutectic compositions by heating of alcoholaqueous salt solutions. J. Ceram. Sci. Tech., Vol. 8, pp. 81—90.

13. Oberste, B. J., Legoux, J., Gabriel, J. (2008). Mechanical and thermal transport properties of suspension thermal sprayed alumina-zirconia composite coatings. J. Thermal Spray Technology, Vol. 17, Iss. 1, pp. 91—104.

14. Tarasi, F., Medraj, M., Dolatabadi, A. (2010). Phase formation and transformation in alumina / YSZ nanocomposite coating deposited by suspension plasma spray process. J. Thermal Spray Technology.https://doi.org/10.1007/s11666-009-9461-8

15. Benzaid, R., Chevalier, J., Saadaoui, M., Fantozzi, G., Nawa, M., Diaz, L. A. (2008). Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications. Biomaterials, Vol. 29, pp. 3636—3641.

16. Ponnilavan, V., Kannan, S. (2017). Structural, morphological and mechanical characteristics on the role of excess ceria additions in zirconia toughened alumina systems. J. Alloys Comp., Vol. 694, pp. 1073—1082.

17. Smyrnova-Zamkova, M. Y., Ruban, O. K., Bykov, O. I., Dudnik, O. V. (2018). Physico-chemical properties of fine-grained powder in Al2O3—ZrO2—Y2O3— CeO2 system produced by combined method. Comp. Theory Practice, Vol. 18, No. 4, pp. 234—240.

18. Khomenko, O. I., Khomenko, O. V. (2014). Vykorystannya prohramnoho kompleksu AMIS dlya kil'kisnoyi metalohrafiyi. Matematicheskie modeli ta obchislyuvalnyy eksperiment v materialoznavstvi, Vyp. 16, pp. 35—42 [in Ukrainian].

19. Chernyavskiy, K. S. (1977). Stereologiya v metallovedenii. Moscow: Metallurgiya, 280 p. [in Russian].

20. Dudnik, O. V., Smirnova-Zamkova, M. Yu., Marek, I. O., Redko, V. P., Khomenko, O. I., Gerashchenko, V. V., Mosina, T. V., Ruban, O. R. (2024). Effect of heat treatment of the starting powders on the consolidation of zirconia toughened alumina composites. Powder. Metall. Met. Ceram., Vol. 63, pp. 173— 183. https://doi.org/10.1007/s11106-025-00449-5