Extended characterization of materials based on continuous instrumented indentation diagrams


I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
Usp. materialozn. 2021, 3:13-23


In addition to the traditional determination of hardness and elastic moduli from continuous diagrams of instrumental indentation, it is proposed to determine the yield stress, the characteristic of plasticity, the characteristic relative size of the elastoplastic zone under the indenter, and the volumetric deformation of the material in the area of contact of the indenter with the sample. The indentation diagram shows the transition point to the unconstrained material flow under the indenter.

Download full text



1. Oliver, W. C., Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., Vol. 7, No. 6, pp. 1564—1583. doi: https://doi.org/10.1557/JMR.1992.1564

2. Oliver, W. C., Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res., Vol. 19, No. 1, pp. 3—20. doi: https://doi.org/10.1557/jmr.2004.19.1.3

3. Bulychev, S. I., Alekhin, V. P., Shorshorov, M. K., Ternovskii, A. P., Shnyrev, G. D. (1975). Determination of Young's modulus according to indentation diagram. Industrial Laboratory, Vol. 41, pp. 1409—1412.

4. Shorshorov, M. K., Bulychev, S. I., Alekhin, V. P. (1981). Work of plastic and elastic deformation during indenter indentation. Soviet Physics - Doklady, Vol. 26, pp. 769—771.

5. Firstov, S. A., Gorban', V. F., Pechkovskii, E. P. (2009). Novaya metodologiya obrabotki i analiza rezul'tatov avtomaticheskogo indentirovaniya materialov. New methodology for processing and analyzing the results of automatic indentation of materials. Kyiv: Logos, 83 p. [in Russian].

6. Hay, J. C., Bolshakov, A., Pharr, G. M. (1999). A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res., Vol. 14, No. 6, pp. 2296—2305. doi: https://doi.org/10.1557/JMR.1999.0306

7. Veprek, S., Mukherjee, S., Mannling, H.-D., He, J. (2003). On the reliability of the measurements of mechanical properties of superhard coatings. Mater. Sci. and Engineering, Vol. A 340, pp. 292—297. doi: https://doi.org/10.1016/S0921-5093(02)00195-8

8. Cao, Y. P., Dao, M., Lu, J. (2007). A precise correcting method for the study of the superhard material using nanoindentation tests. J. Mater. Res., Vol. 22, No. 5, pp. 1255—1264. doi: https://doi.org/10.1557/jmr.2007.0150

9. Veprek-Heijman, M. G. J., Veprek, R. G., Argon, A. S., Parks, D. M., Veprek, S. (2009). Non-linear finite element constitutive modeling of indentation into super- and ultrahard materials: The plastic deformation of the diamond tip and the ratio of hardness to tensile yield strength of super- and ultrahard nanocomposites. Surface & Coat. Techn, Vol. 203, pp. 3385—3391. doi: https://doi.org/10.1016/j.surfcoat.2009.04.028

10. Hay, J. L., Pharr, G. M. (2000). Instrumented Indentation Testing. ASM Hand¬book. Vol. 8: Mechanical Testing and Evaluation, 10th Edition, ASM International, Materials Park, OH., pp. 232—243. doi: https://doi.org/10.31399/asm.hb.v08.a0003273

11. Borodich, F. M. (2014). The hertz-type and adhesive contact problems for depthsensing indentation. Adv. Appl. Mechanics, Vol. 47, Burlington: Academic Press, pp. 225—366. doi: https://doi.org/10.1016/B978-0-12-800130-1.00003-5

12. Galanov, B. A., Dub, S. N. (2017). Critical Comments to the Oliver-Pharr Measurement Technique of Hardness and Elastic Modulus by Instrumented Indentations and Refinement of Its Basic Relations. J. of Superhard Mater., Vol. 39, No. 6, pp. 373—389. doi: https://doi.org/10.3103/S1063457617060016

13. Galanov, B. A., Ivanov, S. M., Kartuzov, V. V. (2020). Improved core model of the indentation for the experimental determination of mechanical properties of elasticplastic materials and its application. Mechanics Mater., Vol. 150, pp. 103545. doi: https://doi.org/10.1016/j.mechmat.2020.103545

14. Sneddon, I. N. (1948). Boussinesq's Problem for a Rigid Cone. Proc. Cambridge Philos. Soc., Vol. 44, pp. 492—507.doi: https://doi.org/10.1017/S0305004100024518

15. Johnson, K. L. (1985). Contact Mechanics. Cambridge: Cambridge University Press, 452 p. doi: https://doi.org/10.1017/CBO9781139171731

16. Milman, Y. V., Galanov, B. A., Chugunova, S. I. (1993). Plasticity characteristic obtained through hardness measurement. Acta Metall. Mater., Vol. 41, pp. 2523— 2532. doi: https://doi.org/10.1017/CBO9781139171731

17. Galanov, B. A., Milman, Y. V., Chugunova, S. I., Goncharova, I. V. (1999). Investigation of mechanical properties of high-hardness materials by indentation. J. Superhard Mater., Vol. 21, pp. 23—35.