Conferences

Simulation of the interaction of plastic zone dislocations with the grain boundary at brittle-plastic transition temperatures in molybdenum

    

I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv
yupodrezov@ukr.net
Usp. materialozn. 2021, 3:66-76
https://doi.org/10.15407/materials2021.03.066

Abstract

The (DD) method was used to model the formation of the plastic zone of the top of the cracks in polycrystalline molybdenum. Special attention was paid to take into account the interaction of dislocations in the plastic zone with grain boundaries. Structural sensitivity of fracture toughness was analyzed under brittle-ductile condition. Simulations were performed for a range of grain sizes from 400 to 100 μm, at which a sudden increase in fracture toughness with a decrease of grain size was experimentally shown. We calculated the value of K1c taking into account the shielding action of dislocations. The position of all dislocations in the plastic zone at fracture moment was calculated. Based on these data, we obtained the dependences of dislocation density on the distance from the crack tip thereby confirming significant influence of the grain boundaries on plastic zone formation. At large grain sizes, when the plastic zone does not touch the boundary, the distribution of dislocations remained unchanged. As grains reduce their size to size of the plastic zone, they start formating a dislocation pile – up near the boundaries. Dislocations on plastic zone move slightly toward the crack tip, but the density of dislocations in the middle of the grain remains unchanged, and fracture toughness remains almost unchanged. Further reduction of the grain size leads to the Frank-Reed source activation on the grain boundary Forming dislocation pile-up of the neighbor grains. Its stress concentration acts on dislocations of the first grain and causes redistribution of plastic zone dislocations. If the reduction in grain size is not enough to form a strong pile-up, density of dislocations on plastic zone increases slightly and crack resistance increases a few percent. Further reduction of grains promotes strong pile-up, dislocations move to crack tip, and its density on plastic zone increases. Crack is shielded and fracture toughness increases sharply. The calculation showed that the fracture toughness jump is observed at grain sizes of 100— 150 μm, in good agreement with the experiment.


Download full text

BRITTLE-DUCTILE TRANSITION, DISLOCATION DYNAMICS, FRACTURE TOUGHNESS, MOLYBDENUM, PLASTIC ZONE, SIZE OF GRAINS

References

1. Curry, D. A. & Knott, J. F. (1976). The relationship between fracture toughness and microstructure in the cleavage fracture of mild steel. Met. Sci. J., Vol. 10, pp. 1—6.

2. Greenfield, M. A. & Margolin, H. (1971). The interrelationship of fracture toughness and microstructure in a Ti—5,25 Al—5,5 V—0,9 Fe—0,5 Cu alloy. Metall. Trans., Vol. 2, pp. 841—847. doi: https://doi.org/10.1007/BF02662744

3. Srinivas, M., Malakondaiah, G. & Rao, P. R. (1987). Influence of polycrystal grain size on fracture toughness of and fatigue threshold in Armco iron. Eng. Fract. Mech., Vol. 28, pp. 561—576. doi: https://doi.org/10.1016/0013-7944(87)90053-1

4. Srinivas, M., Malakondaiah, G., Armstrong, R. W. & Rao, P. R. (1991). Ductile fracture toughness of polycrystalline Armco iron of varying grain size. Acta Metal. Mater. Vol. 39, pp. 807–816. doi: https://doi.org/10.1016/0956-7151(91)90280-E

5. Werner, E. (1988). Der einfluß der korngröße, des legierungsgehaltes und einer kaltumformung auf die bruchzähigkeit. Z. Metallkd. Vol. 79, pp. 585—590.

6. Pacyna, J. & Mazur, A. (1983). The influence of grain size upon the fracture toughness of hot-work tool steel. Scand. J. Met., Vol. 12, pp. 22—28. doi: https://doi.org/10.1002/srin.198600828

7. Zeng, X. H., Hartmaier A. (2010). Modeling size effects on fracture toughness by dislocation dynamics. Acta Materialia, Vol. 58.1, pp. 301—310. doi: https://doi.org/10.1016/j.actamat.2009.09.005

8. Reiser, Jens, Hartmaier, Alexander. (2020). Elucidating the dual role of grain boundaries as dislocation sources and obstacles and its impact on toughness and brittle-to-ductile transition. Scientific Reports, Vol. 10, Article number, 2739. doi: https://doi.org/10.1038/s41598-020-59405-5

9. Borysovska, K. M., Podrezov, Yu. M., Firstov, S. O. (2020). The influence of grain size in polycrystalline materials on the mechanisms of plastic deformation and yield strength. Uspikhy materialoznavstva. K.: IPM NAN Ukrainy, Vyp. 1, pp. 26—32 [in Ukrainian]. doi: https://doi.org/10.15407/materials2020.01.026

10. Borysovska, K. M. (2012). The modelling of the behavior of dislocation ensemble near the crack tip in the case of constant stress. Electron microscopysa y prochnost materyalov, Vyp. 18, pp. 112—119 [in Ukrainian].

11. Danylenko, M. I., Koval, O. Iu, Borysovska, K. M., Podrezov, Yu. M. Firstov, S. O. (2014). The effect of grain size on the crack resistance of low-alloy molybdenum. Pratsi V Mizhnarodnoi konf. ”Mekhanika ruinuvannia materialiv i mitsnist konstruktsii”. 23—27 chervnia 2014, m. Lviv, Ukraina, S. 195—200 [in Ukrainian].

12. Rice, J. R., Thomson, R. (1974). Ductile versus brittle behaviour of crystals. Philjs. Mag., Vol. 29, pp. 73—80.

13. Borysovska, K. M., Slyunyayev, V. N., Podrezov, Yu. N. (2005). Influence of the dislocation structure on the crack tip in highly deformed iron. Vol. 23(2).

14. Borysovskaia, E. M., Podrezov, Yu. N., Fyrstov, S. A. (2007). Dynamyka strukturnыkh perestroek s uchetom protsessa zarozhdenyia dyslokatsyi. Elektronnaia microskopyia y prochnost materyalov, Vyp. 14, pp. 3—11 [in Russian].

15. Borysovskaia, E. M., Podrezov, Yu. N. (2005). Analyz uslovyi annyhyliatsyy dyslokatsyonnыkh skoplenyi. Matematycheskye modely y vыchyslytelnыi eksperyment v materyalovedenye. Kyev: IPM NANU, Vyp. 7, pp. 99—108 [in Russian].

16. Amodeo, R. J., & Ghoniem, N. M. (1990). Dislocation dynamics. I. A proposed methodology for deformation micromechanics. Phys. Rev. B, Vol. 41 (10), p. 6958.

17. Messerschmidt, U. (2010). Dislocation dynamics during plastic deformation. Berlin Heidelberg: Springer-Verlag. doi: https://doi.org/10.15407/materials2020.01.026

18. Hirth, J. P. & Lothe, J. (1982). Theory of dislocations. New York: Wiley